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Abstract

Microkernels and microhypervisors, which we under-
stand to be small hypervisors providing microkernel-like
abstractions to build minimal-complex and de-privileged
virtual-machine monitors, have become very attractive
operating-system alternatives for PC- and embedded plat-
forms.

This paper highlights initial thoughts towards verifying
microkernel-based operating systems and in particular sys-
tems running on top of the L4.Sec microkernel.

1. Introduction

Their ability to co-host legacy operating systems next to
security-sensitive and real-time-sensitive applications [3, 4]
increased the interest in microkernels and microhypervisors
as the underlying operating system in PC- and embedded
platforms.

For use in embedded environments correctness of the op-
erating system (and observance of other relevant properties)
is crucial and should at best be formally verified.

Here, unlike monolithic systems, microkernels show a
great advantage: the microkernel abstractions facilitate a
construction paradigm in which all functionality is split into
small servers. These servers are separated into different ad-
dress spaces with the right to access only those parts of other
address spaces that are necessary for fulfilling their func-
tionality and for communicating requests and results with
their clients. The advantage with regards to verification that
comes from this construction principle is that the code size
of these individual servers is reduced to an amount that can
be handled with today’s verification tools.

This paper presents initial thoughts on how verification
of a microkernel-based system may work. We concentrate
on L4.Sec [7] — an L4-family microkernel [8]. We are
however confident, that the ideas will carry on also to other

second-generation microkernels and microhypervisors.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces the L4.Sec microkernel. In Section 3 we
have a more detailed look into why microkernel-based sys-
tems are the right systems to formally verify. Section 4
highlights our initial ideas towards verifying microkernel-
based operating systems. Section 5 relates our approach to
other work and we conclude in Section 6.

2. L4.Sec

L4 abstracts from the underlying hardware by introduc-
ing threads, address spaces and synchronous and block-
ing inter-process communication (IPC) to communicate be-
tween threads in different address spaces.

In L4.Sec access to all kernel objects (i.e., threads, ad-
dress spaces, user memory, communication endpoints, etc.)
is controlled via capabilities. A capability restricts which
system calls can be performed on the kernel object it refer-
ences. We say a thread owns a capability if there is a map-
ping of a local name (or virtual address for memory pages)
to this capability in the thread’s address space.

A thread can transfer any of its owned capabilities as part
of an IPC to other threads, provided a communication end-
point to which this sending thread is authorised to send and
from which the receiver is authorised to receive. The access
rights transferred via this map operation can later on be re-
voked with the unmap operation from all address spaces that
directly or indirectly received the capability from a thread
in the unmapper’s address space.

Upon startup the microkernel constructs an initial ad-
dress space σ0 that has an idempotent (virtual to physical)
mapping to all physical memory available for use by user-
level servers and applications. Upon request (e.g., from the
loader) it will respond with mapping the requested page,
provided this page is available memory. Figure 1 shows an
example of a first server running on top of σ0.

We will use σ0 as our guiding example.
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Figure 1: The correctness of σ0 is indispensable for the loader,
however, not the correctness of the memory- and file-
server it uses.

3. Why Microkernel-Based Systems

In a monolithic operating system, each server has unre-
stricted access to the entire kernel address space, i.e., to the
code and data of all other servers and applications and un-
controlled access to all datastructures used for implement-
ing kernel objects (e.g., kernel threads). Thus a single fail-
ure (intentionally as a consequence of attacks, or uninten-
tionally) in such a server may bring down the entire system.

In microkernel-based operating systems, these servers
are separated and hold only capabilities to those kernel ob-
jects of other servers which they need to perform their func-
tionality.

Let us consider again the example from Figure 1. The
first task above σ0 implements loader functionality and uses
a file system to read the files to start. Consistency of the
code and data section of the loader are indispensable for its
proper functioning.

Clients typically only hold capabilities on an endpoint
through which they can send messages to request the loader
to start other applications. Otherwise they have no access to
objects in the loader’s address space.

For the actual startup, the loader needs memory in which
it requests the file server to copy the image and which it
must map into its address space to decode the image. For
this, the file server and the memory manager (σ0 or some
higher-level memory manager) needs only to have access to
this memory, but to no other objects in the loader’s address
space. By properly programming the loader (e.g., multi-
threaded or exploiting asynchronous communication proto-
cols to prevent blocking at the file system), it can handle
client requests such, that failure in the memory server, in
the file system or in clients cannot affect the requests from
other client’s.

Obviously, correctness of the file system and of the mem-
ory manager is indispensable for the started application, but
as we have seen not for the loader.

Let V be the server we aim to verify. As the loader exam-
ple illustrates we can classify the servers and applications in
the environment of V into:

unrelated servers which hold no capability on a kernel ob-
ject of V .

clients which hold sufficient capabilities on V to issue their
requests. Servers should be implemented such that
their correctness does not depend on the correctness
of its clients. For the verification we will thus assume
that clients will execute arbitrary code.

related servers are used by V to perform its task. Their
access to the server’s kernel objects is, however, re-
stricted such that even erroneous or malicious related
servers do not affect the proper functioning of V . For
the verification we will also assume that related servers
execute arbitrary code, however, we investigate their
properties to assert towards the clients when their re-
quest is correctly handled. The assertions we aim to
verify are thus typically of the form: provided correct-
ness of related servers, the server will produce correct
results; incorrect servers will affect only those requests
for which these servers are indispensable.

indispensable servers hold capabilities on mission critical
resources and must therefore be completely trustwor-
thy. To verify V we first need to establish trust in all
indispensable servers.

This classification and the need to establish trust only
in indispensable servers facilitates a hierarchical verifica-
tion of microkernel-based systems, in our example, the mi-
crokernel, sigma0, the loader, the file-system and memory
manager and finally the started application or server. Each
of these servers can typically be implemented in less than
5000 LOC, an amount that can be dealt with by today’s ver-
ification tools.

In the next section, we investigate how such a verifica-
tion may work.

4. Verifying Microkernel-Based Systems

Typically operating systems are written in C, sometimes
in C++. To formally reason about servers, we need a model
capturing the semantics of both the language features and
the system calls of the microkernel that are used by the
servers to verify. Furthermore, because these servers can, in
general, be preempted at almost all points in their execution
and because these servers may run on a multiprocessor sys-
tem, the model must facilitate quasi- and true parallelism.
In the following (Section 4.1), we sketch our co-algebraic
model of the L4.Sec microkernel.



4.1. Model

We model the system state S of an L4-based operating
system by three principal relations:

spc : Phys Address ×Address ⇀ Capability recording
with which address an address space (physical address
in the domain) can access which capability (tuples
Phys Address × Rights).

mdb : Phys Address ×Address ⇀ Mapping Node
recording where each capability has been mapped to
(the dashed arrows in the above figure).

mem : Phys Address ⇀ Kernel Object recording the
placement and state of kernel objects. Due to the spe-
cial memory management of L4.Sec, free memory can
be used either as user memory (⊂ Kernel Object)
or to hold the datastructures of other kernel objects
(e.g., threads). Kernel Object is an abstract datatype
recording the internal state of these objects (e.g., the
byte values of a user-memory page).

System calls we model (similar to [13]) as state trans-
formers transitioning a state into a complex state: S → CS
with CS := S × Val + S + ... + 1. S × Val is the normal
outcome, S + ... + 1 record various abnormal states as they
occur, for example, after a break instruction to indicate that
the remaining while body must be skipped. We label these
states appropriately as ok : S × Val , break : S, ..., fail : 1.
fail indicates a model failure, i.e., an outcome which does
not happen in a real system but which we use to simplify
the state transformers.

4.1.1 Serialisation

To correctly model preemption and parallel execution
we require that each state transformer represents an un-
preemptible execution step and that state transformers are
serialisable[9] 1. That is, the parallel composition of
each two state transformers stf 1||stf 2 produces the same
behaviour as some sequential composition: stf 1; stf 2 ∨
stf 2; stf 1. Where system calls do not show these two prop-
erties we need to split them into multiple state transformers.

Figure 2 illustrates this for mapping a capability. The
map operation must allocate mapping nodes which record
the information necessary for a later unmap. After the allo-
cation, however, the map operation may fail (e.g., because
of an existing mapping in the destination space). In this
case the node is freed and its memory becomes available
again. This, however, renders a serialisation problem be-
cause a parallel object allocating function may find no free
memory and fails. In a serial composition it could succeed

1This property is sometimes called atomic. We avoid this term because
it has a different meaning in a multiprocessor context.
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Figure 2: Serialisation of map system call: another object alloca-
tion function may fail in between t0 and t1 but it may
succeed if executed sequentially with map.

because either the node has not yet been allocated or is freed
again. To circumvent this problem we model map as three
state transformers: two, allocating and deallocating map-
ping nodes and one performing the actual map operation.

A second serialisation problem where splitting is not fea-
sible occurs with writing-back return values to thread con-
trol registers [2]. These registers can be implemented with
user accessible memory, however, then partial write-backs
would be visible. To limit the increase in complexity we
instead exclude TCR memory from our memory model and
introduce special state transformers that (according to the
specification) allow the invoking thread only to access its
own TCRs.

4.1.2 Traces

The individual programs executed we model as a relation
prg : Phys Address → [S → CS]. For the verification of
a particular server in all its possible environments, we insert
the programs of the server and of its indispensable servers
into the relation (via predicative subtyping). The programs
of other threads including clients and related servers, we
consider by quantifying over all possible programs of the
remaining threads.

Similar to the approach in [6] we define a trace via a
helper function step : S×{0, . . . , n−1}∗ → CS that takes
a state S and a sequence of thread IDs α and recursively
executes the unpreemptible execution steps of the threads
in α. Precisely, let t be the first thread ID in α (i.e., α is not
the empty sequence and α = t ◦ α′). If t is runnable in S,
step(S, t ◦ α′) executes the next unpreemptible execution
step e of t in S. If either t is not runnable in S or e(S) fails,
step(S, t ◦ α′) fails as well. Otherwise the step function
continues recursive execution of the remaining trace on the
resulting state S′ of e(S) (i.e., step(S′, α)).

We will further require that step executes abnormal be-
haviour to an end so that the result of this function yields a
realistic transition if we further restrict the traces such that
step never fails.

Before exploiting these traces in the specification of in-
dispensable servers and in the verification, we argue why all
abnormal behaviour terminates and why all traces are infi-
nite.

Abnormal behaviour may persist for the entire program



for two reasons:

1. because the program is not well formed (e.g., when a
break is issued outside a while body). We avoid this
by quantifying only over well-formed programs or by
issuing a model failure fail and consider for the final
verification only those traces that do not result in fail .
No such trace occurs in reality.

2. because the program misses to catch abnormal be-
haviour (e.g., if it fails to catch all exceptions). Such
programs, however, have a well defined behaviour: for
example, the thread of a program that ends with un-
caught exceptions will be terminated.

Operating systems and most of its servers typically run
forever and await further requests to handle. Even if all
threads block, the operating system’s idle thread remains
runnable. Because of this, traces representing realistic
scheduling behaviour will always find a runnable thread to
execute. Thus realistic traces are infinite and for the verifi-
cation we need only to consider these infinite traces.

4.2. Behaviour Specification

Rather than embedding the actual implementations of in-
dispensable servers into the prg relation it is more conve-
nient to verify against an abstract specification of the be-
haviour of indispensable servers. Then a positive verifica-
tion result carries along also to other implementations pre-
serving the behaviour.

Jacobs [6] defines three temporal operators for specify-
ing binary-tree properties. In the following, we complement
these with two additional temporal operators: next time P
holds, Q holds as well (4(P,Q)), and, certainly sometimes
Q holds (⊗(Q)).

We exemplify their use in a case study specifying the
behaviour of σ0 (Section 4.2.2).

4.2.1 Temporal Operators

Let T ⊆ {0, . . . , n − 1}∗ be the set of realistic, infinite
traces. For any prefix β of a trace α ∈ T the step(s, β)
produces a realistic result state by transitioning only over
runnable and existing threads.

In this setting we define in analogy to the three temporal
operators next time (©(P )), eventually (♦(P ) and hence-
forth (�(P )) from Jacobs [6] two additional temporal oper-
ators:

certainly sometimes Q:

⊗(Q)(s) ⇔∀α ∈ T.∃β ∈ Prefix (α).
step(s, β) = (s′, v) ⇒ Q(s′)

next time P also Q:

4(P,Q)(s) ⇔∀α ∈ T.∃β ∈ Prefix (α).
∀γ ∈ Prefix (β).

step(s, γ) = (s′, v′) ⇒ ¬P (s′)∧
step(s, β) = (s′′, v′′) ∧ P (s′′) ⇒

Q(s′′)

4.2.2 Case Study: σ0

We specify the behaviour of σ0 of mapping the requested
page of physical memory when this page is available. This
includes three parts:

1. σ0 never modifies the memory that is available for their
clients,

2. σ0 receives all messages sent to it, and

3. σ0 replies correctly to correct requests.

More formally, let avl : Address → bool be a predicate
stating which memory is available for clients of σ0. Ob-
viously, avl depends on the implementation of σ0 and on
the underlying hardware architecture. In the verification of
the loader we thus specify a similar predicate required and
phrase the precondition required ⊆ avl for the verification.

The first part is then:

�(λs′.step(s′, σ0) = (s′′, v)∧
∀a ∈ Address.avl(a) ⇒

s′.mem(a) = s′′.mem(a))(s0)

where s0 is a state after σ0 is properly initialised and
step(s′, σ0) denotes the following state when executing the
next instruction of σ0 in state s′. Note that we do not re-
strict write operations. Rather, we define the unchanged
property in terms of the memory in the following state. This
way an implementation of σ0 could execute instructions like
or(address, 0), an instruction frequently used by higher
level memory managers to ensure page faults are resolved
prior to mapping memory as a reply to client requests.

To specify the second part we need an accessor func-
tion next(t) to prg extracting the next state transformer ex-
ecuted by thread t. We write s.next(t) to make explicit that
we evaluate next in state s. Furthermore we need to de-
termine whether the server to verify contacts σ0 or whether
it invokes some other capability. We therefore introduce a
predicate σ0endpoint(p ∈ Physical Address) that is true
if the kernel object located at address p is a communica-
tion endpoint at which σ0 offers its interface. Specify-
ing this endpoint as a predicate allows for σ0 implementa-
tions offering their service at multiple communication end-
points (e.g., one endpoint per processor). Correspondingly,



σ0endpoint(target(s.spc(space(ti), a))) states whether
the capability that is located in the address space of thread ti
(space(ti)) at address a refers to such a σ0 communication
endpoint.

With these helper functions we write the second part as:

step(s, ti) = (s′, v′)∧
(s.next(ti) = ipc send(a) ∨ s.next(ti) = ipc call(a))∧
σ0endpoint(target(s.spc(space(ti), a))) ⇒
⊗ (λs′′.thread state(s′′.mem(ti)) = sending∧

step(s′′, ti) = (s′′′, v′′′) ⇒ s′′.next(ti) = ipc xmit)(s′)

Where ipc send , ipc call are the serialisable and unpre-
emptible state transformers implementing the synchronous
rendezvous when sending or sending and atomically receiv-
ing (call) a message respectively ipc xmit implementing
the message transmission.

In words, a message send to the σ0 endpoint will cer-
tainly sometimes be transmitted. The fact that σ0 causes
this transition is due to an additional (not shown) require-
ment that no non-σ0 thread has receive permissions on σ0

endpoints.
To capture the third property we first define some more

predicates: valid request(s, ti) checks the thread control
registers containing the message (message registers) of ti
in state s and returns true iff the values of these registers
correspond to a valid σ0-protocol request. We also check
the avl property and the reply endpoint. More formally:

valid request(s, ti) ⇔
avl(s.message register(s.mem(ti), 0))∧
s.message register(s.mem(ti), 1) = flexpage(a, 1)∧
has type endpoint(s.mem(target(s.spc(space(ti), a))))

Flexpage is an L4 datatype encoding size aligned re-
gions of some power of two size. Here we simply use
flexpage(a, s) as a constructor abstracting from the actual
bit representation.

Similar we can define the predicate valid reply(s, σ0) to
check whether a reply from σ0 conforms to the protocol.

With reply ep being the physical address of the reply
endpoint associated with the request we can finally formu-
late the third part as:

step(s, ti) = (s′, v′)∧
s.next(ti) = ipc xmit∧
valid request(s′, ti) ⇒
4(λs′′.step(s′′, σ0) = (s′′′, v′′′)∧

s.spc(space(σ0), a′) = reply ep∧
s′′.next(σ0) = ipc send(a′),
λs′′′′.valid reply(s′′′′, σ0))(s′)

As already mentioned we will use such behaviour speci-
fications in two ways:

1. as proof obligations for verifying an actual implemen-
tation (of σ0), and

2. as behaviour specification of an indispensable server
(e.g., of the loader).

5. Related Work

The authors are unaware of work addressing the verifi-
cation of microkernel-based systems.

Many projects, however, are currently aiming at verify-
ing mircokernels. Those related to the L4 microkernel are
VFiasco [13], L4.verified [12] and the Robin EU-Project
[1]. This tendency supports our believe that in the near
future microkernel-based systems get verified. This paper
presents first steps in this direction.

Co-algebraic specifications have been successfully used
in verifications (e.g., Jacobs [6] in a verification of Peter-
son’s algorithm). A good introduction into co-algebraic
specification and verification we found in [5].

To integrate a language semantics with system call se-
mantics any operational language semantics[10] describing
the language operations as small serialisable steps is suit-
able. Norrish [11] describes such a semantics for C.

6. Conclusions

In this paper we presented initial thoughts towards the
verification of microkernel-based systems.

We argued that microkernel-based system verification
needs only to consider the server to be verified and those
servers indispensable for the its proper functioning. We
sketched a formal model suitable for this kind of verifica-
tion. Related servers and clients need not to be correct and
not even known precisely, however, their possible interfer-
ence must be considered by quantifying over all programs
that they could execute.

We exemplified how co-algebraic specification can be
used to model the behaviour of indispensable servers and
how to use such behaviour specifications to make verifica-
tion results carry on to behaviour preserving implementa-
tions.
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