
Avoiding Timing Channels in Fixed-Priority Schedulers

Marcus Völp, Claude-Joachim Hamann, Hermann Härtig
Technische Universität Dresden

Department of Computer Science
01062 Dresden

{voelp, hamann, haertig}@os.inf.tu-dresden.de

ABSTRACT
A practically feasible modification to fixed-priority sched-
ulers allows to avoid timing channels despite threads having
access to precise clocks.

This modification is rather simple: we compute at admis-
sion time a static predicate that states whether a thread
may possibly leak information; if such a thread blocks we
switch to the idle thread instead.

We describe the modified scheduler, provide a mechanical
PVS-based proof of noninterference and show how common
admission algorithms can be reused to give real-time guar-
antees for this modified scheduler. While providing sim-
ilar isolation guarantees, our approach outperforms time-
partitioning schedulers in terms of achieved real-time guar-
antees.

Categories and Subject Descriptors
D.4.6 [Software]: Operating SystemsSecurity and Protec-
tion[Information flow controls]; D.4.1 [Software]: Operat-
ing SystemsProcess Management[Scheduling]

General Terms
Security, Verification

Keywords
real-time, fixed-priority scheduling, security, information flow,
noninterference

1. INTRODUCTION
We envisage open systems (though we do not restrict our-

selves to) as described in Deng et al. [4], and Härtig et
al. [7], where not necessarily trustworthy virtualised legacy
operating systems and their applications execute next to
security-sensitive and real-time critical applications on top
of a small microhypervisor. In these systems potentially un-
trusted and malicious legacy code is used even for security

c©ACM, (2008). This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in ASIACCS’08, March 18-20

critical operations. Therefore appropriate countermeasures
must be applied to enforce that these systems preserve the
confidentiality of the secret data they process. As an exam-
ple application mix of such systems imagine a nonreal-time
legacy operating system used for compiling and text process-
ing, nonreal-time banking transactions, the bank credentials
of which require protection and real-time network and disk
drivers streaming cryptographic-protected video content to
a real-time video player for display. Naturally, these differ-
ent components get assigned different priorities (legacy OS,
bank transaction — low priority, no real-time; drivers, video
— high priority, real-time) and they are classified into differ-
ent security classes (or levels) to reflect their confidentiality
requirements (legacy OS, drivers — low security level, pub-
lic; bank transaction, video — high security level, secret).

This paper is concerned with illegal information flows
through the fixed-priority scheduling subsystem. Precisely,
we investigate how malicious code (e.g., a virus or a Tro-
jan Horse executing inside a virtual machine) can exploit
the scheduling subsystem to illegally transfer information
and how this information leakage can be prevented by mod-
ifying a budget-enforcing fixed-priority scheduler to treat
potentially-leaking blocked threads as if they were ready.
We provide a machine checked proof that this countermea-
sure not only prevents all direct information flows but also
information flows that happen indirectly via components we
trust not to leak information intentionally (like for example,
the cryptographic wrapper connecting the real-time disk and
network drivers with the real-time video player).

Naturally, modifying the scheduler affects which real-time
guarantees can be given. To determine whether a thread
set will meet their real-time requirements under a given
scheduler (i.e., to decide whether they are schedulable), an
admission algorithm is run. For fixed-priority schedulers,
such admission algorithms typically consider blocking times
that may occur for example as a side effect of resource
contention and self-suspension. So, by adjusting blocking
times, we can reuse this large class of acceptance algorithms
that are available for fixed-priority scheduling to determine
whether a thread set is schedulable with our modified sched-
uler. The thread set may thereby contain real-time threads
and nonreal-time application threads and the virtual CPUs
which are the scheduling entities of virtual machines visible
to the hypervisor.

The remainder of this paper is structured as follows. In
Section 2 we briefly introduce our scheduling model which
supports arbitrary statically created thread sets run on a



budget-enforcing fixed priority scheduler. In particular,
strictly-periodic threads are contained in this model. We in-
vestigate how information flow can occur through alterations
in a thread’s scheduling related behaviour in Section 3 and
present how the scheduler must be modified to prevent this
illegal information flow in Section 4. A sketch of the nonin-
terference proof for this scheduler is given in Section 5. We
deduce in Section 6 that not only unauthorised information
flow is prevented, but also that our modification isolates
threads with no authorised information flows in a timely
fashion. After that we restrict ourselves to strictly-periodic
threads when we discuss how our approach affects real-time
guarantees in Section 7. This restriction is partially lifted in
the discussion on further practical factors in Section 8. Sec-
tion 9 relates our work to other work in the area; Section 10
concludes.

2. BUDGET-ENFORCING
FIXED-PRIORITY SCHEDULING

In classical real-time scheduling systems, threads are typ-
ically executed unconstrained according to their schedul-
ing parameters after a worst-case analysis has been per-
formed. Programming errors or attacks from malicious pro-
grams may, however, cause threads to exceed their worst-
case execution times. Budget-enforcing schedulers are ro-
bust against these attacks. If in between two releases, a
thread τi has executed for an amount of time equal to its
worst-case execution budget (wcet i) any further execution is
deferred to the next release. Likewise, if blocking is consid-
ered, further execution is deferred to the next release after
a total worst-case budget wct i := wcet i + wcbt i is depleted
where wcbt i is the worst-case blocking time.

l
τ

h
τ

release point deadline (absolute)

h
τ

h
τ

h
τ

priority
active inactive

wct

0 time

0

l,0 l,1
d

l,0

et et’bt

wct = wcet + wcbtet +  et’     wcet bt    wcbt≤ ≤

π π

Figure 1: Scheduling according to fixed priorities.
During times when τh blocks, the lower prioritised
thread τl may run.

We describe an arbitrary thread τi ∈ T (i = 1, ..., n) of the
thread set T through a possibly infinite sequence of releases.
The kth release (k = 0, 1, ...) is parametrised by a release
point πi,k, the budgets for this release wcet i,k and wct i,k

which get refilled at this release point and a relative deadline
di,k. A real-time thread must have completed its work for
this release latest at πi,k + di,k. Otherwise it is said to miss
this deadline. Execution is deferred if either the budgets
have expired or the deadline has passed.

Examples for releases include the beginning of a period
for periodic threads and the arrival of publicly visible events

such as the arrival of a network package. Because we con-
strain these events to be publicly visible, no information is
leaked due to the fact that a thread is released.

The above model is sufficient to express the real-time
properties of a wide range of common real-time thread sets.
For example, strictly-periodic threads are described by an
infinite sequence of equidistant release points (i.e., πi,k+1 −
πi,k = const). In addition, strictly-periodic threads are as-
signed the same worst case budgets in each period. The
events activating aperiodic threads are directly reflected by
the releases, provided these are public. Deferred servers can
be described as a sequence of releases where each release de-
scribes the arrival of a thread executed on these servers and
the budget of this release corresponds to the worst case exe-
cution time of this thread. The total budget of the deferred
server in a given period is the sum of the budgets assigned
to the releases in this period. Thread sets consisting of vir-
tual machines that have been assigned a share of processor
times can be mapped to the above model by assigning them
budgets proportional to their share and by releasing all vir-
tual machines at equidistant release points whose distance
corresponds to the sum of assigned budgets. Thread sets
under a time-partitioning scheduler can be mapped by set-
ting the release points to the respective partition begins and
by setting the budgets to their size.

Threads are scheduled in a fixed-priority based manner.
Hence, a priority prioi is a further parameter of a thread τi.
We assume, that the scheduler supports sufficiently many
priorities so that each two threads are assigned different pri-
orities. High-priority threads may preempt lower prioritised
threads at any instant. It is a common approach to disre-
gard context switching overhead or to include it in the worst
case execution time.

Furthermore, threads may suspend themselves (e.g., when
waiting for I/O completion in a blocking systemcall) and
temporarily disable preemptions (e.g., during critical sec-
tions). Otherwise, threads are assumed to be independent,
that is, there are no temporal precedence constraints. In
Section 7f, we show how these restrictions can partially be
lifted and investigate in detail blocking due to self suspen-
sion (Section 7.1), blocking due to nonpreemptibility (Sec-
tion 7.2), resources (Section 8.1) and precedence constraints
(Sections 8.2) for strictly-periodic thread sets. In addition,
we will investigate how real-time guarantees are preserved
for aperiodic and sporadic threads in Section 8.3.

A thread may be in one of the following four commonly-
used states:

running the thread is assigned a processor and is executing

ready the thread is not executing but ready for execution
(it has all required resources with the exception of a
processor)

blocked the thread has suspended itself and waits for some
external event or for some signal from another thread

inactive the thread budgets have been depleted respective-
ly the deadline has passed. A thread is inactive until
its next release point. At this time, its worst case
budgets get refilled to the budgets of this release.

In addition to these states, we define the term active
to denote a thread which is not inactive, i.e., which has a
positive remaining worst case budget. Such a thread may



be running, ready, blocked or it may have completed its
execution in its current release without having exhausted
its budgets. In this latter case, the thread remains active
until an amount of time equal to the remaining budget has
passed. A thread which has not consumed its worst case
budgets for a given release we say has stopped early.

Throughout the paper, τh denotes a high prioritised thread
and τl denotes a low (or lower than τh) prioritised thread.
We write prio(τh) > prio(τl) despite of the numerical val-
ues of the priorities. Furthermore, let Thigh(τ) and Tlow (τ)
be the set of threads with higher respectively lower prior-
ity than τ . We write TP,high for the set of threads in Thigh

which in addition fulfil a given predicate on threads P (re-
spectively TP,low for threads in Tlow ). Figure 1 illustrates
the introduced notions.

3. INFORMATION FLOW
Obviously, higher prioritised threads can directly influence

when and for how long lower prioritised threads run. When
a higher prioritised thread τh blocks, the scheduler will select
a lower prioritised thread τl; when it executes this selection
will be deferred until τh blocks or its budget is depleted
(see Foss et al. [25] for a more detailed analysis describing
which information can be deduced in rate-monotonic sched-
uling). In the presence of legitimate communication between
threads, indirect influences become possible by directly in-
fluencing a sender which in turn relays timing information
in its messages. In Section 3.2, we investigate this indirect
influence in detail.

The actions leading to direct or indirect influences we call
run — the thread executes some code — and block — the
thread has invoked some blocking systemcall.

Before defining the noninterference property let us clarify
our security-related assumptions.

1. The scheduling parameters, the scheduling algorithm
and therefore the resulting schedule are public infor-
mation. In particular, the events which trigger releases
must be publicly visible.

2. All threads have access to precise clocks. 1

Note it is still possible to hide the existence of threads
by scheduling them hierarchically (see e.g., [18]) on top of
a thread that is visible in the public schedule. Note fur-
ther that hierarchical scheduling is a means of supporting
dynamic thread creation, a functionality which is not per se
supported by our approach. Other means to create threads
dynamically are discussed in the course of this paper.

3.1 Noninterference
Noninterference [19] characterises the absence of illegal in-

formation flows through a system, in our case the scheduling
subsystem. Suppose no information may flow from a thread
τ to a thread τ ′ via the scheduling system S. We qualify

1The authors are aware that fuzzy time [5] successfully re-
duces the bandwidth of scheduling-related covert channels.
We maintain this assumption for two reasons: Firstly, the se-
lected noninterference property cannot be proven while some
information is leaked over a covert channel. Secondly, some
real-time applications require precise time stamps and pre-
cisely triggered events. Precise clocks are a precondition for
both unless dedicated hardware is available for this purpose
(e.g., capture-compare units).

this by asserting that what τ ′ can observe about S remains
unchanged despite differing behaviour (i.e., differing action
sequences) of τ .

More formally, we define an information-flow policy as a
triple (C,≤, dom) where (C,≤) is a bounded lattice over the
finite set of domains (or security classes) C, ≤ is a partial
order on security levels. In particular, ≤ is transitive. dom :
T → C is a function, which assigns each thread τ ∈ T a
security class c ∈ C. Information may flow from τ ′ to τ
provided dom(τ ′) ≤ dom(τ). We write dom(τ) � dom(τ ′)
to denote that no such information flow may happen (thus,
� is the complement of ≤). > ∈ C denotes the top (or
greatest) element of the lattice (C,≤), that is, ∀c ∈ C. c ≤ >
holds (analogously, ⊥ denotes the bottom element).

Given access to a precise clock, a thread τ may observe
the precise points in time when it gets selected by the sched-
uler. In addition, it may learn through messages about the
points in time when other threads τ ′ run, provided τ may
legitimately receive messages from these threads.

Following Rushby [19], we can now formally define our
noninterference property:

Definition 1. Noninterference.
Let output(S)(τ, t) be a function which returns for each

point in time t the thread τ ′ that was selected by the sched-
uler to run at t, provided that τ may receive from τ ′ (i.e.,
provided dom(τ ′) ≤ dom(τ)) and which otherwise returns
the special symbol − /∈ T . (We will give a precise formal
definition of this function in Section 5.) Let purge(S)(τ) be
a function which removes from S all the actions — though
not the threads themselves — of those threads τ ′ from which
no information must flow to τ (i.e., for which dom(τ ′) �
dom(τ) holds). Then the scheduling system S is noninter-
ference secure if the following predicate holds at any time
t ∈ N:

noninterference(S) := ∀τ ∈ T.∀t ∈ N.
output(S)(τ, t) = output(purge(S))(τ, t)

Noninterference states that whatever sequences of actions
higher classified threads τ ′ execute, their behaviour as seen
by τ is identical to a system in which these threads do not
act at all.

Note that for this predicate to hold, actions of these higher
classified threads may not change the points in time at which
threads with a lower security class than τ execute. Thus,
they may only act during the holes reported by the output
function (i.e., at those points in time when the output func-
tion returns −). In fact they have to act such, that the
occurrence of holes does not vary over time. Our proposed
modification is to treat active, blocked or early stopping
threads that may possibly leak information as if they were
ready. This ensures that during those times when output
returns −, either the original thread runs if an appropriate
run action is contained in its action sequence or the idle
thread runs if the original thread blocks or stops early. In
the latter case, the idle thread, which runs effectively at the
original thread’s priority, ensures that future visible actions
and holes happen at the same points in time.

Purging the actions of a thread but not the thread itself
results in this thread stopping early immediately when it
is released. The scheduler will thus select the idle thread
whenever in the original schedule output returns −.



3.2 Information Flow by Altering
Thread Scheduling Behaviour

Varying the blocking and running behaviour of a high-
priority thread directly influences the times when low pri-
ority threads run. In the following, we investigate how a
higher prioritised thread can signal information indirectly
by directly influencing low-priority threads and how delay-
ing preemptions may be exploited to leak information.

Surprisingly, information may be signalled indirectly
through low-priority threads in spite of their trustworthiness
not to forward timestamps in their messages.

3.2.1 Indirect Influence
A higher prioritised thread τh can make use of a lower pri-

oritised thread τl to signal another thread τx (τx can have
a higher or a lower priority than τh), provided τl is autho-
rised to communicate to τx. This is because the messages
sent by τl may carry timestamps and these can be directly
influenced by τh blocking or running.

Even if we would trust τl not to send timestamps, timing
information may be leaked from τh to τx because τh is able
to influence the ordering in which messages arrive at τx.

22 3110 0 TimeTime

Priority Priority

l,2

l,1

h

τ

τ

τ

l,2

l,1

h

τ

τ

τ

block

run

Figure 2: The high-priority thread τh causes a dif-
ferent execution order of the threads τl,1 and τl,2 de-
pending on whether it blocks or runs. Even tough
we trust τl,1 and τl,2 not to send explicit timing in-
formation, information about τh’s behaviour can be
deduced from the order in which messages arrive.

Figure 2 shows an example in which τh influences the ex-
ecution order of the threads τl,1 and τl,2. Assume in a given
period τl,1 blocks for one unit of time, then executes for one
unit. If τh blocks at time 0, τl,2’s messages arrive at the
receiver τx (not shown in the Figure) before τl,1’s messages;
if τh runs at time 0, the messages arrive in reverse order.

This scenario shows that despite τl,1 and τl,2 being trusted
not to send timestamps in their messages, information may
be leaked from τh as long as the communication channel
used by the low threads reveal the order in which messages
arrive.

3.2.2 Influence through Delaying Preemptions
Uniprocessor operating systems typically synchronise

short critical sections by temporarily disabling device in-
terrupts and other causes of preemptions. However, when
preemptions are delayed, the thread causing the preemption
remains blocked until interrupts are re-enabled.

To isolate the effect of malicious and erroneous threads we
have to enforce a maximum duration in which preemptions
are disabled, for example, similar to delayed preemption as
implemented in the L4 microkernel [13, 3]. Let max delay i

be the maximum time by which a thread τi may delay a
single preemption.

A running low-priority thread τl knowing when a high-
priority thread τh unblocks can alter delaying and not de-
laying this preemption to signal information to τh. The
high-priority thread τh can, in turn, detect these delays by
reading the system clock immediately after it gets the CPU.
Preemptions of even lower prioritised threads remain unaf-
fected as they are deferred until τl stops running anyway.

4. A NONINTERFERENCE-SECURE
SCHEDULER

To prevent unauthorised leakage of information, we mod-
ify the operating-system scheduler to treat active threads
that are blocked or that finished execution without exhaust-
ing their worst-case budgets as if they were ready. Each time
the currently running thread blocks, becomes inactive or
is preempted, our scheduling algorithm selects the highest-
priority active thread

1. that is either ready

or that could potentially cause unauthorised information
flows and

2. that is blocked

3. or that has finished without exhausting its worst-case
execution budget or total worst-case budget.

In the first case, the scheduler switches to the selected
thread. In the second and third case, the scheduler can-
not switch to the selected thread because it is not ready.
Instead, we introduce a countermeasure to prevent infor-
mation leakage: the scheduler switches to the system’s idle
thread, which we trust not to send any messages and which
we can therefore assign the ultimately highest security class
>. The time the system idles because of this countermeasure
is accounted to the thread selected by the scheduler.

τ
h

τ l

τ lτ
h

time

priority

idle

active inactive

wct

≤ dom(   )  dom(    )  

Figure 3: To prevent information leakage, our mod-
ified scheduler prevents τl from running during the
times τh blocks or finishes early.

Figure 3 illustrates this algorithm. The system idles while
τh is active and not running. As a consequence, the lower
prioritised thread τl can no longer distinguish whether it
did not run because the high-priority thread τh did run or
because τh did block or stop early and the scheduler switched
to the idle thread. The view of τl on τh therefore remains
unchanged in spite of alterations in τh’s behaviour.

In the following, we state more precisely the predicate
when this countermeasure must be applied. To minimise
the scheduling overhead, we prefer predicates that can be



checked statically while the system is off-line or during the
admission. With static predicates, our modified scheduler
achieves a near zero scheduling overhead compared to an un-
modified fixed-priority scheduler which enforces worst-case
times. This is because the check for the second case degener-
ates to checking an additional flag that can be stored in the
thread-control block. The scheduler will then either switch
to the selected thread or to the idle thread depending on
this flag

4.1 Transitive Policies
As we have argued in Section 3.2, an active high-priority

thread τh can directly influence a lower prioritised thread
τl that is active at some point in time when τh is active or
by influencing some intermediate-priority thread τx that is
active when τl is active and which communicates with τh.

In the latter case, information is only leaked if τl wants to
run and can do so because τh (respectively τx) blocks. How-
ever, we cannot consider thread actions because we search
for a predicate that can be statically determined.

Therefore we choose the conservative but statically com-
putable predicate ptrans(τh) that is true if and only if there
is a lower prioritised thread τl to which τh is not authorised
to send2. More formally:

Definition 2. Predicate for Transitive Policies.

ptrans(τh) := ∃ τl ∈ Tlow (τh).
dom(τh) � dom(τl)

It is easy to see how the countermeasure with this predicate
prevents information leakage to low-priority threads τl: if
such a thread exists, no lower prioritised thread than τh

(except the idle thread) is scheduled until τh’s budgets are
depleted or the deadline passes. To see how ptrans prevents
a thread τh from indirectly influencing another thread τx,
we have to consider two cases: ptrans(τh) and ¬ptrans(τh).

Case ptrans(τh): No thread τl with prio(τl) < prio(τh) may
be influenced directly by τh. Therefore, the times-
tamps these threads τl may report to τx are indepen-
dent of τh’s behaviour.

Case ¬ptrans(τh): τh may directly influence all lower pri-
oritised threads (e.g., τl) and indirectly those threads
to which these lower prioritised threads are authorised
to send (e.g., τx with dom(τl) ≤ dom(τx)). But then
dom(τh) ≤ dom(τx) holds because of ¬ptrans(τh) ⇒
dom(τh) ≤ dom(τl) and the transitivity of ≤.

4.2 Intransitive Policies
In intransitive policies, c1 ≤ c2 ∧ c2 ≤ c3 ⇒ c1 ≤ c3 does

not necessarily hold for all security classes ci ∈ C. The intu-
ition of intransitive information-flow policies is to authorise
communication between two threads only if this communi-
cation happens through a dedicated third thread. It is up to
this third thread to appropriately filter the information flow.
An example for such a third thread is a crypto-gateway, that
is, a server we trust to encrypt messages from the sender
before relaying them to the receiver, thereby protecting the
confidentiality of these messages.
2We do not claim our predicates to be minimal in the sense
that they are the least restrictive predicates that can be
statically computed. Further predicates remain to be inves-
tigated.

The static predicate ptrans(τh) is not sufficient to prevent
indirect influences of other threads when the security policy
is intransitive. Consider the case ¬ptrans(τh) in Section 4.1.
In this case τh is authorised to send to all lower prioritised
threads. Assume τl is the crypto gateway to a thread τx

with which τh must not communicate directly. Because of
¬ptrans(τh), τh may directly influence τl’s timing. As we have
seen in Section 3.2.1, this direct influence of τh is sufficient
to signal information to τx even if we trust τl not to leak
timestamps with its messages. In fact, τl has no means to
prevent this information leakage.

One possibility to address intransitive information flow
policies is to choose a more restrictive predicate. For exam-
ple,

Definition 3. Predicate for Intransitive Policies.

pintrans(τh) := ∃τ ∈ T. dom(τh) � dom(τ)

However, this predicate would result a system in which the
scheduler applies the countermeasure to all but those threads
having the lowest security class (dom(τ) = ⊥). The result-
ing system would, in practice, be no better than time parti-
tioning.

1

3

2

3

1

2a 2b

crypto gateway

c

c

c c

c

c

c

Figure 4: The crypto gateway decomposed into two
threads with security levels c2a, c2b. The intransitive
security policy c1 ≤ c2 ∧ c2 ⇒ c3 is split into the tran-
sitive policy with c1 ≤ c2a and c2b ≤ c3.

For this reason, we propose an alternative solution. No-
tice that the threads which mediate the communication in
an intransitive policy must be trusted not to relay informa-
tion arbitrarily. Thus, it is likely that the code executed
by these gateway threads is sufficiently manageable to un-
dergo a stringent security evaluation. This manageability
gives us confidence that the following restructuring into a
multi-threaded server is feasible.

Instead of accepting and relaying messages in the same
thread, which would ultimately be subject to a direct influ-
ence by τh if this thread has a lower priority, we split this
functionality into two threads and assign them distinct se-
curity levels. Figure 4 illustrates this approach. The two
server threads are assigned distinct security levels c2a and
c2b instead of c2 from the original information flow policy.
Consequently, the information flow policy becomes transi-
tive at this point and the predicate ptrans(τh) would hold for
the message relaying thread since dom(τh) � c2b, provided
this relaying thread has a lower priority than τh. Obvi-
ously, to prevent illegal information flows, the internal com-
munication between the two server threads has to be imple-



mented carefully, e.g., exploiting previous results from the
NRL Pump [8].

4.3 Delayed Preemption Leaks

Critical Section time

preemption

max delay

l

h

priority

τ

τ

Figure 5: Countermeasure to prevent information
leakage from delaying preemptions.

To prevent information leakage from delaying preemp-
tions, a second modification to the scheduler is required.
When delaying a higher prioritised thread’s preemption
could possibly leak information, the modified scheduler de-
lays all preemptions caused by this higher prioritised thread
τh by max delay low(τh):

Definition 4. Maximum Preemption Delay.

max delay low(τh) := max
τl∈Tlow (τh)

(max delay(τl))

The following static predicate determines when this coun-
termeasure has to be applied.

Definition 5. Predicate for Delayed Preemption.

pdelay(τh) := ∃ τl ∈ Tlow (τh).
dom(τl) � dom(τh)

Because the high-priority thread τh controls how often it
blocks and because each time it blocks may lead to delaying
τh, we have to account the time between the high-priority
preemption occurring and τh running to this high-priority
thread. Figure 5 illustrates this countermeasure.

5. PROOF OF NONINTERFERENCE
In the following section, we sketch the formal proof of the

noninterference property (Definition 1). The countermea-
sure to prevent information flow due to nonpreemptibility
has not yet been included in the proof.

We formalised our system in PVS [17]. The sources are
available at [26]. However, to illustrate our proof we use
a more mathematical notation. Let s.actions denote the
element actions of a record s. We write s \ actions := x
to update this field in the record with x, leaving the not
mentioned fields unchanged.

We model the scheduler as a sequence of state-transfor-
mers that perform the individual transitions of a fixed-prio-
rity scheduler at each clock tick. When no such transition
occurs at an individual clock tick the thread state remains
the same and only the ticks in the remaining budgets are
adjusted.

The model deviates from an implementation in a real sys-
tem in two points:

• Instead of checking at each clock tick whether a budget
has depleted, a real-system implementation would pro-
gram a timer interrupt to trigger when the scheduler
is to be invoked next.

• A real-system implementation would maintain a linked
lists of ready threads — the ready queue — to avoid
searching the array of existing threads.

Otherwise, a real-system implementation has to perform the
same state-transitions.

Notice that while the enforcement of worst case execu-
tion budgets wcet is relevant for preserving the real-time
guarantees, with regards to information leakage only the en-
forcement of the total worst case budgets wct is relevant.
A thread which exceeds its wcet and which is unconstrained
by our countermeasure may prevent lower prioritised threads
from executing for a longer time but this prevention can le-
gitimately be seen. On the other hand, threads constrained
by the countermeasure will prevent this execution anyhow
until wct is depleted because the idle thread runs whenever
the original thread does not. For this reason we omit wcet
from the proof of noninterference and consider only wct bud-
gets.

The state-transformers are:

deadline step set a thread to inactive when the deadline
has passed or the budget is depleted

release step activate a thread τi at every release point πi,k

and refill the budget to wct i,k

end action determine whether the current action of the
thread has stopped

next action adjust the thread state according to the
thread’s next action.

More formally, let s be the record state which contains be-
sides the above scheduling parameters for each thread τ a
dynamic state comprised of its current release s.release(τ) =
k and for this release the remaining time s.rem time(τ)
that the time the current action lasts, the remaining worst
case budget s.rem wct(τ), a list of actions which remain to
be executed in this release period srem actions(τ) and a
thread state s.ts(τ) ∈ {blocked , ready , cm blocked , inactive}
(a thread τ is in cm blocked if it is blocked and ptrans(τ)
holds).

We obtain the actions from the per thread function
s.actions which records for each release k ∈ N the trace (list)
of actions this thread will perform. In the proof we consider
arbitrary action sequences and compare for each thread τ
the output of this system with the output of an identical
system in which this action list is purged for all threads
from which τ must not receive. Consequently purge is:

Definition 6. Purge.

purge(s, τ) := s \ actions := λk ∈ N, τ ′ ∈ T.
〈〉 ifdom(τ ′) � dom(τ)
s.actions(k, τ ′) otherwise

where 〈〉 denotes the empty list.

We define output by adding to the state a field s.event which
records for each clock tick t the highest priority thread which
executes during this tick. Thus output is:

Definition 7. Output.

output(s, τ, t) :=
s.event(t) ifdom(s.event(t)) ≤ dom(τ)
− otherwise



The above state transformers have the form:

State × N× T → State

and are completely formalised in the PVS sources [26]. Due
to space limitations we present here only an extract of the
end action transformer.

Definition 8. End Action.

end action(s, t, τ) :=
If s.ts(τ) 6= inactive ∧ s.rem time = 0 ∧

s.rem actions(τ) 6= 〈〉
Then
Cases s.rem actions(τ) Of
run(time span) :
s \ ts(τ) := runnable,
rem actions(τ) := tail(s.rem actions(τ))
rem time(τ) := time span,

block(time span) :

s \ ts(τ) :=


cm blocked ifptrans(τ)
blocked otherwise

rem actions(τ) := tail(s.rem actions(τ))
rem time(τ) := time span

Else
...
Endif

where t is the point in time for which end action should be
evaluated.

If the current action of this thread has finished
(s.rem time(τ) = 0), the presented part of end action se-
lects the following action in s.rem actions(τ)(provided more
actions remain for this period) and depending on this action
adjusts the thread state accordingly. In particular we set
the thread to cm blocked if the thread blocks and ptrans(τ)
holds.

The state transformers are invoked for each thread in
the above order (i.e., σ := deadline ◦ release ◦ end action ◦
next action) for each thread in the recursively defined state
transformer dispatch step:

Definition 9. Dispatch Step.

dispatch step(s, t, τi) :=
σ(s, t, τi) if i = 0
σ(dispatch step(s, t, τi−1), t, τi) otherwise

This step is in turn invoked recursively for each point in time
starting from an initial state s0:

Definition 10. Dispatch.

dispatch(s0, t) :=
dispatch step(s0, t, τmax) if t = 0
dispatch step(dispatch(s0, t− 1), t, τmax) otherw.

Thus, our main theorem stating confidentiality is

Theorem 1. Confidentiality.

∀τi ∈ T, t ∈ N, s0.
output(dispatch(s0, t), τi, t) =
output(dispatch(purge(s0, τi), t), τi, t)

The proof is straightforward with help of the following pred-
icate and by induction over all points in time t and over all
thread indices i. We proved this predicate to be an invariant
of our scheduler with a similar induction over t and i:

Definition 11. Same High State.

same high state(s, sp)(τ) := ∀τ ′ ∈ Thigh(τ).
Ifptrans(τ

′)Then
s.rem wct(τ ′) = sp.rem wct(τ ′)∧
(s.ts(τ ′) = ready ∨ s.ts(τ ′) = cm blocked) ⇔
(sp.ts(τ ′) = ready ∨ sp.ts(τ ′) = cm blocked)∧

s.ts(τ ′) 6= blocked ∧ sp.ts(τ ′) 6= blocked
Else
dyn(s, τ ′) = dyn(sp, τ ′)

Endif

where sp is the purged state of s and dyn(s, τ) denotes the
entire dynamic state of τ (i.e., s.ts(τ) plus all the remaining
times and actions s.rem ∗).

Definition 11 formalises the following proposition on the dy-
namic thread state of those threads τ ′ which have a higher
priority than τ : Provided ¬ptrans(τ

′) holds, the dynamic
state is the same in the original state s and in the purged
state sp. Otherwise, if the countermeasure predicate
ptrans(τ

′) holds, at least the remaining wct is the same in s
and in sp and either in both states or in none of the two,
the scheduler considers these threads as if they were ready
(i.e., s.ts(τ ′) = ready or s.ts(τ ′) = cm blocked ; sp.ts respec-
tively).

It follows that threads for which this predicate holds pro-
duce the same output . Thus, our main theorem holds be-
cause this predicate is an invariant.

6. TIMELY ISOLATION OF
NONINTERFERING THREADS

A consequence of the arguments we gave in the context
of unauthorised information flows is that in our system, the
precise points in time when a thread τ may run cannot be
affected by the actions of a thread τ from which τ must not
receive information (i.e., for which dom(τ) � dom(τ) holds).
Our system therefore isolates time wise the thread τ from
the thread τ ′.

Commercial time-partitioning systems such as
LynxOS [16] typically implement a hierarchical fixed-priority
scheduler inside their partitions to support Posix threads.
To achieve the above kind of timely isolation between τ and
τ ′ they do, however, rely on the underlying partition sched-
uler and schedule both threads in different partitions. With
our solution, this hierarchical approach is no longer nec-
essary because our countermeasure can be used to timely
isolate threads directly with the fixed-priority scheduler.

7. REAL-TIME GUARANTEES
All previously reported results hold for arbitrary thread

sets that are scheduled on top of a budget-enforcing fixed-
priority scheduler. In the following discussion on preserved
real-time guarantees, we restrict ourselves only to strictly
periodic thread sets. We will partially lift this restriction in
Section 8.

Remember, strictly-periodic threads are those with equi-
distant release points πi,k and identical budgets for each
release. In the following, we omit the release index k. Fur-
thermore, let Πi = πi,k+1 − πi,k for all k.

In a real-time system, it is crucial that all hard real-time
threads meet their deadlines. For this reason, an admis-
sion test is performed which decides before the thread set



is executed whether each thread will meet all its deadlines.
Probably the most popular result is Liu and Layland’s cri-
terion [14] which says that a set of n periodic threads can
be scheduled by the rate monotonic (RM) policy if

Σ
1≤i≤n

wcet i

Πi
≤ n · (2

1
n − 1).

Here is assumed that Πi = di for all i, that all the threads
never block, and the threads are ordered by increased pe-
riods. Lehoczky et al. proposed the time-demand analysis
method [12] that provides a sufficient and necessary schedu-
lability test. On the other hand, Sha et al. [23] included
blocking times showing that the thread set is schedulable by
the RM priority assignment if

∀k ∈ {1, ...n}. Σ
1≤i≤k

wcet i

Πi
+

bk

Πk
≤ k · (2

1
k − 1)

where bk is an upper bound on the duration of blocking
that the kth thread may experience due to resources held
by lower priority threads. In this section, we follow Liu [11]
to determine the different blocking times depending on the
different blocking reasons.

In addition to the usual influence of high-priority threads
on the timing behaviour of lower-prioritised threads, our
modified scheduler may prohibit ready lower-prioritised
threads from running because it switches to the idle thread
to avoid information leakage. In the worst case, a thread
τl is prohibited from running during each blocking time bh

of all higher prioritised threads τh for which the counter-
measure is applied. We call this time the “prohibition time”
bl(pr) of a thread τl. It holds:

Equation 1. Prohibition Times.

bl(pr) = Σ
τh∈Tptrans ,high (τl)

dΠh
Πl
ebh

with Tptrans ,high(τl) = {τh ∈ Thigh(τl)|ptrans(τh)} as intro-
duced in Section 4.1.

Obviously, prohibiting threads from running increases the
idle time. We quantify the increase in idle time by the pro-
hibition time of the lowest-prioritised thread bidle(pr).

To assure that the thread set remains schedulable on the
modified scheduler, we reuse a common admission test for an
unmodified scheduler and take into account the prohibition
times as an additional blocking term. In some situations,
a thread set must be rejected when considering prohibition
times that would otherwise have been accepted by an accep-
tance test for an unmodified scheduler.

Consequently, this results in a lower utilisation compared
to the utilisation of this unmodified scheduler Uorig. Pre-
cisely, the maximum utilisation which can be achieved due

to our modification is U = Uorig − bidle(pr)
Πidle

.

Now we investigate how well-behaving real-time threads
are constrained by our countermeasures. For this, we com-
pare an admission with and without prohibition times and
relate these results to a system that always enforces worst-
case behaviour (e.g., a time-partitioning scheduler 3).

3A time-partitioning scheduler computes for each thread τi

fixed, recurring and nonoverlapping time intervals of size
wcet i + wcbt i. Because no two threads are active at the
same time, the blocking times of one thread cannot be used
to run another thread.

7.1 Blocking due to Self Suspension
Threads may block due to self suspension (e.g., in a block-

ing systemcall when they wait for the completion of asyn-
chronous I/O). We assume that an upper bound xi on the
time a thread τi blocks due to self suspension is known a-
priori.

x
h

x
h

x
h

priority

time

l

h
τ

τ

Figure 6: Blocking due to self suspension. τl misses
its deadline because the gray-shaded part does not
fit.

Liu [15] (pg. 165 ff) gives an upper bound bl(ss) on the
blocking time due to self suspension:

Equation 2. Blocking due to Self Suspension.

bl(ss) = xl + Σ
τh∈Thigh (τl)

min(wceth, xh)

We illustrate this formula using the example in Figure 6.
A low-priority thread τl may consume the time the higher
prioritised thread τh suspends itself. For example, τl runs
in τh’s second period independent of when τh suspends itself
during this period. The blocking time origins from τh delay-
ing its execution prior to the period of τl. Consequently τh

consumes additional time in the interval of τl’s period. This
additional time is at most the minimum of the worst-case
execution time of τh and its maximum self-suspension time
xh. The latter case is shown in the figure.

Because malicious and erroneous threads can signal infor-
mation both by the amount of time they self suspend and
through the point in time when they self suspend we have
to prevent low-priority threads from running during the en-
tire time in which such a thread could run or suspend itself.
Attributing the prohibition times of these threads to the
blocking time due to self suspension, we get the blocking
time bcm

l (ss) for our countermeasure.

Equation 3. Blocking Time Self Suspension Countermea-
sure

bcm
l (ss) = xl + Σ

τh∈T¬ptrans ,high (τl)
min(wceth, xh) +

Σ
τh∈Tptrans ,high(τl)

dΠh
Πl
exh

The second sum in this formula is the prohibition time bl(pr)
if we consider self suspension as the only reason for blocking.

Because the maximum self-suspension time must be con-
sidered for every period of higher prioritised threads rather
than only once and in the minimum with wcet, an admission
test for an unmodified scheduler could accept more thread
sets.

Compared to a scheduler that always enforces the worst-
case behaviour, our approach accepts more thread sets be-
cause the prohibition times need only to be considered for



those threads for which the countermeasure must be applied.
Threads authorised to send to other (respectively lower-
prioritised) threads remain unaffected. A realistic example
in which this situation arises are real-time drivers (e.g., disk,
network, sensor, etc.) that read confidential data only in its
encrypted form. Such a real-time driver can be classified
with the lowest security class ⊥. As these drivers typically
have short periods, rate monotonic scheduling would assign
them a high priority. While the modified scheduler leaves
the driver unrestricted, a time-partitioning scheduler must
execute it in a separate partition of the length wcet i + xi to
prevent leakage from secret applications to the low-classified
driver. A time-partitioning scheduler can therefore not ex-
ploit the self-suspension time to schedule additional threads.

7.2 Blocking due to Nonpreemptibility
To determine the maximum blocking time due to nonpre-

emptibility we need to know how many times Kh a thread τh

suspends itself after it starts and the duration of the largest
nonpreemptible critical section max delay low(τh) (Defini-
tion 4).

Thus, the blocking time due to nonpreemptibility is [15]:

Equation 4. Blocking Time due to Nonpreemptibility.

bh(np) = (Kh + 1) max delay low(τh)

A thread τh for which we also apply our first countermea-
sure of switching to the idle thread (i.e., for which ptrans(τh)
holds) can be blocked due to nonpreemptibility only before
it starts. Thus we get:

Equation 5. Blocking Time due to Nonpreemptibility
Countermeasure.

bh(np) =


max delay low(τh) if ptrans(τh)
(Kh + 1) max delay low(τh) otherwise

In theory, our approach could accept more thread sets than
the unmodified scheduler when Kh · max delay low(τh) is
large compared to the self suspension time xh. In prac-
tice, nonpreemptible critical sections are short and this ef-
fect could not be seen. Still an admission for our modified
scheduler performs no worse compared to an admission for a
classical scheduler as far as blocking due to nonpreemptibil-
ity is concerned.

8. PRACTICAL CONSIDERATIONS
In the following, we shortly address resources, precedence

constraints as well as aperiodic and sporadic threads.

8.1 Resources
A complete investigation of blocking due to resource lim-

itations is out of the scope of this paper. We only investi-
gate the consequences of our countermeasure on threads that
block on a resource. We do not consider illegal information
flow due to the resource allocation.

In Section 7.2 we discussed a solution for nonpreemptible
critical sections. Here we focus on situations where the
holder of a resource or critical section can be preempted.

When resource holders can be preempted in their execu-
tion, higher prioritised threads may fail to immediately lock
the resource. In this situation, a higher prioritised thread τh

can suspend itself to give the low-priority resource holder τl

the chance to free this resource. As shown in Figure 7, this

time time

 R

 R R  R

idle

priority priority

l

h

l

h

τ

τ

τ

τ

lock unlock

Figure 7: Self suspension of τh allows τl to release
the resource unless the countermeasure prevents τl

from running.

is no longer possible when the countermeasure switches to
the idle thread instead. Not having investigated the secu-
rity of resource allocation protocols yet, we propose to use
nonpreemptible critical sections instead.

In a multiprocessor system, nonpreemptible critical sec-
tions and self suspension can be combined to implement
preemption-aware critical sections [9]. Whenever the re-
source is held by a thread on another processor a requesting
thread suspends itself so that other threads could be sched-
uled on its CPU when the countermeasure is not applied.
With acquiring the resource, the thread signals the sched-
uler not to preempt it. Thus, the resource is either free or
held on another processor and the switch to the idle thread
does not hinder any thread to free the resource. Figure 8
illustrates this locking scheme.

CPU 1

CPU 0

max delay

preemption

R

R

time

priority

l1

l0

h0

h1

τ

τ

τ

τ

Figure 8: A preemption-aware multiprocessor lock.

8.2 Precedence Constraints
In a practical system, threads are usually not independent

from each other, because they rely on the results produced
by other threads. These dependencies are typically denoted
by a precedence graph which states which threads must com-
plete before a later thread in the directed graph can sensibly
be scheduled.

Considering dynamic dependencies, as they arise for ex-
ample when requesting resources, is out of the scope of this
paper. However, precedence due to data dependencies can
be computed statically. We exploit effective release times
which we compute in a slightly different way and activate
a thread τ only after all those threads have produced their
results on which τ depends.

The effective release time of a thread τ is therefore set to
the latest response time of the threads on which τ depends.
Figure 9 illustrates this procedure.



precedence:

actual release time : effective release time :

time

priority

l

lh

h

τ

τ

τ τ

Figure 9: Adjustment of effective release times to
reflect precedence constraints.

Because the precedence constraints are public informa-
tion and because the response times are computed based
on worst-case execution and blocking times, the resulting
adjusted schedule reveals no additional information.

8.3 Aperiodic and Sporadic Threads
Sporadic servers and deferrable servers [15] are means to

increase the response time of sporadic and aperiodic threads.
These are threads which have varying period lengths respec-
tively soft or no deadlines. The admission plans these servers
as normal real-time threads. The scheduler then exploits the
time and priority planned for these servers to execute spo-
radic and aperiodic threads after they have arrived.

If the arrival of a sporadic or aperiodic thread can be
considered as public information, we can treat the sporadic
server or the deferrable server as a thread that does not ex-
ecute until a respective sporadic or aperiodic thread arrives.
This event is the server’s first release point. Consequently,
the budgets of these servers need to be considered only after
this release point.

The server inherits the information flow properties of the
arrived thread and we apply the countermeasure if the re-
spective predicate holds for the arrived thread. Because, in
general, we do not know in advance whether the countermea-
sure predicate holds for the arriving thread, the admission
has to treat the server as potentially leaking. Alternatively
this decision can be made dynamically when reserving dis-
tinct deferrable servers for possibly leaking and not leaking
threads.

The same line of arguments holds for threads that are
suspended right before they start execution (e.g., when they
await an external event). If occurrence of these events is
public information, we need not to switch to the idle thread
for this portion of the self-suspension time. Instead we
adjust the release point of these servers to the point in time
at which the event arrives.

Sporadic or deferrable servers can be used to implement
dynamic thread creation by executing the created threads
as payload of these servers.

9. RELATED WORK
The scheduling covert channel has been addressed previ-

ously. We first elaborate on related approaches which mod-
ify the system scheduler to close or to mitigate this chan-
nel. Then we briefly sketch alternative approaches to pre-
vent threads from leaking information through their external

timing behaviour.
Son et al. [25] analyse the impact of rate-monotonic sched-

uling on covert timing channels. The authors formalise and
classify covert timing channels inherent with RM schedul-
ing. They conclude the RM-channel to be positive deducible,
which means in some settings the covert timing channel can-
not be closed. Furthermore, they present a measure for the
capacity of this channel. Our approach closes this timing
channel by forcing the possibly leaking senders into their
worst-case behaviour.

Time-partitioned systems [10], as defined for example in
the Arinc 653 standard [1], assign each thread a partition
and schedule threads hierarchically when their respective
partition is active. The partitions themselves are sched-
uled according to an off-line-computed clock-driven sched-
ule. Time-partitioned systems are noninterference secure
because they prevent threads in different partitions affect-
ing each other’s timing. In Section 7.1 we identify cases
in which an admission for our approach can accept more
thread sets. In addition we achieve a higher performance
for nonreal-time threads because only those threads have to
be restricted that could possibly leak information. In the
special situation when unauthorised information flows are
only from lower to higher prioritised threads, our approach
leaves the system unrestricted.

Hu [6] proposes the lattice scheduler to minimise the times
when countermeasures (e.g., cache flushing) have to be ap-
plied. The lattice scheduler allocates for each security class a
time partition (called time slot) and schedules threads of this
security class hierarchically whenever the respective time
slot is active. In contrast to a traditional time-partitioned
system, the lattice scheduler allows higher classified threads
to consume part of the remaining in a time slot. In the case
when all threads of the security class that was active in the
current time slot have stopped early, the lattice scheduler se-
lects a higher security class to consume the remaining time
in this slot. No information is leaked because only higher
classified threads are activated when lower classified threads
stop early. The lattice scheduler inherits most of its real-
time properties from time-partitioning schedulers. However,
because higher classified threads may consume the remain-
ing time of early stopped threads it may in general accept
more thread sets. In contrast to our solution, blocking times
in the middle of a thread’s execution cannot be consumed
by threads of a different security class.

Boucher et al. [2] propose a best-effort scheduler that se-
lects threads according to their time-value function. This
function describes how valuable it is to schedule the thread
at a given point in time. In addition, the scheduler contin-
uously measures covert-channel bandwidth and when this
bandwidth reaches a certain threshold, it switches to a
scheme similar to lattice scheduling. A control policy can
then trade covert-channel bandwidth against real-time per-
formance by dynamically adjusting this threshold when an
important real-time thread risks missing its deadline. The
main difference compared with our approach is that the
real-time admission must be changed to take into account
when the covert-channel bandwidth has reached the thresh-
old. Their approach has a considerably higher overhead than
ours because they have to evaluate the information-flow pol-
icy online. The use of static predicates relieve us from this
necessity.

Other approaches to prevent information leakage caused



by variations in a thread’s external timing behaviour include
fuzzy time [5] and security type systems.

Hu et al. [5] adds noise to timing sources and event deliv-
ery. Lacking a precise timing source it becomes more difficult
to signal information by varying the timing behaviour of a
thread. As illustrated beforehand, fuzzy time cannot close
but only mitigate timing channels. Furthermore, real-time
threads require some degree of precise timing.

A large body of work investigates type systems that as-
sert confidentiality for a program that is scheduled under a
specific class of schedulers (e.g., uniform [24] or probabilistic
schedulers [22]) or that assert program confidentiality inde-
pendent of the underlying scheduler [22].

Among these Russo et al. [21] propose a type system
that allows threads to signal to the scheduler when only
threads of the same security class should be scheduled. This
type system asserts confidentiality of a multithreaded pro-
gram with dynamically created threads running on top of
a noninterferent scheduler. A more recent paper of these
authors [20] describes a transformation in which a single
threaded program is transformed into a multithreaded pro-
gram such that each thread assigns only to variables of a
single security class. They show that this transformation
establishes noninterference for the lattice low ≤ high when
executing the threads under a round-robin scheduler. Real-
time was no concern in this work.

Acknowledgements
Thanks are due to Hendrik Tews, Michael Roitsch and to
the anonymous reviewers for their comments and advices
that helped us improve this paper. We further thank Intel
Corp. for their support. This work is in part funded by the
European Commission through PASR grant 004700.

10. CONCLUSIONS
We investigated illegal information flows through the

scheduling subsystem by alterations in the scheduling re-
lated behaviour of threads and propose a rather simple coun-
termeasure that closes these channels. A budget-enforcing
fixed-priority scheduler is modified to treat active threads
that block or that stop early and that could potentially leak
information as if they were ready. While this increases the
system’s idle time, information can no longer be leaked via
the scheduling subsystem and some threads become timely
isolated from the behaviour of others.

We quantify the increase in idle time by the prohibition
time of the lowest-prioritised thread bidle(pr). Because the
prohibition time is an additional blocking factor, we showed
how to reuse existing admission tests to determine the sched-
ulablity of a given thread set. The utilisation we achieve
compared to the respective original, unmodified test is

U = Uorig − bidle(pr)
Πidle

.

The decision when to apply our countermeasure we base
on a static predicate. Thus, the additional scheduling over-
head introduced with our approach is negligible.

In the near future, we plan to formally prove noninterfer-
ence for a system with blocking due to nonpreemptibility.
Additional directions of future research include dynamic-
priority real-time schedulers, resources and reduction of
system idle times due to less restrictive predicates.

11. REFERENCES
[1] ARINC. ARINC 653-1 Standard.

[2] P. Boucher, R. Clark, I. Greenberg, D. Jensen, and
D. Wells. Towards a multilevel-secure, best-effort
real-time scheduler. In 4th IFIP Working Conference
on Dependable Computing for Critical Applications,
San Diego, CA, USA, Jan 1994.

[3] U. Dannowski, J. LeVasseur, E. Skoglund, and
V. Uhlig. L4 eXperimental Kernel Reference Manual,
Version X.2. Technical report, University of
Karlsruhe, 2004. Latest version available from:
http://l4hq.org/docs/manuals/.

[4] Z. Deng and J. Liu. Scheduling real-time applications
in an open environment. In Proceedings of the IEEE
Real-Time Systems Symposium, pages 308–319, Dec.
1997.

[5] W. Hu. Reducing timing channels with fuzzy time. In
IEEE Computer Society Symposium on Research in
Security and Privacy, Oakland, CA, USA, May 1991.

[6] W. Hu. Lattice Scheduling and Covert Channels. In
IEEE Symposium on Security and Privacy,
Washington, DC, USA, 1992.

[7] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth,
A. Lackorzynski, F. Mehnert, and M. Peter. The
Nizza Secure-System Architecture. In First
International Conference on Collaborative Computing:
Networking, Applications and Worksharing, San Jose,
California, USA, Dec. 2005.

[8] M. Kang and I. Moskowitz. A Pump for Rapid,
Reliable, Secure Communication. In ACM Conference
on Computer and Communication Security, pages 119
– 129, Nov 1993.

[9] L. Kontothanassis, R. Wisniewski, and M. Scott.
Scheduler Conscious Synchronization. ACM
Transactions on Computer Systems, Feb. 1997.

[10] H. Kopetz. The time-triggered architecture. In
ISORC, 1998.

[11] J. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic
scheduling algorithm: Exact characterization and
average case behaviour. In Real-Time Systems
Symposium, pages 166–171, Dec 1989.

[12] J. P. Lehoczky, L. Sha, and Y. Ding. The
rate-monotonic scheduling algorithm: Exact
characterization and average case behavior. In
Real-Time Systems Symposium, pages 166–171, Dec
1989.

[13] J. Liedtke. On µ-kernel construction. In Proceedings of
the 15th ACM Symposium on Operating System
Principles (SOSP), pages 237–250, Copper Mountain
Resort, CO, Dec. 1995.

[14] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in an Hard-Real-Time
Environment. Journal of the ACM, 20.1:46–61, Jan
1973.

[15] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[16] Lynuxworks. Lynxos: Partitioning operating systems
vs. process-based operating systems.
http://www.lynuxworks.com/products/
whitepapers/partition.php.

[17] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A
prototype verification system. In D. Kapur, editor,
11th International Conference on Automated



Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence, pages 748–752, Saratoga, NY,
June 1992. Springer-Verlag.

[18] J. Regehr and J. A. Stankovic. HLS: A framework for
composing soft real-time schedulers. In RTSS ’01:
Proceedings of the 22nd IEEE Real-Time Systems
Symposium (RTSS’01), Washington, DC, USA, 2001.
IEEE Computer Society.

[19] J. Rushby. Noninterference, transitivity, and
channel-control security policies. Technical Report
CSL-92-2, Stanford Research Institute, 1992.

[20] A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld.
Closing itnernal timing channels by transformation. In
ACM Symposium on Information, Computer and
Communications Security (ASIACCS’06), 2006.

[21] A. Russo and A. Sabelfeld. Securing interaction
between threads and the scheduler. In 19th IEEE
Computer Security Foundations Workshop, Venice,
Italy, July 2006.

[22] A. Sabelfeld and D. Sands. Probabilistic
noninterference for multi-threaded programs. In
CSFW ’00: Proceedings of the 13th IEEE Computer
Security Foundations Workshop (CSFW’00),
Washington, DC, USA, 2000. IEEE Computer Society.

[23] L. Sha, R. Rajkumar, and J. Lehoczky. Priority
Inheritance Protocols: An Approach to Real-Time
Synchronisation. IEEE Transaction on Computers, 39,
1990.

[24] G. Smith and D. Volpano. Secure information flow in
a multi-threaded imperative language. In POPL ’98:
Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
San Diego, California, United States, 1998.

[25] J. Son and J. Alves-Foss. Covert timing channel
analysis of rate monotonic real-time scheduling
algorithm in mls systems. In 7th Annual IEEE
Information Assurance Workshop, West Point, NY,
USA, June 2006.

[26] M. Völp, C. J. Hamann, and H. Härtig. Avoiding
Timing Channels in Fixed-Priority Schedulers - PVS
Sources. available from http://os.inf.tu-
dresden.de/˜voelp/sources/sec rt trans.tgz.


