
Faculty of Computer Science Institute of Systems Architecture, Chair of Operating Systems

WHO IS GOING TO PROGRAM THIS?
MARCUS VÖLP, MICHAEL ROITZSCH, HERMANN HÄRTIG

Imagine future processors look like this:

TMR

Core
Fusion

Accelerators

Dynamically Heterogeneous Manycores

■ Core Fusion: pooling resources of small
cores to form a larger high-throughput core

■ Resilient Cores: redundancy to
compensate hardware errors

■ Specialized Cores: accelerator units

■ 3D-stacking: connect DRAM or more cores

We face a mismatch between system and applications:
Operating System Challenges

■ two-way mediation between applications and
hardware resources

■ adapt software parallelism and accelerator use

■ reconfigure hardware to match throughput needs

■ spatial placement for data proximity

Today’s Applications

■ hardcoded threads

■ cumbersome use of
accelerators

■ opaque data use

■ future behavior invisible

We propose an asynchronous lambda infrastructure:

We call this concept “Elastic Manycore Architecture.”

Application Runtime Operating System

ex
p

o
se

 s
ta

tic
 a

nd
 d

yn
am

ic
 p

ro
gr

am
 s

tr
uc

tu
re

re
ce

iv
e

no
n-

fu
nc

tio
na

l p
ro

pe
rt

ie
s,

 Q
oS

ex
p

o
se

 e
xe

cu
tio

n
al

te
rn

at
iv

es
, r

eq
ui

re
m

en
ts

re
ce

iv
e

fe
ed

ba
ck

 f
ro

m
 g

lo
ba

l s
ch

ed
ul

in
g

lambdas instead of
threads for parallelism:

void worker() {
 work();
}
start_thread(worker);

dispatch_async(q, ^{
 work();
});

queues for asynchronous
execution

■ expose pending work

■ latent parallelism

analyze queued work

■ serial queues show
dependencies

■ alternative implemen-
tations for accelerators

learn lambda metadata

■ memory accesses

■ instruction throughput

annotation: critical path,
needs higher throughput

execution stretch as a
penalty for:

■ distance to data

■ unused accelerators

■ lower single-thread
throughput

scheduling decisions

■ decentralized by
gossiping

run critical path on fused
core with high throughput

run parallel section on
multiple individual cores

Who is Going to Program This?
Marcus Völp, Michael Roitzsch*, Hermann Härtig

Technische Universität Dresden, Germany
{voelp, mroi, haertig}@os.inf.tu-dresden.de

* Student
The past years have shown us a wide variety of chip
multiprocessor systems, rapidly evolving in terms of
parallelism, varying distance to memory and
heterogeneity. However, the pace of computer
architecture change is not slowing down. Instead,
micro-architectural trends and 3D stacking technology
forecast a whole new class of systems with unique
adaptation capabilities to the varying demands of
applications. The role of the operating system (OS) is
to mediate between increasingly complex applications
and evermore complex hardware. This abstract makes
the case for a new programming model and system
interface to leverage the performance of these new
architectures while maintaining programability.

Micro-Architectural Trends
Heterogeneous multicores are known to offer
significant advantages in terms of energy and area
efficiency by integrating cores with heterogeneous
performance characteristics and sometimes also
heterogeneous instruction sets. Applications
demanding high single-thread performance could be
run on large superscalar cores while many lightweight
cores offer the compute power needed for parallel
workloads. Placing the right parts of an application on
the right cores is already a challenge with statically
floorplanned chips. However, what if a group of
neighboring lightweight cores could be dynamically
fused to generate the performance of one larger
core [1,2]? What if there are specialized accelerator
cores for functionality such as encryption or vector
operations? What if 3D stacking [3] enables high-
bandwidth connections to memory for selected nearby
cores? A future OS will have to make placement and
scheduling decisions to deliver the benefits of such
elastic manycores to applications.

Local Knowledge, Global Management
Application demand may be dynamically growing
and shrinking. To be able to assign resources not used
by one application to another, we want to steer away
from static partitioning. However, cross-application
elasticity requires global management, which needs
information about the applications to base its
decisions on and knobs to influence their behavior.
Unfortunately, knowledge on application behavior
like available parallelism is hidden within today’s
programs. Many applications devise their own, local
thread pool with poor or no feedback from global
system state.

The OS on the other hand only sees threads to
manage. It can place them on cores and schedule their
execution, but it does not know their current
importance or progress, or which execution units of
the cores they will stress. Neither can the OS control
their number when one application demands more
cores and the system decides to cut down another.
The control portion of the problem has been explored
since Anderson et al. presented Scheduler Activations.
We propose an application runtime and OS co-design,
where applications export a richer representation of
their internal execution behavior, thus contributing
local knowledge to facilitate global control.

Reality Check
Exporting previously internal knowledge requires a
different application structure. Is this proposal another
case of researchers burdening developers with
rewriting all software? Fortunately, modern
programming paradigms with industry traction
already walk this path. Languages and runtimes such
as Apple’s Grand Central Dispatch (GCD), Microsoft’s
Parallel Patterns Library or IBM’s X10 encourage a
programming model called asynchronous lambdas.
Independent work is not organized in threads, but
encapsulated in lambda functions and submitted to
work queues for asynchronous execution.
For our solution, we modify the GCD runtime to
collect metadata on lambdas. Such data can include a
dependency graph to plan parallel execution, the
expected runtime of each lambda to aid scheduling,
trace data on the use of accelerator instructions like
FPU or vector processing for efficient core assignment,
or a data access analysis for placing code close to its
data. The runtime exports this knowledge to the OS
for global management. Our intended scheduler
aggregates core fusing options, and proximity to data
and accelerators in a distance penalty which it
minimizes. An activation-like interface allows the OS
to control, which lambda runs when on which core.
We aim for a win-win-situation, where the OS gains
more information and control options to utilize new
hardware efficiently. At the same time, we hope to
simplify developers’ lives by relieving them of local
management decisions.

References
[1]"E. #pek, M. Kırman, N. Kırman, J. F. Martínez: Core

Fusion: Accommodating Software Diversity in
Chip Multiprocessors, ISCA 2007

[2]"H. Homayoun, V. Kontorinis, A. Shayan, T. Lin,
D. M. Tullsen: Dynamically Heterogeneous Cores
Through 3D Resource Pooling, HPCA 2012

[3]"G. H. Loh, Y. Xie, B. Black. Processor design in 3D
die-stacking technologies. IEEE Micro 2007

