
First Experiences on PWCS synchronized Data Structures∗

Benjamin Engel and Marcus Völp

Technische Universität Dresden

Operating-Systems Group

Nöthnitzer Strasse 46, Dresden, Germany

{engel, voelp}@os.inf.tu-dresden.de

Abstract

During last year’s RTLWS, Nicholas McGuire introduced a new mechanism for exploiting the low-level
nondeterminism of modern many-core architectures to synchronize objects: probabilistic write copy select
(PWCS). In this paper, we report on our first experiences in synchronizing four standard data structures
with PWCS: static arrays, hash tables, dynamic lists and trees. Comparing fence-based and hash-based
PWCS against more traditional locking schemes we found that, despite its current limitation to a single
writer, PWCS is a promising candidate for further exploration in the vast design space of manycore
synchronization mechanisms.

1 Introduction

In his talk during last year’s RT-Linux Workshop,
Nicholas McGuire sketched a completely new syn-
chronization primitive together with a revolutionary
idea to cope with race conditions. Rather than mit-
igating races by all means, he proposed to exploit
the increasing complexity of modern hardware and
the implied decreasing likelihood of permanent races
to avoid costly atomic operations in traditional syn-
chronization primitives. The design principle behind
Probabilistic Write Copy Select (PWCS) [6] is to
make object inconsistencies detectable and to exploit
the complexity-induced nondeterminism of modern
hardware architectures to quickly leave situations
where races render objects inconsistent. PWCS
achieves this by first invalidating a consistency tag
before the actual data is written. Once the modifica-
tion is complete, a write to a second consistency tag
re-validates the object. In the mean time, readers
will find mismatching tags and retry the operation
or skip to another replica of the object. Replacing

tags with hashes, the dependency on cache coherent
hardware and memory fences can be relaxed even fur-
ther, in particular, if hardware filters avoid updates
with older data [7].

In this paper, we investigate the general feasibil-
ity of PWCS for synchronizing data structures such
as arrays, hash tables, lists and trees. On the one
hand, the links that connect the individual items of
these data structures are small enough to allow for
perfect hashes through pointer replication. On the
other hand, extending PWCS to updates that are no
longer in place aggravates the synchronization prob-
lem. We found that although PWCS is currently
limited to a single writer (next to arbitrary many
concurrent readers) synchronizing linked data struc-
ture reads with PWCS typically outperforms coarse
and fine-grain lock-based approaches while maintain-
ing high success rates for the first read attempt. At
the same time, we saw difficulties in recovering from
concurrent writes during long linked list traversals.
An in depth discussion of traversal algorithms is left
for future work.

∗This work is in part funded by the DFG through the projects “QuaOS”, the CRC 912 “HAEC” and through the excellence
initiative “center for Advanced Electronics Dresden (cfAED)” and by the state Saxony and the European Union through the
ESF young researcher grant IMData.

1

Next, we give a more detailed introduction into
PWCS and clarify the assumptions on which this
work builds. Sections 3ff. discuss our general han-
dling of in-place modifications (i.e., data-updates in
arrays), lists (Sec. 4), hash tables (Sec. 5) and binary
trees (Sec. 6) and presents our experimental results.
Section 7 relates our work to the works of others.
Section 8 concludes.

2 PWCS

Classical synchronization primitives such as locks or
transactions and operations on lock-free data struc-
tures seek to prevent observable inconsistencies at
all costs. For instance, locks inhibit readers and
other writers from accessing a lock-protected object
while this object is under modification. Lock-free
data structures and transactions operate on private
copies (e.g., in the cache), which they hook in after
all inconsistencies are resolved.

In contrast, PWCS explicitly allows objects to
become inconsistent as long as this inconsistency can
be detected by all concurrent readers. All elements of
the array are protected by a single global pair of con-
sistency tags. Readers of array elements copy first
the begin tag and then the required data into a local
buffer. After that, they compare the stored end tag
with the local copy of the begin tag. A match of the
version numbers of which these tags are comprised
reveals whether the data is consistent or whether a
writer has modified this data in the mean time. The
latter is achieved by writers working in the oppo-
site direction. That is, a writer first invalidates data
consistency by increasing the end tag, then modifies
the data and re-validates the object again by also
increasing the begin tag. On processors with a weak
load and store ordering, fences are required between
the reads of the tags and the data and between up-
dating the tags and modifying the data.

index = random % ARRAYSIZE;

Item item;

foreach (r : Replica) {

tag_begin = r.tag_begin;

l_fence();

memcpy (item, r[index].item);

l_fence();

tag_end = r.tag_end;

if (tag_begin == tag_end) break;

}

FIGURE 1: PWCS Protected Array : Reader

index = random % ARRAYSIZE;

Item item;

foreach (r : Replica) {

r.tag_end++;

s_fence();

memcpy (r[index].item, item);

s_fence();

r.tag_begin++;

}

FIGURE 2: PWCS Protected Array : Writer

Adding consistency tags locally to each array el-
ement results in a more fine-grain synchronization
pattern. However, like with locks, this fine-grain
pattern comes at the cost of larger data structures
and more synchronization operations. In the case of
tag-protected PWCS structures, these are the fences
before and after accessing the data. In addition, we
have to require that the underlying communication
medium respects tags in that the begin-tag modifi-
cation will be visible before data modifications and
that data modifications complete before the modi-
fied end-tag becomes visible. Figure 1 and Figure 2
show the pseudo code of a PWCS protected array
with fine grained object tags.

A second dimension in the design space of PWCS
is the use of tags versus hashes. Hash-based consis-
tency tags lift the remaining dependencies on the
order in which data and tags are written. However,
hashes are in general prone to collisions and expen-
sive to calculate when only small parts of large ob-
jects change.

A third dimension in the PWCS design space is
the number of replica of the protected object. In-
creasing this number reduces the likelihood of find-
ing all replica in an inconsistent state, in particular
if readers and writers work in opposite directions or
if replica are chosen randomly for reading. Alterna-
tively readers may repeatedly try to obtain a con-
sistent version of the very same object, thereby re-
ducing the numbers of replica to one, but decreasing
performance as well (higher reader-writer-contention
on one object).

In this paper we report on our experiences in
synchronizing four data structures with PWCS: ar-
rays, lists, hash tables and binary trees. We compare
PWCS synchronization against reader-writer locks,
both node granular and at the coarser granularity
of one lock per data structure. We discuss the data
structures in the above order and present experimen-
tal results. Measurements were taken on a 4 socket
16 core Bulldozer system (AMD Opteron 6274) run-
ning at 2.2 GHz and on a Core i7/920 (Nehalem, 4
cores, 2 hyperthreads) at 2.66 GHz.

2

Our ultimate goal is to prepare PWCS for non-
coherent architectures with weak memory models.
We will therefore make the following assumptions
on the available hardware. Implementations for con-
crete architectures with stronger memory ordering
may omit some of the fences and other protecting
measures.

1. Reads and writes of small amounts of data (up
to the size of a pointer) are atomic and com-
plete. That is, reads of such a part of the object
may return any value that was written but no
other values.

2. Writes will eventually propagate to all readers.
The order in which writes may arrive at read-
ers may differ. In particular, it may happen
that one reader receives the first part of an ob-
ject whereas a second reader receives the last
part and that then the respective missing parts
arrive in reverse order or only after a second
update was received.

3. Fences have the usual semantics on loads and
stores. That is, stores separated by a store
fence (sfence) are read in such a way that
stores before the fence become visible before
stores after the fence. A possible implemen-
tation of such a fence is to wait for the maxi-
mum transmission time before issuing the sub-
sequent stores.

Assumption 1 is required to ensure that pointers
and tags always refer to one of the addresses that
have been written. In particular, if writes are con-
strained to objects of a certain type, no pointer will
refer to the middle of such an object. Assumption
2 allows for arbitrary communication networks be-
tween the individual cores of the system. In par-
ticular, it allows updates between two cores to be
reordered during the transmission, lending more flex-
ibility for on-chip or off-chip routing.

3 Arrays

Our array experiments evaluate PWCS’ capabilities
to protect data against in-place updates. The re-
sults here are primarily to confirm McGuire’s find-
ings in our setup. For global consistency tags, we
augment the entire array with a header. Object gran-
ular consistency tags augment all elements with such
a header. The payload is 64 bytes, the size of the ar-
ray ranges from 128 to 512 elements. In this exper-

iment one writer modifies the data structure and 1–
63 readers read parts of it concurrently. Depending
on the evaluated protection scheme, the information
stored in the header is one of the following: a mutex,
a rwlock1, a pair of consistency tags, or a hash value.

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 150 200 250 300 350 400 450 500 550
av

g.
 c

yc
le

s
re

ad
/c

op
y

ou
t o

ne
 e

le
m

en
t

array size (number of elements)

1 writer, 63 readers, array pwcs/mutex/rwlock

pwcs good
pwcs bad

mutex
rwlock

FIGURE 3: Read performance of up to 63
readers copying 64 byte payload, protected by
PWCS tags or locks

Figure 3 shows the average read performance
of a PWCS-protected array, compared to mutex
or rwlock synchronization. In the implementation
based on mutexes and rwlocks, the readers have to
write the lock variable atomically in order to acquire
a lock, thus the smaller the array is, the more expen-
sive this operation will be, since contention increases
with decreasing number of objects to lock. In case
of PWCS-based locking, only writers have to mod-
ify the header, while readers might detect inconsis-
tent versions and have to retry, either using another
replica or the very same object.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 20 40 60 80 100 120 140

av
g.

 s
uc

ce
ss

 r
at

e
re

ad
/c

op
y

ou
t o

ne
 e

le
m

en
t

array size (number of elements)

1 writer, 6 reader, array size 16-128

good reads

FIGURE 4: Chance reading a single object
returns a consistent copy

1We use the standard Linux pthread mutex t or pthread rwlock t.

3

Figure 4 shows the average success rate of read-
ing a single object, depending on the size of the array.
With a relatively small array containing 16 objects,
readers have a chance above 90% to get a consistent
copy. In Figure 3 two cases are plotted, the ’good’
one, where the first read results in a consistent copy
and the ’bad’ one, where the reader has to retry un-
til a consistent version is found. As one can see, the
former case costs about 120 cycles, whereas the lat-
ter results in approximately 1400 cycles. It occurs
with decreasing probability, which explains why in
average the read performance approaches the ’good’
case.

4 Lists

The two fundamental differences between PWCS-
protected arrays and linked data structures are:

1. individual links are typically small enough to
be read or written atomically, and

2. the elements of the data structure are no longer
modified in place but allocated, de-allocated or
re-linked to a different data structure of the
same type.

Clearly, due to the implied traversal of the en-
tire list, global hashes are inconvenient for protect-
ing linked data structures. Otherwise, global consis-
tency tags for lists and trees match the construction
for arrays. That is, writers first invalidate the global
end tag, modify the link structure and re-validate the
data structure by writing the begin tag. Since op-
erations on the payload are often much slower than
modifications on the links of a single element, it is
convenient to protect links and payload data sepa-
rately. For our tag-based list versions, we have there-
fore chosen list element headers with separate begin
and end tags for the prev and next pointers and for
the payload stored in the element. Likewise, we use
a hash for the pointers that does not cover the sep-
arately protected payload. It suggests itself to use a
replica of the pointers as a perfect, i.e., collision-free
hash. In addition, we need some means to indicate
whether the element still belongs to the same list and
that it is still located at the same position in the list.
This is because writers may dequeue the very list ele-
ment a reader is currently working on. In particular,
no writer must de-allocate a list element that is cur-
rently used by readers. In this respect, PWCS pro-
tected linked data structures require the same type-
safe memories as lock-free algorithms. RCU [3] is one
version to establish this type safety guarantee. No-
tice however, in comparison to RCU protected lists,

we need to defer only the garbage collection of typed
list elements into the pool of untyped memory. As
long as list elements preserve their type, no opera-
tion has to be deferred to the end of the next grace
period.

For our per-node hash-based lists, we exploit the
fact that normal user-level pointers should not refer
into kernel space and vice versa and that all our el-
ements are 64-byte aligned to store an 8-bit version
number in the two most and six least significant bits
of the pointer replica.

Object * obj = list_head;

tag_begin = obj->tag_begin;

while (!found) {

Object * next = object->next;

tab_begin_next = next->tag_begin;

tag_end = object->tag_end;

if (tag_begin == tag_end) {

object = next;

tag_begin = tab_begin_next;

} else {

// error

}

}

FIGURE 5: PWCS Protected List

Figure 5 shows the pseudo code for traversing
and modifying a single-linked list. Double-linked
lists work accordingly.

For our experimental setup, we have pre-
allocated pointer-to-list elements in an array to al-
low random access by the writer. The nodes are then
connected in a random fashion. Operating concur-
rently with the 1 – 7 readers, which traverse the list
from the beginning to the end, a writer picks one
item randomly, dequeues it and enqueues a new one
at another position in the list.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100 1000

re
ad

er
 s

uc
ce

ss
 r

at
e

re
ad

in
g

co
m

pl
et

e
lis

t

writer delay/cycles (0,16,32, ... , 2048)

7 reader, list length 16-128

16
32
64

128

FIGURE 6: Success rate traversing the
complete list without encountering an incon-
sistent node

4

Figures 6 shows the average chance a single
reader has to traverse the complete list without hit-
ting a node the writer is concurrently en- or dequeu-
ing. In contrast to reading from an array, where the
position of an object is fixed in memory, a reader
cannot easily recover when reading a broken node,
since the previous node might have been changed in
the mean time too. The length of the list and the
number of concurrent readers has no measurable in-
fluence on the traversal probability. To increase the
chance a reader has we artificially reduced the write
speed by adding a delay after every write operation.
This reflects the observation that the higher the mod-
ification rate is, the smaller is the success of reading
the whole list.

5 Hash Table

Our hash table implementation combines in-place
modifications of the array and the modification of
dynamically allocated elements in its collision chain.
To mimic a balanced hash table, writers remove an
element from the collision chain of one randomly
picked bucket and insert a new element into the same
bucket. Readers traverse through the chain of one
randomly picked bucket to search for a specific ele-
ment. The hash table varies in size (between 16 and
128 buckets), whereas the collision chain length is
constantly at 64 nodes per bucket. To prevent read-
ers from hitting an invalid node, we use list-granular
locks instead of node locks, the writer locks the head
of the bucket list, while PWCS-readers check the con-
sistency tags before and after traversing the complete
list.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 2 4 6 8 10 12 14 16

av
g.

 b
uc

ke
t l

is
t s

ea
rc

h
tim

e

number of concurrent readers

pwcs/rwlock hash table (buckets=16,32,64,128 bucketlist=64)

rwlock 16
rwlock 32

rwlock 128
pwcs 16
pwcs 32

pwcs 128

FIGURE 7: Hash table performance, com-
paring PWCS- and rwlock-protected bucket
lists

Figures 7 shows the performance results of our

hash implementation. Depending on the number
of buckets, the contention quickly increases in the
rwlock-based hash table, resulting in longer searches
when the number of readers gets close to half the
number of buckets. PWCS shows a slight increase,
but stays below its rwlock-based node lock counter-
part and does not suffer from such an impact.

6 Binary Tree

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7

av
g.

 c
yc

le
s

tr
av

er
si

ng
 o

ne
 li

nk

number of readers

1 writer, 1-7 reader, binary tree pwcs/big/node/leaf-locks

pwcs
biglock

nodelock
leaflock

FIGURE 8: Link traversal times

Figures 8 show our final results on PWCS pro-
tected binary trees. Readers traverse the binary tree
from the root to the leaves. Writers are confined
to modify leaf nodes only by inserting new nodes at
the leaves, tree rotations are left for future work. We
compare PWCS locks to a big tree lock, node and leaf
locks. The implementation which takes only a lock
on the leaf nodes is slightly faster, but not perfectly
comparable, since modifications on the path are not
detected, although they do not occur in this experi-
ment, whereas the PWCS variant checks all the tags
from the root node down to the leaf nodes, resulting
in a higher read side overhead. Taking a lock on the
whole tree as well as taking node locks all the way
down from the root to the leaves expectedly shows
high performance impacts.

7 Related Work

Naturally, this work stands in a strong relation-
ship with classical and modern synchronization prim-
itives. Classical lock-based approaches inherently
need atomic operations to modify a lock variable af-
ter invalidating all copies in the local caches. Usu-
ally, this requires broadcasting an invalidate mes-
sage or complex snoop filters to track the location

5

of active copies plus a read to attain consensus on
the next lock holder. Queue locks such as MCS [2]
try to reach this consensus upfront by ordering re-
questing threads in a list. However, the list enqueue
still requires an atomic operation with the invalidate
broadcast that it implies and withdrawing from the
list further complicates its implementation [1]. Lock-
free data structures (c.f. [4, 5]) avoid synchronization
at the cost of also requiring type stable memory and
complex atomic operations to atomically switch be-
tween consistent states. Dedicated hardware, such
as transactional memory or dedicated lock networks,
help reduce the programmer burden. However, they
are either based on coherent caches or require a sig-
nificant amount of space in addition to the on-chip
or off-chip connections between cores.

Probabilistic algorithms and methods such as
Monte Carlo and Las Vegas are well known, PWCS
has similarities depending how it is implemented
(multiple replica vs. multiple retries). However,
with the exception of McGuire’s pioneering work on
PWCS [6], the authors are not aware of attempts
to apply these schemes to low-level synchronization
primitives.

8 Conclusions

In this work, we have reported on our first experi-
ences with PWCS-protected linked data structures.
Although our implementations support only one con-
current writer (that is, writers have to synchronize
themselves to modify the link structure), our per-
formance measurements indicate that PWCS is an
interesting road to follow. We have presented first
results on arrays, lists, hash tables and binary trees.
Comparing to RCU-based approaches will be one of
our next steps, since we assume a higher read side
overhead for PWCS, but do not necessarily need
grace period detection for object destruction, as long
as type stable memory is used. However, a more in-
depth evaluation and more complex operations such

as recovery during traversal remain as future work.

The design principles behind PWCS open up a
new interesting direction of research: to allow races
to occur but make inconsistencies detectable and to
construct algorithms such that the likelihood of per-
manent races diminishes over time. A particular in-
teresting future project would be the combination
of such a design method with probabilistic analysis
methods such as probabilistic model checking.

References

[1] O. Krieger, M. Stumm, R. Unrau and J. Hanna
“A Fair Fast Scalable Reader-Writer Lock”
Proc. of the IEEE International Con-

ference on Parallel Processing, 1993

[2] J. Mellor-Crummey and M. Scott “Scal-
able reader-writer synchronization for shared-
memory multiprocessors” 3rd ACM Symp.

on Principles and Practice of Parallel

Programming, 106-113, April 1991

[3] P. McKenney “Read-Copy Update”
http://www.rdrop.com/users/paulmck/RCU/

[4] J. Valois “Lock-free linked lists using compare-
and-swap” 14th Annual ACM Symp. on

Principles of Distributed Computing,
214-222, Aug 1995

[5] M. Herily “Wait-free synchronization” ACM

Trans. on Programming Languages and

Systems, 13(1):124-149, Jan 1991

[6] N. McGuire “Probabilistic Write Copy Select”
Real-Time Linux Workshop, Oct. 2011

[7] B. Engel, M. Völp “Verfahren und Einrichtung
um eine eventuelle Schreibinkonsistenz in nicht
kohrenten Architekturen abzusichern.” Patent

application, 5.1.1 4337.20/A 3332, submitted
July 2012

6

