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Abstract

Standard virtual memory management (VMM) and protection policies are often not
suitable to serve the requirements of special applications such as database management
and multi-media. Two approaches have been proposed to support the differing demands
of those kind of applications:

e extension of the standard policies with application specific policies, and

e cxternalization of virtual memory management and protection policies to appli-
cation specific managers.

An externalization of VMM policies to user level managers makes it possible to select
those policies that best serve those requirements. In addition to that, ezternalization
reduces the complexity of inside kernel memory management. The Recursive Virtual
Address Space Model is such an approach of externalization.

Undesired behavior and unnecessary complex or slow behavior of existing implementa-
tions of this model, however, limit its applicability. Such behavior includes:

e [ong interrupt latencies, and

e unbounded priority inversion.

The first is caused by non-preemptively executing those operations modifying address
spaces as it is done in some existing implementations. Other implementations al-
low for those operations to be preempted. This avoids long interrupt latencies, but
those implementations are prone to unbounded priority inversion. To avoid this un-
bounded priority inversion, those implementations apply complex timeslice donation
and “helping-schemes” [HHO1]. In Section 2.6.5, we will point out that those “helping-
schemes” imply system behavior that cannot be tolerated in all systems. In particular
in small scale multiprocessor systems, this may lead to a behavior that is not desirable
in all systems. A frequent migration of threads that get “helped” is an example of such
a behavior. We aim to avoid “helping” in our solution.

This thesis investigates the problem of unbounded priority inversion in preemptable im-
plementations of the Recursive Virtual Address Space Model. We propose new methods
to control concurrent address space construction, that

e do not lead to long interrupt latencies,
e do not lead to unbounded priority inversion,
e do not lead to starvation, and

e do not require helping.

12



In particular, we propose:

e preemptable post-order traversal,
e 70ll forward combined with scheduler-conscious locking, and

e cfficient restart-point tracking

to achieve those objectives.

In this thesis we describe and evaluate those techniques in the implementation of the
Recursive Virtual Address Space Model. We show that a comparable performance to
non-preemptive implementations can be achieved for address space construction. The
costs of revoking memory from address spaces, however, show an increase by 12.2%
compared to the non-preemptive implementations.
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Chapter 1

Introduction

Virtual memory management(VMM) is an integral part of operating systems for in-
teractive or partially untrusted applications. In general, this part of the operating
system tends to be rather complex. Nevertheless, standard virtual memory policies
are often not suitable to serve the requirements of special tasks and applications such
as database management (DBMS) [Sto81], garbage collection [AL91] and multi-media
applications [Map92].

To fulfill those requirements, two approaches have been proposed:

e cxtension of the VMM-system with application specific policies [BCET94,BSP 95,
EGM*94, CD94, EGK95], and

e cxternalization of virtual memory management to application specific managers
[ABBT86,RTY*87,HC92,KN93, Lie95, Han99].

In micro-kernels, the second approach is applied.

The Recursive Virtual Address Space Model [Lie95], proposed for the L4 p-kernel, is
such an approach of ezternalization. The model provides mechanisms that makes it
possible to implement arbitrary virtual memory management and protection policies
at user level. Each subsystem can implement those policies, fitting best to the re-
quirements of its applications. It can implement those policies independent of other
subsystems. Furthermore, it can use the functionalities provided by other subsystems.
This allows to construct systems in a hierarchical manner.

The applicability of the Recursive Virtual Address Space Model, however, is currently
limited. This is because existing implementations of this model show undesired behav-
iors or unnecessary complex or slow behaviors such as:

e long interrupt latencies,

e unbounded priority inversion, or

17



18 CHAPTER 1. INTRODUCTION

e complex timeslice donation or “helping” schemes.

This thesis investigates techniques and mechanisms to avoid those undesired behaviors.
We show that unbounded priority inversion is not inherent to the Recursive Virtual Ad-
dress Space Model. Instead, we show that it can be avoided by design without having
to delay interrupt handling for long times and without having to implement complex
timeslice donation or “helping-schemes”.

The objective of this thesis is to offer solutions for uniprocessor as well as for small
scale multiprocessor systems.

1.1 Proposed Solutions

We propose:
e preemption of long running operations to avoid long interrupt latencies,
e post order traversal to avoid unbounded priority inversion,
e 70ll forward combined with scheduler-conscious-locking to ensure consistency, and

e restart-point tracking to guarantee forward progress and to avoid starvation.

To efficiently track the restart point of preempted operations we introduce a new tech-
nique: the token-based preempted-thread list.

The proposed solutions are evaluated using an implementation in the L4Ka Pistachio
u-kernel.

1.2 Outline

Chapter 2 introduces the Recursive Virtual Address Space Model. Furthermore, it ex-
plores the problem of unbounded priority inversion in existing implementations. Chap-
ter 3 describes fundamentals applied in this thesis and work, the approach presented in
this thesis relates to. Chapter 4 presents the proposed solutions. At first, we focus on
solutions for a single hardware page-size. After that, we extend our approach to sup-
port multiple hardware page-sizes. Chapter 5 discusses and analyses the experiments.
In Chapter 6 we draw conclusions. Furthermore, an outline of future work is given.



Chapter 2

Background

This chapter surveys hard- and software mechanisms to implement page-based virtual
memory. It introduces the Recursive Virtual Address Space Model and the mapping
database, a data structure used to implement this model. In addition to that, this
chapter surveys small scale multiprocessor systems.

We analyze the problem of unbounded priority inversion and discuss techniques that
have been proposed to avoid this problem. One such technique is “helping”.

This chapter ends with identifying the issues and constraints of an implementation of
the Recursive Virtual Address Space Model.

2.1 Mechanisms for Page Based Virtual Memory

2.1.1 Terminology

Page-Frame A page-frame (or frame) is a contiguous region of physical memory. It
is described by its physical base address and its size, whereby the size is a power
of 2 and the base address is aligned to this size.

Page A page p, is a contiguous region of virtual memory of size s starting from a
virtual base address v. s is a power of 2 and one of the hardware page-sizes
supported by the processor. v is aligned to the size s.

A virtual address-space consists of a mapping that associates each virtual page to a
physical page-frame or marks it “non-present”. Additionally, the permitted access to
present pages is stored with the mapping.

Page-tables implement this mapping. They are used to translate the virtual addresses
of memory accesses to a page into the physical addresses within a frame. Translation
lookaside buffer (TLB) hardware caches the result of the most recent translations. The

19
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page table

virtual address 1

Figure 2.1: Address translation with a linear page-table

purpose of the TLB is to speed up subsequent memory accesses to those pages. If no
such translation exists in the TLB, i.e. on a TLB miss, the page table is walked by
hardware or by software and an entry for the result of this translation is inserted into
the TLB.

Several page-table structures have been proposed [JM98, Szm99, LE96, Lie94]. This
section gives an overview of the most common.

2.1.2 Linear Page-Tables

A linear page-table (Figure 2.1) is an array of page-table entries (PTEs). The virtual
address v to translate is subdivided into two parts. The part with the most significant
bits is used to index into the page-table to retrieve a page-table entry. The PTE points
to a page frame, or it marks the page as “non-present”. In the first case, the remaining
part of the virtual address — s bits, whereby s is the page size — is used as an offset into
the frame. The second case results in a page-fault, a signal to the operating system,
that a “non-present” page has been accessed.

Linear page-tables store a page-table entry for all virtual pages of an address space.
Often, several of those page-table entries mark the page as “non-present”.

2.1.3 Multi-Level Page-Tables

Multi-level page-tables have been proposed to reduce the space required to store page-
table entries that mark pages “non-present” in non-populated regions of the address
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page tables
1.vl 2.vl

page

1101 1101 | 0110 0110 | 1001 1001 1001 1111

Figure 2.2: Address translation with o multi-level page-table.

space. The multi-level page-table allows for a hierarchy of page-tables to be allocated
in multiple levels. Figure 2.2 shows the translation of a virtual address with a multi-
level page-table. For the translation of a virtual address v, the multi-level page-tables
subdivides v into several parts. The translation starts with the part containing the
most significant bits. Those bits are used to index into the page table at the first level.
The page-table entry found is in one of three possible states:

page found: A valid translation of the page is found. The page-table entry contains
the physical address of the page-frame and information on the permitted access
to it. The bits of the remaining parts offset into the page frame.

non-present: The translation stops without translating to a page-frame.

page-table: The page-table entry points to a page table at the next level. The bits of
the next part are used to index into this page table to find a page-table entry to
continue the translation with.

Compared to those parts of the virtual address, the lower-level page-tables are indexed
in with, the parts that are used to index into higher-level page-tables contain less
significant bits of the address. Therefore, a page-table entry in a lower level stands for
a larger region of the virtual address-space than one in a higher level. If no page is
mapped in this region, i.e. all page-table entries of higher-level page-tables would mark
the pages as “non-present”, the lower-level page-table entry can mark the entire region
as “non-present”. In this case, a higher-level page-table is not required. The space this
page-table would require is saved. This, however, comes up with the necessity to walk
multiple levels of page tables to complete the translation upon a TLB miss.

2.1.4 Guarded Page Tables

To decrease both, the lookup performance of deep multi-level page-tables and the space
required for those page-tables in large, sparsely populated address spaces, the guarded
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HERRETY
W 2.Ivl

101
10 01

NN oL e

01

111, W 4l on gf\j_{m

(a) Multi-Level Page-Table (b) Guarded Page-Table. The
numbers next to the links are
the guards.

Figure 2.3: Address translation with guarded page-table.

page-table (GPT) [Elp99, Lie94] has been proposed. Furthermore, guarded page-tables
allow for efficiently mixing multiple different page sizes.

In sparsely populated address spaces, the page tables of a multi-level page-table often
contain only a few page-table entries that point to a page or a page-table at the next
level. Guarded page-tables have the ability to compress the translation path through
those, sparsely populated regions. Instead of allocating a level of page-table for each
fixed sized part of the virtual address, as multi-level page-tables do, the guarded page-
table makes it possible to subdivide the virtual address more flexible. Parts containing
bits shared by all addresses in a certain region can be split off entirely from the trans-
lation. Those bits are stored in the guards that directly shortcut to the next level of
page tables or to a page. Only with the differing bits, a page-table is indexed. Guarded
page-tables allow for differently large page-tables.

We illustrate the benefits of guarded page-tables in the following example: the trans-
lating of the following three 10-bit addresses. Figure 2.3(a) shows the translation of
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the virtual addresses vy, v2, v3

v1 = 1011010000
v9 = 1011011000
vz = 1010101100

by a multi-level page-table, assuming 4 entry page-tables and 4 byte pages. In the first
and third level of the multi-level page-table and for v in the fourth level as well, only
one page-table entry is used, the rest is marked “not-present”.

In our example (Figure 2.3(b))v; and ve have a common 6-bit prefix, v,vs and v3 a
common 3-bit prefix. With these common prefixes, the guarded page table shortcuts
through the sparsely populated page tables, thereby compressing the translation path.
The guarded page-table saves both memory capacity and translation steps in sparsely
populated address spaces. Furthermore, it allows for efficiently storing several different
hardware page-sizes.

Level- and path-compressed trees (LPC) [Szm99] compress the translation path as
GPTs do. Furthermore, level-compression flattens densely populated regions of the ad-
dress space by replacing complete subtrees with a single page-table. Level compression
reduces the depth of the page-table tree in densely populated areas, path compression
in sparsely populated areas.

2.1.5 Inverted Page-Tables

Instead of storing one page-table entry per virtual page, the inverted page-table (IPT)
has one page-table entry per page frame. The page table is called inverted because the
table is indexed with the physical frame-address rather than the virtual address of the
page. Instead, the inverted page-table translates the virtual address by hashing with
it into the IPT to retrieve the page-table entry.

Inverted page-tables combine a fast lookup with little space required, provided the hash
is collision free. However, in the presence of hash collisions, a collision chain has to
be searched for the appropriate page-table entry, or the entire page table has to be
rehashed.

2.2 Translation Lookaside Buffer

A translation lookaside buffer (TLB) caches the most recent translations from virtual
to physical addresses. The entries in a TLB are inserted either by hardware or by
software. In the first case, the translation is retrieved by a hardware page-table lookup.
In the second, a software handler is responsible to insert the entry.
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inverted page table

virtual address 1
2 - .
collision chain
hash
n

Figure 2.4: Inverted Page-Table

After modifying a translation in the page tables to point to a different frame or when
reducing the access rights that are stored with the translation, the corresponding TLB
entries need to be invalidated to make the changes to become effective.

2.3 Small Scale Multiprocessors

This section briefly surveys small scale or symmetric multiprocessors. As can be seen
in Figure 2.5, symmetric multiprocessor hardware consist of several processors (CPUs)
that are connected via a bus or a crossbar to the main memory module. Memory ac-
cesses are uniform, i.e. they take equally long for each processor.

Communication between the processors is via the main-memory module, however, a
facility exists to deliver an interrupt signal to other processors. This signal is called
inter-processor or cross-processor interrupt. Upon receiving this interrupt, the proces-
sor executes a handler installed by the operating system.

Each processor has a set of local caches. Those caches are kept consistent by a cache
coherency protocol. This protocol ensures, that always up to date values are read from
the cache. Modifications to data cached by another processor are written back to main
memory, before a read of another processor requests the modified data.

In addition to processor local caches, symmetric multiprocessor systems as well have
processor local TLB hardware. However, those TLBs are commonly not kept in a
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CPU 1 CPU 2 CPU 3 CPU 4
L1 L1 L1 L1

\—‘ TLB \—‘ TLB \—‘ TLB \—‘ TLB
L2 L2 L2 L2

main—memory

Figure 2.5: Symmetric Multi- Processor Hardware

consistent state. TLB consistency has to be established by the operating system. The
process of invalidating non-local TLB entries is called “TLB-shootdown”. Teller [Tel91]
and Rosenburg et. al [Ros89] proposed algorithms to shootdown TLB entries.

The synchronization of threads on different processors is supported by symmetric mul-
tiprocessor hardware with a series of atomic or memory ordering instructions.
Typically load-store based multiprocessor architectures support an instruction that
stores a link between the processor and the memory location it reads (Load-1linked).
A conditional store operation tests whether in between the time from loading the
memory to storing it, another processor modified the data in memory. If this is the
case, the store fails. Otherwise, the memory location is updated atomically and the
store-conditional operation succeeds.

Other processors typically offer a set of atomic read-modify-write instructions such as:
test-and-set, fetch-and-add, swap and compare-and-swap.

With those operations, more complex synchronization primitives can be implemented
in software.
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2.4 Recursive Virtual Address Space Model

Traditionally, a virtual address-space is manipulated by modifying the virtual to phys-
ical address translations in the page tables. The kernel, however, has to be the only
entity in the system, that has direct access to this data structure. Otherwise, protec-
tion policies could not be enforced.

On the other hand, implementing virtual memory management and protection policies
inside the kernel restricts the system to only a few policies. Those are potentially not
optimally suited for any kind of subsystem or application envisaged to run on top of
the kernel.

An implementation of virtual memory management and protection policies at user level,
makes it possible to implement best suited policies for all subsystems or applications.
Direct manipulation of the page tables by user-level memory-managers, however, can-
not be allowed. Instead, we have to demand for different solutions to manipulate virtual
address spaces outside the kernel.

To securely manipulate virtual address spaces at user level, Liedtke has proposed a
recursive construction-scheme of virtual address spaces: the Recursive Virtual Address
Space Model.

The key idea of this model is to construct an address space recursively by providing
it access to the memory of the constructing address space. The important restriction
is, that access may only be given to those page frames, the constructing address space
itself has access to. To achieve this, virtual pages are used as parameters for those
operations modifying address spaces. The frames operated on, are retrieved by looking
up the page tables of the source address-space.

The recursion is initialized by constructing an initial address space called og. This
address space has an idempotent mapping to all physical memory, except to those re-
quired by the kernel.

The Recursive Virtual Address Space Model allows to construct and manipulate address
spaces with the following three operations: map, grant and unmap. We refer to those
operations as address space modifiers.

2.4.1 Map

Any thread of an address space — the mapper — can map any of its pages to another
address space, provided that a thread in the target address space — the recipient —
agrees. Afterwards, the mapped page frames are accessible in both address spaces (see
Figure 2.6).

It is important to note, that access rights cannot be elevated. The page is mapped into
the target address space with the minimum of the rights specified by the mapper and
the rights the mapper possesses itself.
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Figure 2.6: A page p is mapped from address space o4 to op. Afterwards, p is accessible
i both address spaces.
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Figure 2.7: A page p is granted from address space o4 to op. Afterwards, p is accessible
i op, but no longer in o4

2.4.2 Grant

As with map, any thread of an address space can grant any of its pages to another
address space, provided an agreement of the recipient. The granted pages are removed
from the granter’s address space and included into the target address space (see Figure
2.7).

Again the pages are made accessible in the target address space with the minimum of
the access rights specified and the access rights the granter had to the page, prior to
removal.

2.4.3 Unmap

Any thread of an address space can unmap any of its pages. Afterwards, the access
rights, specified in the unmap operation, are revoked from all address spaces that di-
rectly or indirectly received the page from this thread or from any thread in the same
address space (Figure 2.8). A revocation of all access rights from a page results in
removing that page completely .

Note, the unmap operation guarantees, that the access rights are revoked by the time, the unmap
operation returns. It is up to the implementation, when exactly the rights are revoked during the
unmap operation, as long as it does not return from the unmap operation as long as a derived mapping
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Figure 2.8: A page p is unmapped from all address spaces that directly (ocp, oc) or
indirectly (op) received it from o 4. Afterwards, p is no longer accessible in o, oc and

op-.

Unmap does not require explicit agreement of the address spaces the pages are revoked
from. Nevertheless, the operation is safe because it is restricted only to owned pages.
Upon accepting a page mapped or granted, the receiving thread, implicitly agrees on a
potential revocation.

With a special case of unmap, a thread can revoke access from the pages in it’s address
space as well. We call this special case inclusive unmap.

The number of pages to be revoked with unmap cannot be controlled by the thread
executing the unmap operation. It can control the number of direct mappings — those
pages are mapped by threads in it’s address space. However, it has no control on the
number of indirect mappings because with receiving a page, the receiver gets as well
the right to go on mapping it 2.

exists that still has an access right that was revoked. By the time unmap returns, no derived mapping
has an access right that was revoked by the unmap operation.

2The Recursive Virtual Address Space Model does not limit the number of derived mappings. One
way to extend the model is to add a quota to each page mapped. In the following we briefly present this
solution. However, a complete discussion of appropriate mechanisms to limit the number of derived
mappings is out of the scope of this thesis.
The number of derived mappings can be limited by adding a quota to each page mapped. This quota
limits the number of mappings that can be directly or indirectly derived from this page. As with access
rights, the quota of the owned page limits the number of direct mappings and the quotas handed out.
More precisely, the sum of all quotas mapped plus the number of derived mappings has to be less or
equal to the quota received with the page. Restricting allowed values for the quota to 0 and infinity
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Figure 2.9: The conflicting page p is implicitly unmapped before it is overmapped. This
leads to p being completely removed in the address spaces oa, op and oc. The map
operation of oc results in a “no-op”

The unmap operation has to revoke access from all address spaces that directly or
indirectly received the mapping from a thread in the address space of the unmapping
thread. This number can be large, leading to a long running unmap operation, and the
unmapping thread has no way to limit this number. When executing this operation
non-preemptively, no other thread on this processor can preempt the unmap operation.
Because this includes those threads participated in interrupt handling, interrupt latency
increases by the time it takes to complete this long running unmap. To avoid those
long interrupt latencies, we propose a preemptable implementation of unmap.

2.4.4 Overmap and Fast Overmap

Prior to the mapping or granting of a new page we check whether this new page conflicts
with pages, already mapped in the mappee’s address space. In case of a conflict, we
implicitly perform an inclusive unmap on the old pages.

This operation is called overmapping.

Overmapping avoids cyclic mappings as can be seen in Figure 2.9. The implicit inclu-
sive unmap of the destination area removes the source page that if mapped / granted
would close the cycle. The resulting map / grant operation is a no-op.

The inclusive unmap on overmap, removes the overmapped pages from all address spaces
that directly or indirectly received it from the mappee. In some situations, however,

results in the quota being a map-right. The issues in implementing this quota-based-scheme are: the
bookkeeping and enforcement of the quotas, the choice of appropriate mechanisms to publish the quota
to threads in the address space and the choice of how to react when the quota is exceeded. Further
work is required to explore this and other mechanisms to limit the number of derived mappings.
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this is both unnecessary and too slow. In those cases, a way to increase access to a
page, avoiding the unmap, is preferable. This special case of overmapping is called fast
ovErmapping.

Fast Overmap

Fast overmap® is a special case of overmapping, avoiding the implicit unmap. Access
rights can be extended if the very same mapping already exists. This is the case, when:

e the mapper maps from the same address space as the existing mapping,

e the mapper maps from the same virtual source address as the existing mapping,
and

e the mapper maps to the same virtual destination address as the existing mapping

2.4.5 Page Reference Information Retrieval

Some processors, for example Intel’s IA32 architecture [Int02], set reference information
in the page tables — i.e. they store whether a page has been accessed, modified, or the
code in it has been executed. Babaoglu et. al [BJ81] proposes an algorithm simulating
reference bits on architectures without hardware implemented reference information.

Direct access to the page tables cannot be given to user-level applications or subsys-
tems, since otherwise, implementing protection would be impossible. Therefore, the
relevant question is how to provide the subsystems implementing memory management
and protection policies with page reference information.

Possible solutions are:

e not providing page reference information
The Recursive Virtual Address Space Model does not provide page reference
information. Instead, a similar algorithm as proposed by Babaoglu et. al has to
be applied to simulate reference information when mapping the page.

e g system-call reads page reference information
To retrieve the information whether the page was referenced (R), written (W) or
executed (X) by any thread of an address space that directly of indirectly received
the page, a system-call reads and resets the page reference information. Because
of the required traversal of all derived mappings, we combine this system-call with
the unmap operation. Upon traversing the pages, access is to be revoked from,
the unmap operation reads and resets the referenced bits from the page tables

3Fast overmap and Reference information retrieval are extensions to the recursive virtual address
space model.
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and returns the result. Unmap can be configured to revoke no right. In this case,
only the reference information is read and reset.

In a deep hierarchy of subsystems, the first solution may lead to high overhead due to
repeatedly unmapping and remapping to implement reference information. The trade-
offs of page-reference-information retrieval are the overhead added to unmap, reading
the reference bits, compared to the costs of the additional page faults generated.

2.4.6 Multiple Hardware Page-Size Support

Talluri et. al [TKHP92] investigated the tradeoffs of supporting different hardware
page-sizes in the TLB hardware.

Mapping a large memory object with large pages into an address space increases TLB
coverage. When accessing the large object, fewer TLB entries have to be assigned to
cover the entire memory object. The chance of a TLB hit increases as well, because a
larger area is covered by the large page. The likelihood of having a valid translation
cached from a previous access increases.

On the other hand, allocating the memory object in physical memory such, that it
can be mapped in larger pages is more difficult. A large, free page frame needs to
be found. A second counter argument is the write back granularity. The assignment
of the memory object with larger pages requires to write the memory object back to
secondary storage in a larger granularity, or the lager object has to be split up into a set
of smaller pages and reconcatenated later on. Nevertheless, selecting the appropriate
hardware page-sizes for the appropriate memory objects and applications may increase
overall system performance compared to a system with a single hardware page-size.

Flexpages

Hohmuth et. al [HWL96] propose flezpages (fpages) to generalize from a distinct hard-
ware page-size. Similar to a page, a flexpage is specified by its virtual base address
and by its size, whereas the size is a power of two and at least the smallest supported
hardware page-size. The virtual base address is size aligned.

The Recursive Virtual Address Space Model applies fpages to specify both, the pages to
be mapped, granted or unmapped, and the region of the virtual address space to accept
mappings in (see the L4-User Manual [AH99] for more details).

The following three special cases can occur for the address space modifiers: map, grant
and unmap, when operating on multiple hardware page-sizes: split mappings, united
mappings and partial unmap.
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Figure 2.10: Split mapping out of a large page.
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Figure 2.11: Adjacent mappings are united into a large page.

Split Mappings

Split mappings (Figure 2.12) can result from a map (or grant) operation if the fpage
to be mapped covers only a part of a larger page in the mapper’s address space. The
fpage is mapped with smaller page sizes into the target address-space, however, those
page sizes still have to fit into the fpage.

United Mappings

United mappings (Figure 2.11) unite several adjacent pages in the target address-space
into a large page. The pages as well as the according page frames have to be contiguous
in memory and must have been mapped with the same access rights.

United mappings are not evaluated in this thesis.
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Figure 2.12: Partial unmap of a large page.

Partial Unmap of Large Pages

Revocation of a part of a large page is called a partial unmap. Therefore, the large
page is split up into smaller pages.

Alternatively, instead of splitting up the large page into smaller pages, the entire large
page could be revoked.

Uniting mappings of pages mapped from different threads requires to split up large
pages. Otherwise, one thread can revoke pages mapped by another thread. Guarantees
concerning the presence of the page, the second thread associates with the page, can
be broken by the first. An example for this is the guarantee, not to revoke the page for
a certain time, i.e. to pin the page.

Figure 2.13 illustrates this example: A thread 74 maps a page p, and guarantees not
to unmap it for a certain period of time — p, is pinned. 75 maps p,+1 adjacent to p,
and both p, and p,; are united into pl. A revocation of p,;; resulting in revoking p!,
i.e. the page p, as well, breaks the pinning guarantee.

2.4.7 Fundamental Consistency Requirements

The following consistency requirements have to be met in any implementation of the
Recursive Virtual Address Space Model.

revokability: The revocation of pages p directly or indirectly mapped into an address
space o; has to be possible at any time.
Otherwise, the page cannot be revoked, for example to write it back to secondary
storage or to hand it out to another client.
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Figure 2.13: Revocation of a united page with different guarantees associated to its
parts.

restartability: Aborted and not fully completed operations modifying the address
space mapping, have to be restartable.

no privilege elevation: The receiver of a page p must not be able to elevate the
access rights it received p with. The only way to increase the access rights of p
is to request a new mapping of p with increased rights. This implies that the
mapper, that maps the new mapping, itself has sufficient rights.
If a receiver of a page p would be able to extend its access to a page, protection
policies cannot be enforced.

2.5 Mapping Database

The Recursive Virtual Address Space Model proposes a recursive construction of ad-
dress spaces with map, grant and unmap. With those operations, all subsystems can
implement their own virtual memory management and protection policies independent
of other — even untrusted — subsystems. The operations itself, however, have to be
implemented by an entity trusted by all subsystems, i.e. the kernel.

Map and grant can be implemented solely by modifying the page tables. Unmap, how-
ever, requires additional information to revoke access from all directly or indirectly
derived mappings of a page p. It needs the virtual addresses and the address spaces
the page p has been mapped to. This information is stored in a data structure referred
to as the mapping database.

The mapping database contains an entry m for each valid page-table entry of an address
space oy, i.e. for each page-table entry that translates a page p, into a page frame. Given
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Figure 2.14: Map inserts a new node into the mapping-database.

this entry m(p,,o;), the purpose of the mapping database is to find the entries of all
virtual addresses and address spaces, p, has been mapped to. Unmap iterates through
those mapping-database entries and revokes the access from the corresponding pages.

2.5.1 Structure of the Mapping Database

A page p, can be mapped several times to one single address space as well as to many
address spaces. When uniting adjacently mapped pages into a single large page, a page
p), can originate from several pages p,,. Therefore, the mapping database is a graph.
The graph is directed because pages are always mapped form a source address-space
into a target address-space. It is acyclic because overmapping avoids cyclic mappings.

The nodes m(p,, ;) in this acyclic directed graph are the mapping-database entries —
or in the following mappings. They denote an address space o; and a virtual address
of page p,. The mapping node stores sufficient information to find and modify the
page-table entry of the page p, and to invalidate the corresponding entries in the TLBs
of the processors in the system.

Outgoing edges are linked to nodes representing pages and address spaces that directly
received the mapping of p,. Inbound edges are linked to nodes, p, originates from.

The root nodes of the graph are the nodes, denoted to the initial address-space 0. Be-
cause of oy is constructed with an idempotent mapping of virtual to physical addresses,
the op-nodes directly relate to the page frames.

e Mayp inserts a new node for each page mapped into the mapping database graph
and links it as a child to the mapping node of the source page (Figure 77).

e (Grant does not modify the mapping database structure, but modifies the page
and address space information in the mapping node (Figure 2.15).
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Figure 2.15: Grant modifies the existing mapping node only.
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Figure 2.16: Unmap remowves a node from the mapping database if all rights are revoked
from the page.

e Unmap iterates through the subgraph of derived mappings to revoke access from
the corresponding pages. If all access is revoked from a page, the corresponding
mapnode is removed from the mapping database graph as well (Figure 2.16).

With the exception of united mappings, each page originates from exactly one other
page (except the pages of og). If mappings are not wunited, the indegree of all nodes
in the mapping database is 1, except for the root mapping nodes of o¢. The resulting
mapping-database structure is a tree.

2.5.2 Requirements and Constraints
Interface to the Mapping Database

The mapping database offers the following operations as an interface to the database
for the address space modifiers: map, grant and unmap.
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find_map_node (virtual address, address_space) Given the virtual address and
the address space of a page, find map node searches for the corresponding map-
ping node in the database.

find_page_table_entry (mapnode) find page_table_entry returns the correspond-
ing page-table entry given a mapnode.

insert_mapping (parent_mapnode) Inserts a new mapnode as a child of the given
parent mapnode.

remove_mapping (mapnode) Removes the mapnode from the mapping-database
graph.

Iterator (root_mapnode) The mapping database provides unmap with an iterator
interface to iterate through all mapnodes of mappings, directly or indirectly de-
rived from the root mapnode.

find_first_leaf (root_-mapnode) The find first_leaf operation searches for the left
most leaf node of the subtree with root node: root mapnode.
This operation is required only for a post order traversal of unmap. The traversal
path starts at this node. Reasoning for post order traversal is given in the next
section.

Constraints

The following objectives have been committed for the design and implementation of
the mapping database.

space: The mapping database should require as little space as possible.
time: In general the address space modifiers should perform best possible.

preemptability: Long running operations on the mapping database should be pre-
emptable to avoid long interrupt latencies.

recursion: The limited stack size of an in kernel implementation of the mapping
database, demands for iterative instead of recursive algorithms.

consistency of page tables and mapping database: Modifications of page tables
and mapping database have to be consistent. In particular, the three consis-
tency requirements of the Recursive Virtual Address Space Model have to hold:
revokability, restartability and no privilege elevation.

bounded priority inversion: Unbounded priority inversion has to be avoided by de-
sign of the mapping database.

no starvation and deadlocks: The mapping database has to be free of starvation
and must not lead to a deadlock.
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uniprocessor and symmetric multiprocessor systems: The objective of this the-
sis is to provide solutions both for uniprocessor as well as for symmetric multi-
processor systems.
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2.6 Unbounded Priority Inversion

Existing implementations of the Recursive Virtual Address Space Model have lead to
undesired behavior or unnecessary complex behavior such as:

e unbounded priority inversion, or

e long interrupt latencies

Complex helping-schemes have been applied to avoid both.

This section examines circumstances leading to unbounded priority inversion in existing
implementations of the Recursive Virtual Address Space Model and the means that they
apply to avoid that undesired system behavior.

2.6.1 Definition

Priority inversion is the phenomenon that the execution of a higher prioritized thread
is prevented by a lower prioritized thread [SRL90]. Priority inversion is unbounded if
the time of priority inversion is not bounded.

Priority inversion happens if a higher prioritized thread requires a resource held by
a lower prioritized thread. The higher prioritized thread is prevented from execution
until the lower prioritized releases this resource.

The mapping database is such a resource for the address space modifying operations
of the Recursive Virtual Address Space Model: map, grant and unmap.

2.6.2 Unbounded Priority Inversion in Address Space Construction

Map, grant and unmap have to prevent conflicting operations from execution, while they
modify the mapping database and the page tables. Otherwise, the mapping-database
and page-table consistency cannot be guaranteed. If the threads of those prevented
operations are higher prioritized as the thread that prevents them, priority inversion
occurs. Unbounded priority inversion occurs if the time the higher prioritized threads
are prevented from execution is not bounded.

In this thesis orthogonality of scheduling and address space construction is assumed.
The Recursive Virtual Address Space Model should not influence scheduling decisions
— in particular priority assignment. Conversely address space construction should work
independently of the priorities of the participating threads. In particular, a mapper
should be able to map to a mappee of any priority, i.e. whether this mappee has a lower
or higher priority than the mapper. In any case, the mapper must be able to unmap
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this page at any point in time.

It is particularly complicated to bound the time of priority inversion, if a preempted
operation prevents higher prioritized operations from execution. For example by hold-
ing a lock. This is because we cannot assume, that the lock-holder is scheduled again
to release the lock.

In existing implementations two solutions have been applied to solve this problem. The
first is to roll forward the operation to completion. The second solution is to “help”
out the operation that blocks higher prioritized operations.

Mapping database operations, mapping, granting or unmapping multiple pages can be
preempted after completing with a single page. The Recursive Virtual Address Space
Model does not require to order those operations. A multi-page operation therefore
can be seen as multiple single-page operations.

Mapping or granting a single page to a target address-space requires to modify only a
few nodes in the mapping database. Map inserts a new node, grant modifies the node
of the granted page. Those operations can be rolled forward to completion without
delaying interrupt handling for a long time. A potential priority inversion caused by
those operations is bounded because they are non-preemptively executed to completion.
A single page unmap, however, has to revoke access from a potentially large number
of pages of the derived mappings. A roll forward of the entire unmap operation may
result in long interrupt latencies. Therefore, unmap should be preemptable. To avoid
inconsistencies while processing a single node, we assume, that unmap is rolled forward
for the time it takes to process this node. Even then, unmap might cause unbounded
priority inversion as it is shown in the next section.

2.6.3 Unbounded Priority Inversion of Preorder Unmap

Common to all existing implementations of the Recursive Virtual Address Space Model
is a preorder traversal of the mapping database tree for the unmap operation. Un-
bounded priority inversion occurs, when a lower prioritized unmap operation prevents
a higher prioritized mapping database operation from execution by holding a resource
required by the higher priority operation. Note, a lower prioritized single page map
and grant cannot cause unbounded priority inversion if rolled forward to completion.
Because of the roll forward, the time is bound that map or grant potentially blocks the
unmap operation.

Even if the lower prioritized unmap can be implemented to release all its resources
before being preempted, unbounded priority inversion may occur in the presence of a
higher prioritized unmap. The following example illustrates this situation (Figure 2.17):
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Figure 2.17: Situation of unbound priority inversion of concurrent unmap operations.
The dashed lines mark the traversal path of the unmap operation.

We assume that the unmap operation can be preempted after operating a single map-
ping node, i.e. after revoking access from the page that corresponds to this mapping
node. At this time, all resources held by unmap are released. Further, we assume a
pre-order traversal of the subtree D of the mapping database to process.

A page p is mapped from address space o4 to o and o¢. o¢ further mapped it to op
and op continued mapping the page, resulting in a large subtree with root map node
d.

A thread 74 in address space o4 starts to unmap p. 74 manages to remove pp in op
and pco in o¢ before it is preempted. Next, a higher prioritized thread 7¢ in address
space oc unmaps pc.

Because the mapnode ¢ has already been removed from the mapping database, 7¢ is
no longer able to revoke the subtree D with root-mapnode d directly. Instead it has
to wait for 74 to be rescheduled and complete its operation. Priority is inverted. The
priority inversion is unbounded because we do not require the scheduler to reschedule
T4 in a limited time again.

The following solutions to avoid unbounded priority inversion in this scenario have been
implemented:

1. Unbounded priority inversion is avoided if we would immediately return from 7¢’s
unmap operation, i.e. not waiting for 74 to complete. This, however, violates the
revokability requirement, since D can no longer be revoked by 7¢.
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Figure 2.18: Generalization of the situation of unbound priority inversion of concurrent
unmap operations to other traversal methods.

2. In the Fiasco p-kernel the thread 7 donates its timeslice to 74 to help it out of
the unmap operation, i.e. to complete the processing of the subtree D.

3. Other implementations (for example the x86 assembler implementation L4-Orangepip)
execute 74’s unmap operation to completion, i.e. unmap is implemented non-
preemptively. This may result in long interrupt latencies if the subtree D is
large.

If instead of 7¢, a thread 75 in o would unmap pg, the problem does not show up.
This is the case because there are no derived mappings from the mapping node b.
The fundamental difference, causing the problem for 7¢, but not for 7p, is that the
preemption of 74 leaves behind the subtree D of derived mappings. This subtree D
cannot directly be reached by 7¢, and it is large, so that rolling forward 74’s operation
leads to long interrupt latencies.

2.6.4 Generalization

Unmap has to iterate through all mapnodes m(p,, o;) of the subgraph of derived map-
pings. For each of those nodes processed, access is revoked from the page corresponding
to it by modifying the page-table entry. For an arbitrary traversal tough the tree, the
following condition holds: Before processing the mapping node m(p,,o;), i.e. before
revoking access from the page p,, access from the pages of k of its child nodes has been
revoked before, [ child nodes remain to process afterwards (see Figure 2.18).

In a pre-order traversal of the tree, & = 0 for all mapnodes. All child nodes are pro-
cessed after the parent node m has been processed.

It is possible to construct a scenario with a similar effect as described above for any
traversal order that has a node m(py,,o;) with [ > 0. The constraints for this scenario
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are that a subtree similar to the subtree D exists that is derived from m. This subtree
has to be sufficiently large to cause long interrupt latencies when rolling forward the
unmap operation. Furthermore, it has to be linked to one of the I child nodes that have
not been processed yet. After revoking m, this subtree D is no longer reachable by a
thread in o; Unbounded priority inversion does occur if the priority of the preempted
unmap is lower than the priority of the thread in o;, unmapping m.

A traversal order with [ = 0 guarantees, that all derived mappings in the tree remain
reachable. This is because the following condition holds for all mapping nodes: before
revoking access from the page of node m, all child mappings and grant child mappings
have been processed before. The traversal method with [ = 0 for all mapping nodes is
called post order traversal.

2.6.5 Helping

The technique of helping [SRL90,HHO1] has been proposed to avoid unbounded priority
inversion. A lower prioritized thread blocking a resource needed by higher prioritized
threads is “helped” to release the resource and therefore to bound the time, priority is
inverted.

This is accomplished by raising the priority of the lower prioritized thread to the prior-
ity level of the waiting threads for the time, it holds the resource. The lower prioritized
thread effectively runs on the priority level of the waiting thread with the highest pri-
ority.

The two most commonly used helping protocols are

e the priority inheritance protocol, and

e the priority ceiling protocol [SRLI0].

Priority inheritance protocol

The key idea of the priority inheritance protocol is that a thread 7; inherits the highest
priority of the threads it blocks by holding a shared resource. The priority of 7; is raised
to that of the highest prioritized thread requesting the resource. When 7; releases the
resource it unblocks the highest prioritized thread it has blocked. After releasing the
resource, 7;’s priority is decreased to its original level.

The priority inheritance protocol bounds the time, priority is inverted. However, it
does not prevent deadlocks. Because of chain blocking, a higher prioritized thread may
have to wait for a long time until it gets the resource.
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Priority ceiling protocol

The priority ceiling protocol has been proposed to avoid chain blocking. The key idea
is to add a ceiling to each resource. This ceiling is the highest priority of all threads
currently blocked on the resource. A thread 7; is allowed to acquire and block a released
resource, if its priority is higher than the ceiling.

When applying the priority ceiling protocol, the highest prioritized thread blocking on
the resource has to wait at most until the current holder releases it. The priority ceiling
protocol prevents deadlocks.

Wait-free locking with helping

Hohmuth et. al [HHO1] proposes a wait-free, i.e. non-blocking starvation free, locking-
with-helping scheme. Each resource is protected by a lock. The lock is complemented
by a helper stack. When a thread 7 requests the resource and finds it locked by a
thread 74, it inserts its thread control block on the top of the helper stack. Next, it
helps 74 to free up the resource and to release the lock by donating its timeslice to it.
T4, when releasing the lock, donates the resource to the thread that is at the top of the
helper stack.

Compared to donating priorities along a FIFO wait queue, the stack guarantees a LIFO
processing of the waiting threads. When requiring that only one thread exists per pri-
ority level and that threads are scheduled according to hard priorities, the highest
prioritized thread lands at the top of the stack. Because this thread does not release
the processor voluntarily after entering the stack but donates its entire timeslice to the
lock-holder, it cannot be preempted by a lower prioritized thread. When we further
require, that the lock-holder does not voluntarily release the CPU and does not block,
starvation is avoided.

In the L4 p-kernel, however, those requirements are not given. First, multiple threads
with the same priority may exist. One of those might have entered the stack first, but
may be prevented from ever getting the lock because other threads at this priority level
can get in front of it on the stack. Starvation occurs. Second, .4 supports hand off
scheduling by allowing for a thread to voluntarily donate its timeslice to another one.
With this, a higher prioritized thread can temporarily increase the priority of a lower
prioritized thread by donating its timeslice. If this lower prioritized thread attempts to
acquire the lock while its priority was boosted, it gets on the stack in front of a higher
prioritized thread. Again, starvation may occur if this situation persists. Freeness of
starvation cannot be guaranteed with the wait-free locking with-helping scheme in the
L4 p-kernel without restricting possible scheduling policies and timeslice donation.

To “help” out the lock-holder, the timeslices of the “helping” threads are implicitly
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donated to the lock holder. The scheduler, however, accounts this time to the threads
that donated it instead of accounting it to the lock-holder. To precisely account for
donated time, the kernel has to follow the chain along which the timeslice is donated to
the lock holder. Even in the stack based approach, it has to account donated time to
the lock holder and when this releases the lock, it has to account the remaining times-
lice to the next thread on the stack. Furthermore, it has to provide this information
to the scheduler. Both, the accounting and to inform the scheduler about the results
is complicated to implement. A more direct approach, for example to roll forward the
lock holder is easier to account.

In a multiprocessor system, the scheduler decides on both, the amount of time a thread
is allowed to execute and the processor it executes on for that time. Donating this
CPU-time to a thread on another processor, therefore requires to either migrate the
target thread, or to allow for the donated time to be executed on the other processor
later on. Not all scheduling policies tolerate the second option.

Having to implement a “helping” scheme for those, therefore requires to migrate either
the lock holder or the “helper” to the same processor, such that the “helper” can do-
nate the timeslice it gets to the lock holder to “help” it release the lock.

Hohmuth el. al proposes a priority queue instead of the stack when migrating the lock-
holder or when timeslices can be donated across processor boundaries.

When considering the resident cache working set of the lock holder or of the helper,
frequent migrations and in particular the transfer of this cache working set may be
costly operations. In this situations, having to migrate the lock holder or the helper to
be able to donate the timeslice of the helper may be both too complex to implement
and too slow.

The solutions presented in this thesis attempt to avoid the necessity of having to im-
plement “helping”.

2.7 Summary

This section surveyed the necessary background information to understand the Recur-
siwe Virtual Address Space Model. The important property of this model is that address
spaces can be constructed at user level. Therefore, the model proposes the three ad-
dress space modifiers: map, grant and unmap.

We presented two optimizations: fast overmap and reference-information retrieval with
unmap. Multiple hardware page-size support can lead to split mappings, united map-
pings and partial unmap of large pages.

The mapping database stores directly and indirectly derived mappings to allow a revo-
cation via unmap. It is the fundamental data structure in the implementation of the
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Recursive Virtual Address Space Model.

The problem of unbounded priority inversion in the existing implementations of this
model has been analyzed. We identified post-order traversal of the mapping-database
subtree to process on unmap as a technique to avoid unbounded priority inversion. In
combination with rolling forward parts of the operations that modify address spaces,
this traversal method avoids the necessity to implement “helping”. The problems and
difficulties of those “helping-schemes” have been presented.



Chapter 3

Fundamentals and Related work

This chapter provides a review of related work and surveys the fundamentals this work
is based on.

In this thesis, we will not introduce to tree and graph theory, but assume the reader
is familiar with its terminology. Please refer to [Knu97, Section 2.3, pp 308ff] for more
details.

3.1 Existing Implementations of the Recursive Virtual
Address Space Model

Liedtke [Lie95] proposed the Recursive Virtual Address Space Model and first imple-
mented it in the L4 p-kernel. Since then, slightly differing variants have been imple-
mented in the different kernel versions and ports.

3.1.1 The p-kernel Approach

The p-kernel [ABB*86,KN93,ARS89,Lie95,Hil92] is one approach to decrease the com-
plexity of todays operating systems. The key idea is to externalise any policy from the
kernel [Lie96] into protected servers executed at user level.

While in p-kernels of the first generation such as Mach, Spring, Chorus only few oper-
ating system concepts were deferred into user-level servers, such as paging for example,
the second generation p-kernels such as L4, were build on the concept of minimality.
Only those functionalities are accepted in the u-kernels, that cannot be implemented
in user-level servers.

47
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3.1.2 L4 p-kernel

The L4 p-kernel was developed at the Universitat Karlsruhe, at IBM and at the GMD.
It provides only three abstractions: threads, address spaces and inter process commu-
nication (IPC). Threads execute the program code within the context of an address
space. Communication across address space boundaries has to be via inter-process
communication or shared memory.

The Recursive Virtual Address Space Model and the three address space modifiers:
map, grant and unmap are applied for construction and modification of address spaces.
Thereby, map and grant are implemented as a special form of inter process communi-
cation. When a thread raises a pagefault, the fault is captured by the p-kernel and
translated into an TPC message to the thread’s pager. This pager is can resolve the
page-fault by replying with a corresponding map-message. After that, the thread will
restart at the faulting instruction.

Inter process communication is synchronous and blocking, i.e. both threads partici-
pated in the communication have to agree to the communication, the corresponding
other thread blocks when this agreement is still outstanding. The L4 p-kernel knows
short and long copy messages, thereby short messages are guaranteed not to raise page
faults. As mentioned above, map and grant are implemented as a special form of TPC.
Instead of copying data, memory pages are transfered. As far as known to the au-
thor, the L4 u-kernel currently achieves the best IPC performance compared to other
p-kernels.

The L4 p-kernel schedules threads in a prioritized timslice-based round-robin fashion.
The parameters for this scheduling can be set by user level scheduling servers. In
addition to that, the L4-API supports hand-off scheduling. A thread can donate its
timeslice to another thread.

3.1.3 Implementations of the Recursive Virtual Address Space Model

The approach presented in this thesis relates to work presented in other implementa-
tions of the Recursive Virtual Address Space Model in the L4 pu-kernel.

As already mentioned in Section 2.6.3, common to all existing implementations is that
unmap traverses the subtree of derived mappings in pre-order. Three different repre-
sentations of the mapping-database tree are in use:

o left-child, both-siblings
This representation connects the nodes of directly derived mappings in a doubly
linked list, the sibling list (see Figure 3.1). The left-child link points to the head
of this list. The two sibling links at the end of the list point back to the parent
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Figure 3.1: Left child - both siblings

node!. This data structure is in used for L4 Orangepip [Lie95], L4 Mips [Hei01]
and in L4 Alpha [Uhl98].

o pre-order doubly-linked list

The mapping-database tree is sorted in a depth first search manner and the result
is stored in a doubly-linked list. Each node in the list is complemented by a
depth field, storing the distance of the node to the root of the tree. This data
structure has been applied for L4 Hazelnut [DSU]|, L4 Pistachio [Tea] and for
Calypso, a modified L4 Mips p-kernel [Szm99]. The pre-order doubly linked list
is identical to the LL structure we propose, except for the parent-link and that
LL is traversed post-orderly.

e pre-order sorted array
The Fiasco p-kernel [Hoh98,HHO1] is a realtime capable implementation of the L4
API. Similar to pre-order doubly linked list the mapping database in Fiasco stores
the result of a depth first search through the tree. However, instead of storing the
result in a doubly linked list, it stores the mapping nodes in arrays. Differently
sized arrays are allocated on demand, an insertion or deletion of nodes, and the
reallocation of a different sized array, however, requires copying parts of it.

As shown in Section 2.6.3 without helping or rolling forward, a pre-order traversal of
the mapping database tree on unmap can lead to unbounded priority inversion.

3.2 Synchronization

In order to ensure the consistency of the page tables and the mapping database, con-
current operations have to be synchronized.

Traditional techniques to ensure mapping database consistency are to disable the in-
terrupts. On a uniprocessor system, this leads to executing the mapping database

!Tree theory calls those links “threads”. To not confuse the reader when talking about the execution
entity thread, we omit the use of this term for the links.
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operations non-preemptively. On a multiprocessor system, the disabled interrupts are
complemented by locks protecting the mapping database.

This section surveys state-of-the-art synchronization techniques.

3.2.1 Overview of Synchronization Techniques

Several different algorithms and techniques have been proposed to ensure data structure
consistency. Multiprocessor synchronization-techniques can be classified as follows:

Blocking synchronization protects critical sections with a lock. The lock prevents
all other threads but the lock holder from entering the critical section. Those
threads are blocked. The time, the lock is hold depends only on the lock holder
and its ability to free the lock. The other, blocked threads cannot speed up this
time. In particular, when preempting the lock holder, an undesirable performance
degradation can be seen.

Non-blocking synchronization has the important property, that it does not block
other threads. Non-blocking synchronization comes in two flavors: wait free and
lock free.

Wait-Free Synchronization

Wait-free synchronization [ARJ97, Her91] can be thought of as locking, with helping
replacing blocking. When a higher prioritized threads 7;, detects, that the critical sec-
tion is blocked by a lower prioritized thread 7;, 75, helps out 7; by donating its priority
and timeslice to 7; for the time it blocks the critical section.

In addition to that, wait-free synchronization guarantees the freeness of starvation?.
The wait-free locking-with-helping scheme is one such wait-free synchronization-technique.
It is used to protect the mapping database in the Fiasco p-kernel (see Section 2.6.5).

Lock-Free Synchronization

Lock-free synchronization [Val95, MS96, GC96] works completely without locks. Up-
dates are prepared off line and atomically swapped into the lock-free data-structures.
The swap fails if a conflicting update is detected. In this case, the whole operation is
restarted.

The implementation of lock-free synchronization relies on an atomic multi-word com-
pare and swap mwcas operation. This operation atomically exchanges multiple memory-
words if the check succeeded. Anderson et. al [ARJ97] propose a technique to implement
the mwcas operation in priority-based systems. Other techniques have been proposed

2Some authors apply the term wait-free synchronization for lock-free synchronization techniques
that are starvation free. We require only freeness of starvation.
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to implement mwcas with atomic single word compare and swap operations cas as they
are provided by many symmetric multiprocessor systems.

Valois [Val95] investigated the lock-free implementations of the most common data-
structures such as linked-lists, stacks and heaps.

3.2.2 Locking policies

Many locking policies have been proposed, that differ in their performance depend-
ing on the level of contention. The most common locking policies are variants of the
test-and-set-lock [And90]. The test-and-set-lock shows the best performance for non-
contended systems, however, its performance decreases in higher contended systems.
The test-and-test-and-set-lock first tests whether the lock is free, before it attempts to
atomically acquire it with a test-and-set operation.

Mellor et. al proposed the MCS-lock [MCS91a] to achieve a better performance in higher
contended cases. Each thread atomically enqueues a list-item containing a lock variable
and then spins on this lock variable locally. When releasing the lock, the lock holder
dequeues its list item and hands over the lock to the next thread in the list by setting
the lock variable of the next list item.

Fu et. al [Fu97] further optimized the MCS-lock for high contention cases by apply-
ing tree combination techniques to scale up the performance of the enqueue-operation.
Threads enqueue list-items into lists at the leafs of a tree that contain only processor
local lock-requests. The lists are then merged with the lists of neighboring tree nodes
and propagated upwards. Once its token is in the list of the root, the lock is donated
as described for the MCS-lock.

Lim et. al [LA94] proposes a mechanism to detect the contention level of a lock and
switch between the locking policies best suited for this contention level. A high con-
tended test-and-set-lock having observed several failed atomic test-and-sets, will switch
for example to MCS.

Multi flavor locks, for example the reader-writer lock [CHP71, MCS91b] allow for par-
allel execution of operations of one flavor (the readers) but guarantees for mutual ex-
clusion to the different flavors, i.e. the writers. In fact, concurrent writers are mutually
excluded as well.

3.2.3 Uniprocessor Synchronization

Uniprocessor synchronization is simplified by the fact, that avoiding preemption during
the execution of an operation makes this operation atomic.
Frequently disabling and reenabling interrupt processing is a costly operation on mod-
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ern processor architectures. It pessimistically enforces an atomic execution, even if no
preemption occurs. Bershad et. al [BRE92] and Druschel et. al [MDP96] propose an
optimistic approach to guarantee atomic execution of operations. When a preemption
event occurs, the operating system checks whether the currently executing thread is
in a critical section. If this is the case, it switches back to this thread allowing it to
complete its critical section atomically. After this thread completed the critical section,
the operating system resumes and processes the preemption event.

3.2.4 Scheduler-Conscious Synchronization

Scott et. al [KWS97] proposed a combination of roll forward techniques and locking:
scheduler-conscious locking. The scheduler-conscious-lock algorithm detects and reacts
on preemption events. With acquiring the lock, the lock holder signals the kernel not
to preempt it. Instead, it is rolled forward until it releases the lock. If in the mean
time, a preemption event occurred, the lock holder detects this situation and voluntarily
releases the processors by performing a yield operation.

3.3 Summary

This section introduced work, the approach presented this thesis relates to. In par-
ticular, existing implementations of the Recursive Virtual Address Space Model and
synchronization techniques have been surveyed.

In the next section we present our approach, a preemptable mapping database that is
free of unbounded priority inversion.



Chapter 4

Mapping-Database Design

This chapter presents the design of a preemptable, unbounded priority inversion free
implementation of the Recursive Virtual Address Space Model. A fundamental part of
this is the design of the mapping database, the data structure used to implement the
address space modifiers: map, grant and unmap.

The important issues are:

e Choice of mapping-database representation

e Methods for concurrency control and data-structure consistency

Preemptability

Guaranteed Progress

Support for multiple hardware page-sizes

e Cost of address space modifiers

Because of their complexity, united mappings are not discussed in this thesis. Further
work is required to examine the benefits and costs of unification.

The next sections present the design for a single hardware page-size mapping-database.
In particular it examines:

e the mapping tree representing structure,
e methods for concurrency control and to ensure data-structure consistency, and

e techniques to guarantee progress.

Multiple hardware page-size support is deferred to Section 4.4. Section 4.5 sums up
the mapping-database design and outlines open issues.

o3
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v virtual address
o; address space
PTE page table entry link
‘ D derived mappings ‘

Table 4.1: Content information stored in the mapping node.

4.1 Mapping-Tree Representation

In tree and graph theory, many different representations of trees have been proposed and
analyzed. This section identifies the requirements of the data structure representing the
mapping-database tree and proposes three representations: LL, LL-Tree and LL-O1.

4.1.1 Mapping Node

The purpose of the mapping nodes in the mapping-database tree is to locate and mod-
ify the page-table entries of directly and indirectly derived mappings. They store the
following information (see Table 4.1):

The virtual base address v of the page p, and the address space o; are required to
locate the page-table entry (PTE). Furthermore, they are required to invalidate TLB
entries to make modifications to this page-table entry effective.

To avoid the page-table lookup in order to find the page-table entry, a direct pointer
to the PTE can be added to the mapping node — trading space for the time required
for the lookup. The above information is referred to as content of the mapping node.
In addition to that, the mapping node has to store structural information. This in-
formation is used by the unmap operation to iterate though the subtree of derived
mappings. The structural information stored in the mapping node is dependent on the
representation of the tree.

Side Entry Link

When a page p, is mapped, granted or unmapped from a thread in address space o;,
the corresponding mapping-database node m(p,,o;) needs to be found. This can be
done by linearly searching the mapping database tree with the root node sy. Thereby,
sy is the og-mapping-node that corresponds to the frame f, p, translates to. To avoid
the linear search of the mapping database, Uhlig [Uhl98] and Skoglund et. al [DSU]
proposed to store direct links to the mapping nodes in the page tables.

4.1.2 Requirements

In Section 2.5.1 we introduced the modifications of the address space modifiers on the
mapping-database tree.



4.1. MAPPING-TREE REPRESENTATION 95

Mayp inserts a new mapping node n and links it as a child node to the source mapping-
node m.

Grant does not modify the mapping database tree. Instead, it modifies the content of
the source mapping-node.

Unmap iterates through the subtree of derived mappings and revokes access from the
pages corresponding to the mapping nodes in this subtree. If all access is revoked from
a page, the page and the corresponding mapping node are removed. In the Sections
2.6 and 2.6.4, we showed that unmap has to iterate through the subtree of derived
mappings with a post-order-traversal.

It is interesting to note, that a traversal of directly derived mappings, i.e. of the child
nodes, is not required.

Because of a potentially limited stack size, the representation needs to support iterative
traversal algorithms.

Fast overmap and reference-information retrieval impose additional requirements to
the structure:

Fast Overmap

Access rights can be extended to a page without implicitly unmapping the existing
mapping if the very same mapping already exists. This is when:

1. the mapper maps from the same address space as the existing mapping,
2. the mapper maps from the same virtual source address as the existing mapping,

3. the mapper maps to the same virtual destination address as the existing mapping.

This is the case if the existing mapping of the page p!, at the virtual destination address
v’ in the target address-space o; is directly derived from the mapping of page p, at the
virtual source address v in the source address-space o, i.e. whether the mapping node
n(p},, ;) is a child of the mapping node m(p,, ;). To check the above conditions, we
validate this parent-child relationship.

We may search through the child nodes of m for the mapnode n. This, however,
requires structural support by the tree representation to iterate through directly derived
mappings.

Alternatively, we may start at the child n and look for the parent mapnode m. A
parent-link allows to perform the fast overmap check directly by comparing the m to
the node pointed to by n’s parent-link.
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(a) before unmapping (b) after unmapping (c) with reference cache

Figure 4.1: Page-reference-information retrieval without and with reference-bit cache.

Reference Information Retrieval

Unmap returns whether the unmapped pages were referenced since they were mapped
or last unmapped by a thread in the same address space as the unmapping thread.
Therefore, the operation reads and resets the page reference information of the tra-
versed mappings.

Figure 4.1(a) shows an example mapping database graph before and after (Figure
4.1(b)) the first unmap revoking write access from derived mappings of p,. Square
brackets show the access rights associated with the pages, the mapping nodes corre-
spond to. Angle brackets show the page reference information. A subsequent unmap
for example starting from node b would find the reference bits cleared, though d has
been read, since it was last mapped or unmapped by a thread in op.

As the example in Figures 4.1(a) and 4.1(b) shows, reading and resetting the reference
bits is not sufficient to provide page reference information in a hierarchy of memory
servers. A server that is higher up in the hierarchy resets the reference bits with unmap
as illustrated for a memory server in 0 4. Underlying memory servers in op and o¢ will
find the reference bits reset, though the page has been accessed and modified. Even
worse, memory servers can prevent servers that are higher up in the hierarchy from
reading the appropriate reference information. Assume that both, a thread in op and
a thread in o¢ inclusively unmaps py and p.. The result of those operations is the same
as the unmap of p, in Figure 4.1(b) except, that the reference information is reset and
a subsequent unmap of p, by a thread in o4 will return that the page was not read or
modified. The retrieved page reference information is wrong and therefore useless.
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To solve this problem, page reference information needs to be saved for subsequent
unmap operations before the reference bits are reset in the page tables. We propose to
cache the page reference information in the mapping node. Unmap reads and resets the
reference bits from the page tables. It logically ORs those bits with the cached page
reference bits and returns the ORed reference bits read from all page-table entries tra-
versed, including the cached values. To avoid that reference information gets lost when
removing a node, the content of the cache is propagated upwards the tree. Figure 4.1(c)
shows the result after the unmap operation revoking write access from p,. The page
reference cache of b (the content of the cache is denoted by curly brackets { }) caches the
reset reference bits. The subsequent unmap of p, returns that p, has been accessed {R}.

The page reference cache is propagated to the parent. A parent-link allows for an
efficient propagation of page reference information.
Mapping Node Reallocation

Mapping-node reallocation changes the memory location, a mapping node is stored
in. Usually mapping nodes are allocated once the corresponding page is mapped not
reallocated until they are deallocated when the node is removed by unmap. In certain
situations such as:

e kernel-memory management,
e kernel-resource accounting, and

e inside kernel cache management,

A reallocation of mapping nodes might be beneficial.

Reallocation of mapping nodes requires to update all inbound links that point to the
mapping node. In general, reallocation is not possible for representations that derive the
position of the mapping node in the mapping-database tree from the memory location
the node is allocated to.

Summary of the Requirements

To sum up the requirements, the tree representation has to support the following op-
erations:

e insertion of new mapping nodes,
e deletion of mapping nodes,
e post order iteration of the subtree of derived mappings,

e find parent, and optionally
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Figure 4.2: Structure of the mapping database tree representation: LL

e reallocation of mapping nodes.

The find parent operation is required for fast overmap and the propagation of page ref-
erence information. Furthermore, those operations have to be implemented iteratively.

Reallocating of mapping nodes is impossible in tree representations that derive the po-
sition of a node in the tree from the memory location it is stored in. Furthermore, com-
pared to array-based tree representations, we expect to achieve a better performance
with a pointer-based tree representation. Experimental evaluation has to substantiate
this expectation.

In the following section, we will introduce three pointer-based tree representations: LL,
LL-Tree and LL-0O1.

4.1.3 Representations

The LL representation is motivated by the pre-order doubly-linked list, used to rep-
resent the mapping-database tree in the L4Ka Hazelnut [DSU] p-kernel. LL-Tree and
LL-0O1 are proposed to overcome the shortcomings of simple LL.

LL

LL stores the nodes of the mapping-database tree in a post-order sorted doubly-linked
list. Figure 4.2 shows an example of a mapping-database tree stored in the LL repre-
sentation.

LL has three pointers (see Figure 4.3): the map-link, the unmap-link and the parent-
link. The map-link and the unmap-link are the opposite pointers of the doubly linked
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parent link
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l\'\_ unmap link
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map link

Figure 4.3: Pointers of LL

list. The parent-link points directly to the parent mapping node, the node originates
from.

In addition to those three pointers, each mapping node is complemented with its depth.
The depth of a node is the distance of the mapping node to the root node of the tree.
Mapping nodes that correspond to derived mappings of a node n have a depth that is
greater than n.

Starting from the node n, the map-link can be followed to iterate through those derived
mappings in a pre-order direction. Conversely, when starting at the left' most leaf node
of the subtree with root node n, the subtree can be traversed in post-order direction
by following the unmap-link.

The root node of the tree is the op-mapping-node. Because oy is constructed to have
an idempotent virtual to physical mapping, this og-mapping-node directly corresponds
to a frame f. The mapping nodes m(p,, ;) of any page p, in any address space o; that
translates to the frame f are connected in this tree. The oyg-mapping-node, thereby is
stored at the tail of the doubly-linked list.

Map inserts a new node n into the tree and links it as a child to the source mapping
node m. In LL this requires the following pointer updates in the data structure (see
Figure 4.4):

The parent-link of n is linked to m. The depth of n is set to the depth of m plus one,
i.e. n is directly derived from m and it is one level further away from the root as m
is. After that, n is inserted into the doubly linked list in between the node m and the
node o, m’s map-link points to.

Unmap when revoking all access rights from a page of a mapping node n removes n
from the doubly linked list of LL (see Figure 4.5). Therefore it links the unmap-link
of o to the node, n’s unmap-link points to: m. Furthermore, it links m’s map-link to
the node n’s map-link points to, i.e. 0. Because unmap processes mapping nodes in

L«Teft” means in the direction of the head of the list. In Figure 4.2 this node is drawn left from the
root node of the subtree.
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Figure 4.4: Map inserts the new mapping node n into the LL structure as a child of
node m.

post-order direction, derived mappings of the node n have already been processed.

find first leaf:

Starting from the left most leaf node in the subtree to process, unmap can traverse the
subtree to process in post-order direction by following the unmap-link. The problem
that remains is how to find this left most leaf node, i.e. the first leaf node to start the
traversal from.

The first leaf node is the left most node in the doubly linked list that has a depth that
is greater than the depth of the root node. It can be found by following the map-link
and comparing the depth of each node traversed to the root node.

The find first leaf operation has to traverse the entire subtree of derived mappings in
order to find the leaf node to that the unmap-traversal from. Therefore, the number of
nodes that have to be referenced to find the first leaf is order (N), whereby N is the
number of nodes in the subtree.

fast overmap and reference-information retrieval:

Fast overmap requires to validate the parent-child relationship of two mapping nodes.
Page-reference-information retrieval requires to propagate page reference information
to the reference bit cache in the parent mapping node. As already explained above, the
parent-link of LL supports both operations efficiently. When choosing not to provide
fast overmapping or page reference information, the parent-link can be omitted from
the LL representation.
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Figure 4.6: Reallocation of mapping nodes in the representation LL

reallocation:

Mapping node reallocation does not modify the position of the node to reallocate in the
tree, however, we have to update the pointers that are linked to the reallocated node
n to point to the new memory location, n is reallocated to. In LL this requires the
following updates (see Figure 4.6):

n is linked into a doubly linked list, therefore the inbound map-link of the next node
and the inbound unmap-link of the previous, i.e. left, node needs to be updates. Those
nodes are directly pointed to by n’s unmap- and map-link.

In addition to that, the child nodes of n point to n with their parent-link. To update
those, we have to iterate through all the child nodes. This is accomplished by follow-
ing the map-link as long as the depth of the node traversed is greater than the depth of n.
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Reallocation has to traverse the subtree of derived mappings in order to update in-
bound parent-links. This requires to traverse a number of nodes in the order (N) - N
the number of nodes in the subtree. The update of the inbound map- and unmap-link
adds two more nodes to traverse to this number. Therefore, reallocation of mapping
nodes in LL is in the order (N).

space:
LL needs to store three pointers in the mapping node: the map-link, the unmap-link
and the parent-link. In addition to that, it has to store the depth of the node.

Compared to other pointer based structures, LL requires the fewest pointers to be
stored and updated. However, finding the first leaf node in LL is order (N).

The following representations: LL-Tree and LL-01 are modifications of LL. They opti-
mize the number of nodes that have to be traversed to find the first leaf node by adding
additional pointers to the data structure.

Before proceeding with LL-Tree and LL-O1, we compare the post-order traversal of
operation oriented and tree oriented structures.

Tree vs. Operation Oriented

The tree representation of the mapping database have to support post-order traversal
of the subtree of nodes to process on unmap. Map and unmap, however, do not re-
quire to traverse the child nodes directly. This allows for two alternative representation
methods: tree-oriented representations and operation-oriented representations.

A tree-oriented structure, we call a representation of a tree that links a node related
to its parent and children. Left child - both siblings is an example for a tree-oriented
structure (see Figure 3.1 in Section 3.1).

Operation-oriented structures not necessarily support direct links to child nodes. In-
stead, operation-oriented structures have direct links for the traversal path taken. LL
is an example of an operation-oriented tree-representation.

In the two Figures 4.7 and 4.8 we compare tree-oriented structures with operation-
oriented structures. Those Figures show the post order traversal path required by
the unmap operation (dotted arrows): From the page of mapping node a, two direct
mappings and four indirect mappings with an indirection of one level and eight with
two levels of indirection have been derived. Figure 4.7 shows the post order traversal
path for a tree-oriented representation (dashed arrows denote the additional links that
have to be followed when traversing a tree-oriented structure). Figure 4.8 shows an
operation-oriented representation.
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Figure 4.7: Traversal of a tree oriented representation on unmap. Dotted arrows show
the post order traversal path. Dashed show the additional links that have to be derefer-
enced to follow this path.

Figure 4.8: Traversal of an operation oriented representation on unmap.

The first leaf node this post-order traversal-path starts from is the node h.

The tree-oriented traversal algorithm removes h, its sibling ¢ and the parent d. Next it
finds d’s sibling e that has derived mappings. The tree-oriented traversal algorithm has
to traverse down this subtree to find the leaf j, then £ and finally e. Completed with
b’s subtree, b can be removed but progressing with ¢ requires to traverse down to f and
[ before being able to remove [, m, and f. A last time, the tree-oriented algorithm has
to search for n before removing n, o, g, and finally ¢ (and a if it was a inclusive unmap
operation).

An operation-oriented traversal algorithm omits the intermediate searches for leaf nodes.
Instead the traversal path for unmap is explicitly given (see Figure ?7?). Given the first
leaf h, the operation oriented algorithm is able to directly revoke the subtree of a: h,
i,d, 7, k, e, b, [, m, f,n, o0, g, c, and finally ¢ on an inclusive unmap.

To summarize, post-order traversal in tree-oriented representations need to traverse to
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Figure 4.9: Structure of the mapping database tree representation: LL-Tree

the first leaf of any subtree in the subtree of nodes that are processed by unmap. In an
operation-oriented representation, only the first leaf has to be located.

Because of this, operation-oriented representations like LL are preferable, assuming the
first leaf node can be located sufficiently fast. In LL this requires to traverse order (V)
nodes, whereby IV is the number of nodes in the subtree to be processed by unmap.
LL-Tree and LL-0O1 optimize the operation to find the first leaf.

LL-Tree

LL-Tree extends the tree representation LL with two additional pointers to speed up
the search for the first leaf node (see Figure 4.10: a (left-)child-link and a sibling-link.

The child-link of node n points to the left most child node that origins from n. All
child nodes of a node n are connected in a singly linked list. The sibling-link connects
those nodes in the list. Thereby the sibling-link points to the next sibling on the right.
The child-link points to the head of this list.

find first leaf:
Instead of having to traverse through the entire subtree of derived mappings, LL-Tree
can find the first leaf node by following the child-links until the child-link of a node n
points to no further node, i.e. is null. This node n is the first leaf node to start the
post-order traversal from. The child-link makes it obsolete to store the depth in the
mapping node.
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parent linl

Figure 4.10: Pointers of LL-Tree

The number of nodes that have to be traversed in LL-Tree to find the first leaf node is
in the order of the depth of the first leaf node relative to the root node of the subtree
to traverse. With each child-link followed, the find first leaf operation covers one level
of mapping nodes.

The possibility to find the first leaf node faster comes at the costs of updating the
additional pointers. Insertion of nodes on map and removal of nodes on unmap have to
update the child- and sibling-link as follows:

insert node:

A map operation starting from node m, inserts a new node n. In this case we have two
situations: m has no child nodes mapped, or m already has a child node mapped. In
the first case, the child-link of m is set to point to n. In the second case, the sibling-link
of the right most child of m has to be updated to point to n. In this case, prior to
inserting n, the map-link of m points to this right most sibling-node.

remove node:

When removing the left most child n of a mapping node m, the child-link of m needs
to be updated. After having removed n, the new left most child node of m is the right
sibling of n (see Figure 4.11). Therefore, we set m’s child-link to point to the node, n’s
sibling-link points to.

When removing another child node o of m, we do not have to update the child-link.
Instead, the sibling-link of the left sibling needs to be updated. Post order traversal on
unmap guarantees, that all derived mappings of o already have been removed. In this
case 0’s map-link points to the left sibling [. We update [’s sibling-link to point to the
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Figure 4.12: Update of the child-link on mapping node reallocation in LL-Tree

node, 0’s sibling-link points to.

reallocation:

In addition to update the inbound map- and unmap-links, parent-links — the updates
of those pointers has already been described for LL — a reallocation of a mapping node
n in LL-Tree has to update inbound child- and sibling-links. Note, reallocation has to
update either the inbound child-link or the inbound sibling-link, but not both.

If the node n to reallocate is the left most child, the inbound child-link of n’s parent p
needs to be updated (see Figure 4.12).

If n is not the left most child, the sibling-link of the left sibling needs to be updated
(see Figure 4.13). This left sibling [ has to be found by searching for the first leaf ¢;
and dereferencing the map-link of c;.

LL-Tree allows a faster update of the inbound parent-links by iterating through the
linked list of siblings, ¢; and cy. The head of this list is the node, n’s child-link points
to.
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Figure 4.13: Update of the sibling-link for mapping node reallocation in LL-Tree

Reallocation of a mapping node n in LL-Tree requires to traverse order (C'+D) nodes,
whereby C' is the number of child nodes of which the parent-link have to be updated.
D is the depth of the first leaf node relative to the root of the subtree n. The traversal
of those order (D) nodes is required only if the sibling-link has to be updated.

space:
LL-Tree needs to store five pointers in the mapping node: the map-link, the unmap-
link, the parent-link, the child-link and the sibling-link.

Compared to LL, LL-Tree may find the first leaf node faster. However, two additional
pointers have to be updated. LL-Tree trades the space required to store the additional
pointers and the time to update them against the time to search for the first leaf node.

Can we do better in finding the first leaf than order: O(subtree depth) ?

LL-0O1

LL-01 is based on the following observation (see Figure 4.14):

When searching the left most leaf node of a subtree by traversing a first-child list as it
is done in LL-Tree, all subtrees with the root-node in the list (a, b, d, and f) share the
same first leaf node f. The key idea of LL-O1 is to provide a direct link to this first
leaf node: the down-link. This link is stored in the node at the head of this first-child
list: a. Up-links of the other nodes point to this head.

LL-0O1 has the following pointers:

In addition to the map-, unmap-, parent- and sibling-link of LL-Tree, LL-O1 introduces
the down-link and the up-link (see Figures 4.15 and 4.16). The child-link of LL-Tree is
not required.



68 CHAPTER 4. MAPPING-DATABASE DESIGN

Figure 4.14: The left most leaf-node to start unmap traversal from is shared by nodes
in the first child list.

find first leaf:

In the common case, the first leaf node of the subtree of derived mappings with root
node n is pointed to by the down-link of the node, n’s up-link points to. In this case,
the first leaf is found in order (1).

Certain difficulties when removing nodes (see below) might require to traverse a list
of down-links. In the worst case, this results in having to traverse order (D) nodes,
whereby D is the depth of the first leaf relative to the root n of the subtree to process
on unmap.

insert node:

When inserting a new node n as a child of a node m, up- and potentially the down-
links needs to be updated. There are three potential cases: m already has a child
node mapped, m has no child mapped and is a left most child node, or m has no child
mapped but is not a left most child node.

In the first case no updates are required.

In the second case, m’s up-link points to a node o that stores the shared down-link. In
this case, n’s up-link is set to point to this node o and o’s down-link is updated to point
to the new first leaf n.

In the thirst case, m would be the head of the left most child list in LL-Tree. In this
case, we set m’s down-link to point to n and n’s up-link to point to m.

remove node:

When removing the first child node n, the down-link that points to n is updated to
point to n’s sibling node if n has a sibling and otherwise to n’s parent node.

Inclusive unmap operations, preempted unmap operations, and unmap operations that
revoke only a subset of the access rights mapped, might lead to the following anomalies.
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Figure 4.15: Structure of the mapping database tree representation: LL-O1

The following example elucidates this effect (see Figure 4.17):

An inclusive unmap of mapping node b results in node d becoming the common first
leaf of the subtrees with root nodes a, ¢ and d. An inclusive unmap of b, however,
updates a’s down-link to point to ¢, and ¢’s up-link to point to a. ¢’s up-link, however,
still points to c¢ instead to a. Therefore ¢’s down-link has to reference d instead to be
null.

A similar effect results from an unmap operation that manages to remove b, but is
preempted before being able to remove d.

This anomaly effects the performance of finding the first leaf, as shown above.

reallocation:

The difficulty in reallocating a mapping node n in LL-O1 is to update inbound up-
links. This is the case if n’s down-link is not null. The inbound up-links are updated
by dereferencing n’s down-link and traversing through a list that is stretched by the
parent-link. The up-link of each node in the list is updated. The list is traversed, until
n is reached.

The reallocation costs are the same as for LL-Tree, i.e. order (D + C), whereby D is
the depth of the first leaf relative to the root of the subtree, C' is the number of children
of the node to reallocate.

space:
LL-01 is the largest of the three data structures. It requires to store 6 pointers in the
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Figure 4.17: Flush and preempted unmap lead to LL-O1 degrade to LL-Tree.

mapping node.

Compared to the other two representations LL and LL-Tree, in the best case LL-O1
requires to traverse only order (1) nodes to find the first leaf node. In the worst case it
requires to traverse order (D) nodes, whereby D is the depth of the first leaf relative
to the root of the subtree. This however, comes at the cost of storing and updating 6
pointers.

Like LL-Tree, LL-O1 trades the space required to store the additional pointers and the
time to update them against the time to search for the first leaf node.

4.1.4 Summary Tree Representation

Three operation-oriented presentations have been introduced for the mapping-database:
LL, LL-Tree and LL-O1. LL-Tree and LL-O1 trade space and time to update additional
pointers for a better performance to find the first leaf node of the subtree processed
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Figure 4.18: Update of inbound up-links for mapping node reallocation in LL-O1

representation | number of references to costs of
pointers find the first leaf | reallocation
LL 3 plus depth | O(N) O(N)
LL-Tree 5 O(D) O(D +C)
LL-0O1 6 O(1) best case, | O(D + C)
O(D) worst case

Table 4.2: Summary of the properties of the three proposed mapping-database repre-
sentations. Thereby, N is the number of nodes in the tree, D 1is the depth of the first
leaf node relative to the root of the subtree, C is the number of children of the node to
reallocate.

by unmap. Table 4.2 summarizes the properties of those structures. Note, that only
pointers representing the tree structure are listed. In addition to that, the following
payload information listed in Table 4.3.

Open issues concerning the tree representations are:

e Cost of modifications by map, grant and unmap

e Multiple hardware page size support

4.2 Concurrency and Consistency

To ensure the consistency of the mapping database and the page tables, conflicting
operations on the mapping database have to be synchronized. Several different algo-
rithms and techniques have been proposed to ensure data structure consistency. Those
can be classified into blocking and non-blocking synchronization techniques (see also
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v virtual address

o; address space

pte page table entry link
RW X | reference cache

Table 4.3: Payload information in the Mapping Node.

Section 3.2). Non-blocking synchronization primitives can further be classified into
wait-free and lock-free techniques.

Special solutions have been proposed for uniprocessor systems:

e disabled interrupts, and

e 70ll forward techniques.

The relevant questions to control concurrent operations on the mapping database and
thereby ensure data-structure consistency are:

e the granularity of synchronization, and

e the choice of the appropriate synchronization technique.

4.2.1 Granularity

The modifications of the mapping database and the page tables, when mapping and
granting of a page and revoking access from the page corresponding to a single mapping
node, have to be performed as atomic operations.

Unmap is preemptable after processing a single mapping node.

It is possible to weaken this atomicity requirement if a concurrent operation is able to
take over and complete the preempted operation to bring the mapping database into a
consistent state.

Locking in the mapping database can be done in three different granularities:
e the entire database,
e the frame, or

e the mappings operated on.

Mapping Database Lock

The mapping-database lock is the most coarse-grain lock. Only a single thread is allowed
to perform mapping-database operations. Concurrent mapping-database operations are
prevented from operating on the database, until the lock is released.
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Figure 4.19: Two phase locking protocol for insertion and deletion in LL

Frame Lock

Frame-locks add a lock to each page-frame. The frame-lock protects the mapping-
database tree with the op-root-node, that corresponds to the frame. Concurrent oper-
ations mapping, granting or unmapping a page p, that translates to the locked frame
f, are prevented form execution, until the frame lock of f is released. Frame-locks are
medium-grained locks.

Node Lock

Mapping-node locks are the most fine-grained locks. A per node lock protects this node,
its pointers and the corresponding page-table entry.

Map and unmap, however, have to lock multiple nodes to atomically insert or remove
nodes. Skoglund et. al [DSU] (see also the “u-kernel construction” lecture notes [Uni00])
proposed a two phase locking protocol to avoid deadlocks during the insertion and dele-
tion of mapping nodes:

Figure 4.19 shows insertion and deletion and the order the locks are acquired in.
Each mapping node is protected by two locks: an up-lock and a down-lock.

Applied to LL, the up-lock protects the mapping node, the map-link, the parent-link and
the corresponding page-table entry. The down-lock protects the unmap-link. Up-locks
can be held. Down-locks, however, have to be released if the thread does not manage
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to acquire the corresponding up-lock.

A coarse-grained mapping-database lock prevents all but one operation from execution.
In a symmetric multiprocessor system, this would result in a serialized processing order
of memory-management requests. Even though, those requests operate on different
parts of the mapping database, not conflicting each other, a parallel execution is pre-
vented.

Frame granular locking requires for those operations to acquire a single lock as well, the
lock corresponding to the frame. However, frame locks allow for a parallel execution of
operations that process another frame.

Compared to node-locks, a frame-lock trades the possibility to allow for several opera-
tions to process the frame in parallel against the performance increase of having only
to acquire a single lock for the operation on the page.

As long as the level of contention on the frame-lock allows for acquiring the lock suf-
ficiently fast, frame-locks are to be preferred. We expect a low level of contention on
the frame-locks. Section 4.2.2 below presents a roadmap of possible alternatives if this
expectation would not hold.

4.2.2 Synchronization Techniques

This section discusses the choice for the appropriate synchronization method for frame-
granular synchronization.

Blocking

Blocking prevents other operations from processing for the time the critical section
lasts. When threads are blocked even by preempted threads, blocking may lead to
unbounded priority inversion as the following example shows:

Assume a lower prioritized thread 7 acquires a lock and is preempted. A higher prior-
itized thread 75, attempts to acquire the same lock, but finds it blocked by 7;. Priority
is inverted. The priority inversion is unbound, because we do not require the scheduler
of our system to reschedule 7; in a limited time again. 7 is not able to release its lock.

Wait Free vs. Lock Free

Lock free synchronization extensively relies on an atomic multi word compare and swap
(MWCAS) operation. Techniques have been proposed to implement MWCAS on top of
single or double word compare and swap, however, those techniques have a considerable
overhead in space and time [ARJ97].

Wait-free synchronization, however, requires to “help” the lower priority lock-holders
out of their critical sections in order to not block. As discussed in Section 2.6.5, helping
leads to undesirable system behavior and requires complex implementations — especially
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on multiprocessor systems.

We propose a combination of scheduler-conscious synchronization [KWS97] with roll
forward techniques [BRE92, MDP96] on the individual processors. Operations are
rolled forward and all locks are released prior to preempting an operation. Preempted
operations cannot block other operations. Because the operation is completed non-
preemptively and releases all locks prior to a potential preemption, no helping schemes
are required to make the lock-holder complete its critical section.

Locking Policy

With the assumption of low contention per frame this section describes the locking
policy applied to the mapping database. It is a combination of roll-forward techniques
with scheduler-, i.e. preemption-conscious locking.

The address space modifiers: map, grant and unmap are implemented inside the pu-
kernel. Therefore, no trust issues arise as they do when applying roll-forward techniques
for user-level applications. The u-kernel has to be trusted anyway, not to monopolize
the system. Therefore, the issue of limiting the allowed roll-forward time does not come
up.

The issue of detecting when to roll forward remains. Several techniques have been
proposed to detect the regions of code that needs to be rolled forward. For the reason
of simplicity, we signal the need to roll forward by setting a flag.

When starting with the code that is to be rolled forward, the threads sets a flag: the
“unpreemptable-flag”. Upon an preemption event, the processor checks for this flag
being set and resumes the threads operation if this is the case. At the end of the criti-
cal section, the thread resets the “unpreemptable-flag”. If a preemption occurred, the
thread voluntarily releases the CPU with a yield operation (thread_switch (NilThread)
systemcall) to allow for the pending preemption to occur. The situation, that a pre-
emption occurred while operating the critical section is signaled to the thread by a
second flag: the preemption pending flag.

The disadvantage of this simple technique is that additional instructions are required
to set the flag when entering the roll-forward path. A more optimistic approach would
require overhead to detect the roll forward situation first after a preemption happened.
When assuming infrequent preemptions this solution is preferable.

For uniprocessor systems, the roll-forward technique described above is sufficient for
synchronization. Multiprocessor systems require to further means of synchronization:
frame-locks.

We apply a scheduler-conscious frame-granular locking algorithm for multiprocessor
synchronization in the mapping database. We lock the frame that corresponds to the
mapping database tree operated on for the time it takes to process a single mapping
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node and the corresponding page tables. The entire insertion and modification of the
mapping nodes and the corresponding page tables of a single page map and grant is
rolled forward and protected by the frame lock. Preemption is made possible, with
all locks released after each single page operation is completed. Unmap, processing
multiple mapping nodes even for unmapping a single page, is preemptable after having
processed a single mapping node. The frame lock is released at the end of processing
the single node and it is reacquired for the next node to flush.

The property of scheduler-conscious synchronization techniques [KWS97] is, that by the
time the lock is acquired, the lock holder is no longer preemptable. The “unpreemptable-
flag” is set. Prior to clearing this flag, the frame-lock is released.

To avoid starvation, a starvation-free locking algorithm has to be selected, for example
the scheduler-conscious ticket lock.

High Contention: a Roadmap

The assumption of having low contention on a frame has lead to frame-granular locking-
scheme for the mapping database. This section discusses options that remain if the level
of contention increases.

If the contention level increases, we assume that it varies over time and that threads
appear different contention levels dependent on the frame or mapping node they are op-
erating on. The reasoning for this assumption is based on the different usage schemes of
the page frames. A page frame used to store the code of an application in, for example
is low contended. However, when the application terminates or is swapped out and the
page frame is reused as a buffer for a server that frequently maps and unmaps it to and
from its clients, contention may increase. The same applies for nodes in a hierarchical
system. The node of a lower level swapping server might for example be low contended,
the node representing the mapping in the server described above, however, might be
higher contended.

We see the following solutions to improve mapping database performance on higher
contention:

Reactive locks [LA94] switch between different locking algorithms that are better
suited for the level of contention currently appeared. Locking a low contended
frame would use a locking algorithm that can fast and efficiently lock the node
(for example the test-and-test-and-set lock), while acquiring a high contended
lock would apply an MCS-lock algorithm [MCS91a].

Node-granular locking allows to reduce contention on the frame, since operations
on independent nodes can be executed in parallel. The tradeoffs in changing the
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Figure 4.20: The page table entry in oc needs to be protected by a page table entry lock.

locking granularity to node-granular locking are the costs to acquire the several
locks needed.

Multi-flavor-locks like the reader-writer-lock, mutually exclude operations of differ-
ent flavors. Operations of the same flavor as the lock-holders might be tolerated
(for example multiple readers) but does not need to (only a single writer is al-
lowed).

For mapping-database synchronization we can apply a similar multi-flavor-locking-
scheme. Concurrent map operations insert new nodes to a target node ¢. To insert
the new node, map needs to update the map-link of t and the unmap-link of the
left node, i.e. the node t’s map-link points to. Parallel insertions on all nodes
but t operate on different map- and unmap-links. Therefore, parallel maps can
be allowed when protecting the mapping nodes (here t) with an additional fine-
grained lock. The purpose of this lock is to prevent parallel map operations of the
same page by threads in the same address space. Unmap is executed mutually
excluded from map operations and from other unmap operations.

4.2.3 PTE Lock

With frame- as well as with node-locks a single special case remains that requires to
lock the page table entry (PTE) of the target mapping with a PTE-lock (see Figure
4.20). Assume two map operations (by threads 71 and 75) concurrently map two dif-
ferent frames to the same page in the target address space. This situation may arise
if two threads in the receiving address space accept mappings to the same location.
Further, assume a conflicting mapping already exists in the target area, we have to
overmap. T and 79 both manage to acquire the frame-lock and 7 finds and inclusively
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unmaps the target entry. 7 now checks its target page-table entry and finds the region
free because 7 completed the flush. 7 maps its page and returns. 71, however, since
it completed its flush assumes a free target area as well, which is not true, because of
the mapping of 7o. This is because the target area is not protected by neither of the
two thread’s frame-locks. We have to protect this target area by an additional PTE-lock

4.3 Preemptability and Progress

Preempted address space modifiers have to leave the mapping database in a consistent
state. Map and grant are preemptable after having processed a single page. Those oper-
ations are easy to restart. The operation on the previous page was completed before the
operation was preempted. When rescheduling the thread performing those operations,
the map or grant operation can resume processing the next page. Restarting unmap,
however, is more complex. This section deals with the restart of a preempted unmap
operation. The restart mechanism has to fulfill the constraint to guarantee forward
progress in order to guarantee freeness of starvation.

4.3.1 Restart of Unmap: Problem Analysis

The simplest solution is to restart the preempted unmap operation from the beginning.
The mapping tree is consistent, so unmap can traverse through the subtree and revoke
access from the pages corresponding to the nodes in it. When revoking partial access,
nodes can be found where access was already removed from. However, there is no differ-
ence whether those nodes have been mapped with weaker rights, or a previous unmap
already revoked the rights. The problem with this solution is, that unmap can starve
if subsequent preemptions prevent unmap from ever completing its traversal through
the subtree.

By guaranteeing forward progress we can guarantee starvation-freeness.

Since we cannot guarantee forward progress when restarting the unmap operation all
over, unmap needs to restarted at the node within the tree that is has to process next.
Unfortunately, a concurrent map or unmap operation might change the node to restart
from. The following two scenarios may arise:

e A map operation inserts a new child node e to the node b to restart from. Because
of the node b to restart from has not been processed yet, this child node ¢ might
be mapped with an access right that the preempted unmap operation revokes.
Therefore, we have to restart the unmap operation at node e instead of b.

e A concurrent unmap operation may remove the mapping node b. In this case the



4.3. PREEMPTABILITY AND PROGRESS 79

Figure 4.21: The restart point of a preempted unmap has to change if new nodes are
inserted or if the node to restart at is removed.
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Figure 4.22: The preempted-thread list links the TCBs of preempted unmap operations
in a doubly linked list and to the mapping node they have to restart from. Each TCB
contains a direct link to the node to restart with.

restart-point of the preempted unmap has to be updated to the node to process
next, i.e. to e.

The key idea of the following solutions is to publish and update the restart point of
preempted operations on map and unmap. We call this operation restart-point tracking.
The issues in restart-point tracking are:
e to find the preempted threads whose preemption points need to be updated, and
e the costs of updating the preemption points.
We propose the following two solutions:
e the preempted-thread list, and

e the token-based preempted-thread list.

4.3.2 Preempted-Thread List

Before being preempted, the unmapping thread inserts its thread control block (TCB)
into a doubly-linked list, the preempted-thread list of the node to restart from. In ad-
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Figure 4.23: Omitting the direct link to the mapping node to restart with can lead to
starvation.

dition to that it sets a link in the TCB to point to this node (see Figure 4.22). An
additional link in the mapping node point to the head of this list.

A map operation inserting a new node n or a unmap operation prior to removing the
node walks this list and updates the restart-point. Therefore, the operation traverses
through the list and updates the link in each TCB to point to the new node to restart
from, i.e. n for map and the node m that is to be processed next for unmap. In addition
to that, the preempted-thread list is merged with the preempted-thread list of the new
restart point.

The costs to update the preemption point are in the order of the number of preempted
threads in the list. Note, that those costs add to the performance of map and unmap.
In the worst case, this can be up to order of the number of threads in the system, when
all threads but one are preempted on the same mapping node.

The restart link in the TCB and the fact, that a TCB is linked to the preempted-thread
list are redundant information. The linked list is required to identify the threads to
update. Omitting the TCB link leads to the following algorithm:

The mapping node points to the head of a linked-list of TCBs. Updating the preemption
point then requires to only merge the list with the list at the new restart point. When
restarting a preempted unmap, the preempted thread needs to search for the head of
the list to determine the restart point. This solution trades restart performance for
update performance.

With this simple thread list, however, we cannot guarantee to avoid starvation while
allowing for the search of the restart point itself to be preemptable.

Figure 4.23 illustrates this in the following example: Assume three preempted threads
71, T2 and 73 in the simple thread list. 73 is rescheduled and manages to move one step
forward in the list, i.e. it is in between 71 and 79, before it is preempted again. 7 is wo-
ken up and does the same as 73. Leading to an identical situation as in the beginning.



4.3. PREEMPTABILITY AND PROGRESS 81

(a) (2)
(b) ()
\2#11*3 \21*3 1

A /U /N

T1T2 Ts TaTsTe T1T2T3TsTe Ta

Figure 4.24: An indirection to shared tokens allows to omit the direct link to the mapping
node in the token based preempted thread list.

If this situation persists for subsequent activations of 7 and 73, both threads starve.

We propose the token-based preempted-thread list to overcome both the starvation prob-
lem and the list traversal of the preempted-thread list.

4.3.3 Token-Based Preempted-Thread List

The token-based preempted-thread list adds one level of indirection between the TCB
and the mapping node (see Figure 4.24).

The link to the restart point is omitted from the TCB. Instead, a link to a token is
added. Instead of the TCBs, those tokens are linked into a cyclic doubly-linked list.
The head of this list is furthermore doubly linked to the mapping node to restart from.
The fundamental difference to linking the TCBs is, that tokens can be shared.

A reference count at each token denotes the number of threads sharing this token.
When a preempted unmap operation is rescheduled, the thread updates the token link
in the TCB to point to the next token. It decreasing the reference count of the old token
and increasing the reference count of the next token. Tokens are removed from the list
and deallocated when they are no longer shared, i.e. the reference count becomes zero.

By rolling forward this operation, the restarted unmap is guaranteed to progress one
step further to the restart point. Since the tokens are shared other operations cannot
lead to a situation like described for the simple thread-list. Once the restarted unmap
reaches the token at the head of the list, it continues with its access revocation.

Map and unmap update the restart points by merging the token-based preempted-thread
list with the token-based preempted-thread list of the new restart point. This can be
accomplished by updating only a few links. Therefore, preemption-point tracking can
be accomplished in order one.
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Restarting the preempted unmap requires to traverse through the list which takes in
the worst case a number of steps in the order of the number of threads in the system.
This operation is preemptable after each step, i.e. when the TCB link has been moved
one token further. In the common case, a single token shared by the preempted TCBs
is expected.

Root Node Overrun

The restart point of preempted unmap operations is tracked and updated. A concurrent
unmap operation might, have removed the entire subtree the preempted unmap has to
process. Even worse, in the mean time, a completely different subtree might have been
established. This situation is called root-node overrun. It can be characterized by the
fact, that the root mapping-node of this subtree has been removed. Preemption-point
tracking still updates the restart points of this preempted unmap operation, because
otherwise it would have to check for the root-node overrun, i.e. to traverse the list. In-
stead, an independent detection mechanism is required for root-node overrun detection.

The key idea to detect the overrun, is to signal the condition to the unmapping opera-
tions with a flag. This is accomplished by adding a reference count and a root-overrun
flag to the mapping node. The unmap operation, removing the mapping node checks
whether the node removed is a root mapnode of a preempted operation. In this case,
the reference count is greater than zero. If so, it sets the root-overrun flag to denote the
overrun instead of deallocating it. The node is completely removed from the mapping-
database tree by the unmap operation. Other unmap operation will therefore find a
consistent tree. However, the memory space of the node is not yet released.
Preempted unmap operations, when being rescheduled, check their root mapping node
for the flag set and if so, decrease the reference count and return. The last thread, i.e.
the thread decreasing the reference count to zero, deallocates it.

The kernel resource mapping node is blocked by a potentially lower priority thread.
However, at most one node per thread in the system can be blocked. To decrease the
amount of memory, needed to signal the root overrun, a root-overrun token can be used
instead of the mapping node. The root overrun token is linked to the mapping node
and stores the reference count, root-overrun flag and a reference cache (to allow page-
reference-information retrieval). The mapping node points to this root-overrun token.
Instead of setting the flag in the mapping node, the unmap operation that removes
the node from the mapping-database tree sets the flag in the root-overrun token. This
allows the unmap operation to deallocate the mapping node and free up the memory
space it requires.

Root-overrun tokens reduce the amount of memory that has to remain allocated by an
amount that is the difference in size between the mapping node and the token.
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Consistency of the Token-Based Preempted-Thread List

Instead of per token locks in the preempted thread list, this would require to acquire
the locks of at least four tokens to move the list, we propose to protect the preempted-
thread list with the same lock that protects the mapping node.

If node-locks would have been chosen for protecting the mapping database nodes, each
token of the token-based preempted-thread list would have to store the node-lock and
moving the list would require to update the locks of the tokens in the list as well, leading
to a worst case update performance of order number of threads in the system. For a
single page size mapping database, the frame-lock does not change when moving the
token-based preempted-thread list in the tree. See below for multiple hardware page-size
support.

4.3.4 Summary

The design of a preemptable unbounded-priority-inversion free mapping-database for a
single hardware page-size was presented in the last section.

We introduced three operation-oriented representations for the mapping-database tree
that allow post-order traversal of subtrees to unmap: LL, LL-Tree and LL-O1. LL-Tree
and LL-01 both trade space and time to update additional pointers for a potential gain
in finding the first leaf node faster. Experimental evaluation has to prove whether this
tradeoff pays.

Roll-forward techniques in combination with scheduler-conscious locking were proposed
to ensure data-structure consistency. Locks are proposed to be taken at the granular-
ity of the frame, assuming low contention on the frame. A roadmap to tackle higher
contention cases is included as well.

Forward progress is guaranteed by roll forward and by tracking the restart points of
preempted unmap operations. To efficiently update the restart points, the token-based
preempted-thread list was proposed, that in combination with root-overrun detection
allows to update the restart points without having to update information in each pre-
empted thread’s TCB.

Open issues that remain are:
e Cost of address space modifiers
e Choice of tree representation

e Worst case overhead added to interrupt handling when rolling forward
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e Multiple hardware page-size support

The last issue is discussed in the next section.
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4.4 Multiple Page-Size Support

This sections extends the design of the single hardware-page-size mapping-database to
support multiple hardware page-sizes. In the Recursive Virtual Address Space Model,
this may lead to the following three special cases of the address space modifiers:

e Split mapping
e Partial unmap, and

e United mapping

As mentioned before, United mappings are not tackled in this thesis.

To minimize the space requirements for the initial address space, o9 mapping nodes
are mapped with the largest possible frame size. Smaller derived mappings can be
requested and lead to split mappings.

4.4.1 Split Mapping

Split mappings occur if the fpage to map selects only a part of a large page. In this
case, the selected part of virtual memory is mapped as a set of smaller pages. The
smaller pages have to fit in size into the fpage.

The map operation maps from a larger page to a smaller page. Therefore, it selects
the corresponding part of the page-frame the large page translates to and inserts a
translation to this smaller part into the page tables of the target address-space. The
modifications on the mapping database are the same as for a single hardware page-size.
A child mapping node representing the smaller page is added to the mapping-database
tree and linked as a child to the node of the larger page.

4.4.2 Partial Unmap

Unmap revokes access from all directly or indirectly derived mappings, including all
derived split mappings. Partial unmap, however, revokes access only from those part
of the larger page, that was specified by the fpage to unmap.

Assume a partial unmap of the region of virtual addresses in the interval [vy,v.]. The
region is within a large page in the source address-space that maps the addresses in
the interval [vg,v4]. Partial unmap, therefore has to revoke access from all pages that
directly or indirectly received the interval v, v.] from a thread in the source address-
space.

Access from pages that in addition to receiving [vy, v.] received also parts of the intervals
[Vasva] \ [Vb, ve] = {[Va,Vp), (Ve,v4]} can be revoked from the entire page. Alternatively
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Figure 4.25: Split-up of a large page on partial unmap.

we can split up those pages into pages that relate to the first interval and pages that
relate to the second interval. In this case, access is revoked only from the first set of
pages (see Figure 4.25).

Partial Unmap with Large Page Split Up

Partial unmap requires the following preprocessing before revoking access from a de-
rived page p (see Figure 4.25):

1. p is completely derived from the addresses in [vg,vp) or (ve,vg]. In this case, p
is not derived from the fpage to revoke, i.e. p needs not to be unmapped. No
preprocessing is required (p1).

2. p is completely derived from the addresses in [vy,v.]. This case requires no pre-
processing either. Access has to be revoked from p (p9).

3. p is derived from addresses in [vp,v.], but also from some of the addresses in
[Va,vp) OF (e, vg], but not from both. In this case, p needs to be split up in two
parts. The first one, being the set of pages that are entirely derived form [v,,vp)
(or (ve,vq]). Access from those pages need not to be revoked. The second one,
being the set of pages that are entirely derived from [vy,v.]. Access is revoked
from the second part (ps).

4. p is derived from addresses in [vp, v.], but as well from parts of the addresses in
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[Va,vp) and (ve,vg]. This case is handled similar to case 3 except, that p has to
be split in three parts and the two outer parts can be skipped (ps).

Alternatively to splitting up the page p in case 3 and 4, the entire large page can be
revoked. If however, the entire page is revoked, all mappings derived from that page
have to be revoked. This includes also split mappings that would fall into the cases 1
and 2.

4.4.3 Root Array Structure

Skoglund et. al [DSU] proposed the root array structure to separate the mapping-
database trees of mapping nodes corresponding to large pages from those subtrees with
nodes corresponding to small pages.

The root array structure connects a mapping node to all subtrees of split mappings
derived from the node. The root array nodes thereby contain the required pointers to
step down into the subtree. Those pointers are dependent on the representation chosen:

e LL stores only the map-link in the root array.
e LL-Tree stores the map- and child-link.

e LL-01 stores the map- and down-link.

We expect, that most nodes in the tree will not have split mappings. This is trivially
the case for those nodes of pages of the smallest hardware page-size. Those pages can-
not be further split up. But we expect it also for larger hardware page-sizes. Motivated
by that, we propose, an additional node: the dual node. The dual node is linked in
between the mapping node having the split mappings and the next mapping node in
unmap traversal direction. The dual node connects the mapping tree of the large page
size with the root array structure. This saves the space required to store the link to the
root array structure in mapping nodes without split mappings.

The root array structures support the search for the root-array node, given the address
the split up part of the frame starts with and its size. This root-array node contains
the information to step down into the subtree of split mappings.

Skoglund et. al [DSU] proposes an array based structure similar to multi-level page-
tables, Szmajda [Szm99] instead, applies an LPC tree to store the root array structure
in. The choice for an appropriate structure to representing the root array structure has
to incorporate both the likelihood of split mappings and their distribution, i.e. whether
only a few parts of the large page have been mapped or whether almost all possible
parts have been mapped as split mappings.
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Figure 4.26: Root array structures separate the subtrees of nodes corresponding to dif-
ferent page sizes.

We expect few split mappings in the system at all. Pages are usually split once, and
then the smaller page size is used. The question on the distribution cannot be answered
such easily and requires further examinations. An observation of only a few parts of
the large page split up would preference the LPC approach, if instead most or all parts
are split up, the array based approach is preferable.

We implemented the array based approach.

The root array structure has the property of separating subtrees of nodes corresponding
to pages of different sizes.

4.4.4 Frame Locks Revisited

Frame-locks protect the mapping database tree structures to ensure data-structure con-
sistency. While the single page-size mapping-database requires only to acquire a single
frame-lock, multiple differently sized frames can be present in the mapping-database
tree of the multi page-size database.

There are two alternative solutions:

Frame lock for largest frame size: A single frame-lock is assigned only to the largest
frame (corresponding to the og mapnode). This frame-lock protects the entire
subtree, including split mappings with a smaller page-size.

Frame lock per frame size: Alternatively a lock per frame size per frame can be
used. The lock protects only the frame of the corresponding size.

A single frame-lock for the largest frame allows to apply the same locking algorithm as
presented for the single page-size mapping-database. However, concurrent operations
that operate on different smaller frames are mutually excluded, though they can be
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Figure 4.27: Tree representation LL for multiple hardware page sizes. dual nodes (tri-
angles) hook the root array structures into the mapping tree.

processed in parallel. Second, the largest page size of some architectures can be huge
(the largest page size of the Intel Itanium is for example 256 MB). The assumption of
having low contention is unlikely to hold for such large frame sizes.

The second solution allows for acquiring smaller locks. Operations on large page sizes,
however, have to mutually exclude all operations on the corresponding smaller frames.
And therefore need to acquire multiple locks. This is both slow and difficult to avoid
deadlocks in.

Instead, we introduce root array structures (see above) to separate the subtrees related
to different frame-sizes. This allows to acquire a single frame-lock, corresponding to the
frame and frame-size of the node that is processed. The frame-lock of the node of the
larger page protects the root array structure as well. When modifying the root array
structure while processing the node, we have to have to acquire the larger frame-lock
as well.

Figures 4.27, 4.28 and 4.29 show the three tree representations for the multi page size
mapping database. For the reason of simplicity, we omit the page-table links and the
links to the token-based-preempted-thread-lists from LL-Tree and LL-O1. Section 4.4.5
reasons about the additional token-based-preempted-thread-list at the dual node (see
below).
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Figure 4.28: Tree representation LL-Tree for multiple hardware page sizes.

Traversal on Unmap

The traversal algorithm for the unmap operation has to be modified for a multi page-
size mapping-database. In particular, the root array structures need to be incorporated
to traverse through the subtrees containing split mappings.
We subdivide the traversal path of unmap into two sweeps:

e traverse down searches for the first leaf node of a subtree and traverses into the
root array structure,

e traverse up sweeps through the nodes in post order direction and revokes address
from the corresponding pages.

The same constraints apply for the multi-page-size traversal-path as for the single-page-
size path. In particular we have to require that all nodes in the subtree are processed,
and that the traversal path can be traversed iteratively. Figure 4.30 shows the modified
traversal path of the unmap operation.

Traverse down starts from the root node of the subtree of nodes to process. It searches
the first leaf node of this subtree. Thereby, it does not traverse down into the root ar-
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Figure 4.29: Tree representation LL-O1 for multiple hardware page sizes.

ray structures of the nodes passed. If the first leaf node has split mappings, it revokes
access from the page of the node. However, the node itself remains linked into the tree.
It then traverses down into the root array structure for this leaf node, searching for the
root array node that links the subtree of the smallest size with and that corresponds
to the lowest frame address. After that, traverse down continues to search for the first
leaf of this subtree.

If a first leaf is found that has no split mappings, the traversal algorithm switches to
the traverse up sweep.

Traverse up removes access from the page the node corresponds to and continues with
the next node in post order direction. If this node contains split mappings, the traver-
sal algorithm switches back to traverse down and searches for the root array node and
the first leaf node of the corresponding subtree. Traverse up also returns to traverse
down after it has processed the last node of a subtree of split mappings. In this case,
it searches the root array structure for the root array node with the next larger frame
address and traverses down into the subtree linked to that root array node. If no such
root array node is found, it increases the frame-size to look for and searches for the root
array node with the smallest frame address of this size. Once, all split mappings have
been processed, traverse up finally removes the root array structure and the mapping
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Figure 4.30: The traversal path taken by unmap in a multi page tree representation
(here LL). The red dotted line marks the path taken.

node containing the split mappings if this is necessary. After that, traverse up continues
with the next node in post order direction until reaching the root node.

The revocation of access rights before traversing down into the root array structure is
required, because otherwise, split mappings could be generated in the already traversed
subtrees that relate to pages that still have the access right that the unmap operation
revokes. If this is not done, those pages would not be traversed by unmap.

Note, special activity is required for restart-point tracking when traversing up from the
split mapping node to the node of the large page (see below).

4.4.5 Restart-Point Tracking

Multiple hardware page-sizes complicates restart-point tracking. The restart-point track-
ing when removing the last node of a subtree of split mappings requires special case
handling. Furthermore, the frame-lock protecting the token-based preempted-thread list
changes in this case.
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Restart-Point Tracking for Split Mappings

The threads that have been preempted in a subtree S of split mappings have to restart
with searching the next root array node to traverse-down when the subtree S has been
completely removed. However, if we would merge the preempted-thread-list-tokens of
those nodes into the token-based-preempted-thread-list of the node n of the large page-
size, a map operation might propagate those tokens to a child node of n. In this case, a
restarted unmap has to process the child node of n and the already completed subtrees
a second time. Forward progress cannot be guaranteed.

To avoid this situation, we introduce a second token-based-preempted-thread-list, the
split-token-based-preempted-thread-list. In the above case, the tokens are propagated
into the split-token-based-preempted-thread-list instead of the token-based-preempted-
thread-list. Map updates the restart points of threads in the token-based-preempted-
thread-list, but omits the updates for the split-list. An unmap operation removing the
node, merges the two lists and updates the restart-points to point to the next node to
process.

Note, tokens are never propagated down into a subtree of split-mappings.

Frame-Locks and Restart-Point Tracking

Frame locks change when propagating to a node with a larger page size. To ensure the
consistency of the token-based-preempted-thread-lists we store a link to the frame-lock to
use with the nodes. However, this pointer has to be updated in the situation described
above. Therefore, the tokens in the list have to be traversed and the locks in them have
to be updated. To avoid having to atomically update the entire list, we propose the
following algorithm:

Before removing the last node of a subtree of split mappings, the token-based-preempted-
thread-list of this node is traversed and each token is moved into the split-token-based-
preempted-thread-list after the link to the lock was updated. This operation is pre-
emptable after having processed a single token. If the updating thread gets preempted,
it links its TCB to a token in the split-token-based-preempted-thread-list. An unmap
operation of a thread that is restarted and finds its TCB linked to the split-token-
based-preempted-thread-list first checks for a pending lock update before resuming its
operation. If this is the case, it continues to update the tokens.

4.4.6 Space Requirements

The three tree representations LL, LL-Tree and LL-O1 differ in the number of point-
ers they have to store. In addition to that, the mapping node has to store the payload
information and the two links to the root-overrun token and the token-based-preempted-
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Representation | Size of the Mapping node
LL 8 x 32 bit words

LL-Tree 8 x 32 bit words

LL-01 10 x 32 bit words

LL-opt 6 x 32 bit words
LL-O1-opt 8 x 32 bit words

Table 4.4: The space requirements of a mapping node in the different tree representa-
tions.

thread-list. We allocate 27 bits for the pointers, i.e. more than 130 million mapping
nodes can be dereferenced. The actual layout of the data structures is shown in Ap-
pendix A.

Table 4.4 summarizes the size of the mapping node structures. The two representa-
tions LL-opt and LL-O1-opt are special optimizations for the Intel TA-32 architecture.
Certain assumptions on the layout of virtual address space of the L4 j-kernel? allowed
for the reduction of the space required. The size of a cacheline of the Intel TA-32
architecture is 32 bytes.

4.5 Summary of the Design

The last section introduced the proposed design of a preemptable unbounded-priority-
inversion-free mapping-database. The mapping-database is designed to support multiple
hardware-page-sizes.

We introduced three operation oriented representations for the mapping database tree
that allow post order traversal of subtrees to unmap: LL, LL-Tree and LL-O1. In
LL-Tree and LL-O1 space and update time of additional pointers is traded against a
potential gain in searching for the first leaf node to start an unmap operation from.
Subtrees of nodes corresponding to different hardware page sizes are separated with
root arrays that are linked to the tree with dual nodes.

Roll-forward techniques in combination with scheduler-conscious-locking were proposed
to ensure data structure consistency. The mapping-database trees are protected by
frame-granular locks. Such a lock exits per frame and per possible frame size.
Root-arrays structures separate subtrees with mapping nodes that correspond to pages
of a different size. This allows to acquire only those frame-locks of the frame-sizes
operated on. The root-array structures are protected by the larger frame-lock.

Forward progress is guaranteed for all operations. We proposed roll forward and restart-
point tracking to guarantee progress. We proposed a new method to efficiently update

20n Intel TA32 architectures, the virtual address space of the L4 p-kernel is mapped into the upper
most gigabyte of all address spaces.
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the restart-points: the token-based-preempted-thread-list. In combination with root over-
run detection this list allows to update the preemption points without having to traverse
the lists.

The following issues remain open from the design:

e Cost of address space modifiers
e Choice of tree representation

e Worst case overhead added to interrupt handling when rolling forward
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Chapter 5

Experimental Results and
Analysis

This chapter analyses the performance of the address space modifiers implemented
with the three proposed tree representations: LL, LL-Tree and LL-O1. It compares
those representations with the non-preemptable implementation of Pistachio and to
the preemptable implementation in the Fiasco p-kernel. Furthermore, it estimates the
time, interrupt handling is delayed when rolling forward the address space modifiers.

5.1 Experimental Setup

The mapping database was implemented in the L4Ka, Pistachio pu-kernel'. The Pistachio
p-kernel is a portable implementation of the experimental L4-Version X.2 APT [Tea].

The experiments were implemented in an adapted version of the Nutcracker library
[Elb]. Originally suited for black box testing of the L4 u-kernels, the Nutcracker pro-
vides library functions that allow for an easy setup of test and experiment code.

The measurements are performed on a 500 MHz Intel Pentium III processor with a 512
KB shared level 2 cache, and separate 16 KB L1 caches for code and data. All caches
are 4 way set associative. The size of a cacheline is 32 bytes.

The Intel Pentium III supports 4KB pages as well as 4MB pages. It has separate TLBs
for data and code pages. The data TLBs have 64 entries for 4KB pages and 8 entries
for 4AMB pages. The instruction-TLBs have 32 entries for 4KB and 2 entries for 4MB
pages.

L1 hits on this processor take 2 cycles (the L1 cache can handle two requests in par-
allel), L1 misses hitting in the L2 cache take approximately 10 cycles, missing in the
L2 takes about 50 cycles — those numbers assume a valid translation for the memory

! Available at http://l4ka.org
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access to be cached in the TLB.

For the experiments we start two threads in two different address spaces: 7 and 7.
During the experiments only those threads run and only one at a time. When acting
as a receiver, one thread accepts mappings. The corresponding other thread acts as
the mapper, sending the pages. Time is measured with the Intel Pentium cycle counter
(rdtsc).

The Pistachio kernel is by the time this thesis was written about to be ported to mul-
tiprocessor systems. Therefore, all measurements were performed on a uniprocessor
system. Because we applied well known multiprocessor synchronization primitives, we
do not expect unforeseen behavior when conducting the multiprocessor measurements.

5.2 Performance of the Address Space Modifiers

This section evaluates the performance of the address space modifiers: map and unmap
for the three proposed database representations. Further it compares them with the
mapping database in Pistachio and in Fiasco.

Grant is omitted because it does not modify the mapping database structure. The mea-
surements are performed with warm caches to retrieve best case performance numbers.

5.2.1 Map Performance Comparisson

The first experiment measures the performance of resolving a page fault by mapping
a 4KB page. The thread 7 has been configured to generate pagefaults by writing to a
page in its address space that is not mapped. The pagefault is caught by the p-kernel
and translated into a pagefault IPC message to 79’s pager: 7. 71 replies with mapping
a 4KB page that it requested from oy beforehand. Always, the same page is mapped.

We measure the execution time of the replying map operation. The measurement is
started before 7 sends the map-IPC and it is stopped after 79 resumed the operation
that caused the page fault.

In addition to that, we measured the pure mapping-database performance for our pro-
posed operations. This is the time required to insert the new mapping node into the
mapping-database tree.

Figure 5.1 shows the execution times (in cycles) measured. It shows those values in a
comparison of the three tree representations: LL, LL-Tree and LL-01 with the non-
preemptible mapping database of Pistachio and with the mapping database of Fiasco.
Furthermore, it shows the results of the optimized versions of LL and LL-O1 for the
Intel Pentium Processor: LL-opt and LL-O1-opt.
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Figure 5.1: Performance comparison of mapping a 4KB page to resume a page fault.

As expected LL outperforms LL-Tree by 64 cycles and LL-O1 by 133 cycles (pure map-
ping database performance). This results in LL-Tree being about 32% slower, LL-O1
about 67% slower than LL. Compared to the costs of the entire operation, this differ-
ence is less than 5%.

The performance differences can be explained with the additional pointers that have
to be updated in the more complex representations.

Fiasco is faster than LL-O1 but slower compared to LL and LL-Tree. The optimized
version LL-opt clearly outperforms Fiasco’s map operation by 264 cycles (9.8% of the
entire operation costs).

Unexpectedly, Pistachio performs a little worse than LL. It is outperformed by LL by
an amount of 67 cycles. LL-opt outperforms Pistachio by 213 cycles (7.9%). We expect
that a comparable performance to LL-opt can be achieved by further optimizing the
implementation in Pistachio.
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Figure 5.2: Performance of unmapping a wide subtree of 4K pages.

5.2.2 Unmap Performance Comparisson

The second experiment measures the performance of the unmap operation.

The tree structures LL-Tree and LL-0O1 have been proposed to speed up the perfor-
mance of finding the first leaf node. LL finds this first leaf node in order n traversal
steps, whereby n is the number of nodes in the tree. LL-Tree requires only order depth
of the subtree traversal steps. LL-01 is capable to find the first leaf node in order one.
To corroborate the choice for one of those structures, we measure the execution time
of the unmap systemcall while it revokes access from a wide and from a deep subtree.
We vary the number of mappings n in the subtree.

In addition to the modification of the mapping database, the results include the time to
enter and exit the kernel, to modify the page tables and to invalidate the TLB entries
if this is required.

Figure 5.2 shows the execution time of the unmap systemcall as a function of the depth
of the subtree, Figure 5.3 shows the execution time as a function of the width of the
subtree. As can be seen, the performance increases linearly with the number of nodes
in the subtree. The performance decrease from unmapping 4 mappings to unmapping
5 mappings is because Fiasco starts to reallocate the mappings nodes into a smaller
array. To accomplish that, it needs to copy the nodes.
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Figure 5.3: Performance of unmapping o deep subtree of 4K pages.

With the depth increasing, LL-O1 performs better than LL-Tree. The fewer pointers
that have to be updated for LL makes it outperform both, LL-Tree and LL-O1 by 2149
cycles = 19.5% (824 cycles for LL-O1 = 8%) at a depth of 20 and by 1356 cycles =
16.6% (967 = 11.9% for LL-O1) at a width of 20 .

The expected performance gain of LL-O1, being able to find the first leaf in order 1,
is eliminated by the time to update the additional pointers. The optimized version
LL-O1-opt shows the desired effect, but is still outperformed by LL-opt by an amount
of about 12.0% (at width 20).

A comparisson of the non-preemptable mapping database implementation in Pistachio
with LL shows that the Pistachio performs better. The difference is 12.6% for the deep
subtree and 26% for the wide subtree. The optimized version LL-opt significantly out-
performs Pistachio for deep mappings and achieves a performance that is only 10.1%
slower than Pistachio for wide mappings.

The unmap operation of Fiasco is significantly outperformed by all other representa-
tions, including Pistachio. The graph increase more slightly for up to four measure-
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start to PP(fil) backoff to PP(tr-up) backoff to end

= next node to process
— — ¢ traversal of unmap

Figure 5.4: The mapping database tree of the unmap operation at the three points,
unmap is preempted.

ments, however the base costs are significantly larger.

We performed the same two experiments for 4MB pages. The results were similar as
for 4KB mappings. Therefore, we did not include the graphs into this thesis.

5.3 Interrupt Latency

Interrupt handling is delayed for the time, a mapping database operation is rolled for-
ward. We estimate this delay by measuring the time, mapping database operations are
rolled forward. Prior to starting the measurement we invalidate all caches and transla-
tion lookaside buffers. This prevents the mapping database operations from improving
their performance with cached code and data. The performance results of those oper-
ations estimate worst case performance.

In a map operation, the insertion of the new mapping node and the page table update
is rolled forward. Unmap contains more preemption points. For this measurement,
unmap removes a single mapping node. The It is possible to preempt this operation at
two points (see Figure 5.4. The first preemption point PP(f fl) allows for a preemp-
tion after finding the first leaf, but before processing it?. The second preemption point
PP(tr — up) allows for a preemption after the derived mapping is removed, but before
processing the root node of the tree?. We measure the time the unmap operation is
rolled forward, i.e. from the start of the unmap to a preemption at PP(f fI), backing
off from this preemption to the next preemption at PP(tr — up), and finally backing
off from the second preemption to the end of the roll forward. This end is immediately

In general, the find first leaf preemption point allows to preempt the unmap after having stepped
one node further in the direction of the first leaf.

3The traverse up preemption point allows to preempt the unmap after a node is completely processed,
but before processing the next node.
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Figure 5.5: Ouerhead added to interrupt handling by the mapping database operations
map and unmap.

before the unmap operations returns.

Figure 5.5 shows the results of those measurements. As can be seen, map adds an over-
head of 2709 cycles for 4KB mappings and 3079 cycles for 4MB mappings to interrupt
handling. This corresponds to 5.4 us and 6.2 us. Unmap adds an overhead of 6613
cycles for 4KB and an overhead of 6522 cycles to 4MB mappings. This corresponds to
13.2 pus and 13.0 ps.

5.4 Analysis

Corroborated by those results, the choice for one of the three representations clearly
has to be in preference of LL and in particular for LL-opt on an Intel Pentium proces-
sors. The fewer number of pointers that have to be updated by LL make it outperform
the other proposed tree representations. The expected speed up from finding the first
leaf node faster is eliminated by the overhead to update the additional pointers of the
larger structures.

In comparisson to the non-preemptable mapping-database implementation in Pista-
chio, LL shows a comparable performance for address space construction with map.
The cost of a preemptable unmap operation, however, is a slowdown in performance
between 12.6% and 26%.

Compared to the solution in the Fiasco u-kernel, all three tree representations show a
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significant better performance on unmap. Fiasco achieves a comparable performance
for map, however, it is clearly outperformed by LL-opt.

Whether the significant loss in performance is caused by the different tree represen-
tation, or whether those costs are inherent to the “helping-scheme” applied, however,
cannot be seen with those measurements. An in depth analysis of Fiasco’s mapping
database remains to be done.

The mapping database delays interrupt handling by at most 13.2 us before its opera-
tions are preempted.



Chapter 6

Conclusion and Future work

This chapter concludes. Furthermore, it outlines future work and surveys possible
directions, the work presented in this thesis, can be extended to.

6.1 Conclusion

Virtual memory is an important feature of operating systems for interactive or par-
tially untrusted applications. However, standard virtual memory policies are often not
optimally suited for specialized applications such as database-management and multi-
media.

The externalization of virtual memory management and protection policies into ap-
plication specific managers at user level is one approach to fulfill the requirements of
those applications. The Recursive Virtual Address Space Model is such an approach to
externalization.

The key idea of this model is to construct and modify address spaces recursively. Page-
frames that the constructing address space itself has access to can be mapped or granted
into an address space. The target address space thereby gets access to those page-
frames. Access can be revoked from directly or indirectly mapped pages with the
unmap operation.

Existing implementations of the Recursive Virtual Address Space Model show undesir-
able behavior or unnecessary slow and complex behavior such as:

e [ong interrupt latencies,

e unbounded priority inversion, or

e complex helping-schemes to avoid both.

This behavior has limited the applicability of the model in some systems. The goal of
this thesis was to investigate this problematic behavior and to propose solutions that
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avoids it.

In this thesis we identified that preorder traversal of the mapping database tree on
unmap (see Section 2.6.3) may cause unbounded priority inversion. Roll forward of long
operations and complex helping-schemes have been proposed to avoid this unbounded
priority inversion. However both avoidance schemes cause undesirable side effects such
as long interrupt latencies for the first and restrictions on the scheduling of threads for
the second (see Section 2.6.5). In Section 2.6.4, we showed that similar problems arise
for all other traversal methods except for post order traversal.

6.1.1 Approach

With the goal of avoiding long interrupt latencies, unbounded priority inversion and
helping, this thesis presented a preemptable mapping-database design in Chapter 4.
The key techniques to achieve this goal were:

e preemptable post order traversal of the mapping database tree,

e 7oll forward in combination with scheduler conscious frame-granular locking to
ensure the consistent modifications, and

e a method to efficiently track the restart points of preempted operation. In com-
bination with roll forward this allowed us to guarantee forward progress of all
operations on the mapping database and thereby freeness of starvation.

We presented and experimentally evaluated three operation-oriented representations of
the mapping database tree: LL, LL-Tree and LL-O1. For efficient restart-point track-
ing we proposed to publish and update the restart-points of all preempted operations.
We introduced a new technique: the token-based-preempted-thread-list to efficiently up-
date those restart-points. This technique in combination with root-overrun detection
allowed us to update the restart-points of all threads without having to traverse the
TCBs of the threads.

The mapping database supports multiple different hardware page sizes and is suited
for uniprocessor- as well as small scale multiprocessor systems.

6.1.2 Summary of Results and Conclusions

Experimental validation has shown a clear preference for the data structure LL. Having
less pointers to update and a smaller mapping node structure benefits even compared
to requiring order (N) traversal steps to find the first leaf. Thereby, N is the number
of nodes in the subtree to process on unmap.
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LL-Tree and LL-0O1 have been proposed to optimize the search for the first leaf node.
LL-Tree requires to traverse only order (D) nodes, whereby D is the depth of the first
leaf relative to the root of the subtree to process. LL-O1 achieves this in the best case
in order (1). The expected increase of unmap performance, however, could not be seen.
Instead, the larger data-structures and the additional pointers that have to be updated,
eliminated the performance gain from finding the first leaf node faster.

The ability to roll forward to a point where it is safe to be preempted, combined with
the benefits of a multiprocessor synchronization scheme that does not preempt lock-
holders, was crucial in the design of the mapping database and made it possible to omit
helping-schemes entirely.

We were able to place the preemption points such, that the mapping database structure
is in a consistent state with all locks released when a preemption occurs. The oper-
ations are rolled forward between the preemption points. During this time, interrupt
handling is delayed. Map delays interrupts handling by a maximum of 6.2 us , unmap
delays it by a maximum of 13.2 us.

Systems that have to respond in a shorter time, have to apply a different solution. As
long as the activity responding to the interrupt is independent of the virtual memory
subsystem, the 13us could be broken down by allowing this independent interrupt han-
dler to preempt the mapping database operation more frequently. Afterwards however,
the preempted mapping database operation has to be resumed prior to executing VM
dependent code.

We have to admit, that the worst case execution time of the unmap operation can still
not be determined by the unmapping thread. Unmap is not capable to be used by
realtime threads. This is because the size of the subtree to process on unmap cannot
be limited.

The performance measurements show that a comparable performance to a non-preemptable
implementation can be achieved for map. The cost of preemptability comes into ac-
count for revoking access from pages with unmap. Unmap is between 12.2% and 26%
slower than the non-preemptable implementation in Pistachio (The first value is for the
architecture specific optimization LL-opt).

To sum up the conclusions:

e Simple data structures are preferable for the mapping database.

e Good preemptability can be achieved without having to rely on complex helping-
scheme.

e This can be done while preserving a performance comparable to a non-preemptable
solution.
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As a general advice we have to conclude:
Causes of unbounded priority inversion should be eliminated or at least minimized by
design, instead of relying on avoidance schemes such as helping.

6.2 Future Work

This section surveys future work that is required to resolve the issues left open in this
thesis. Furthermore, we present possible directions, the work presented in this thesis
can be extended to.

The following issues remain open and have to be resolved in future work:

e Costs and benefits of united mappings
e Costs and benefits of mapping node reallocation

e Appropriate choice for the root array structure

The comparisson to Fiasco showed significantly worse performance compared to our
proposed solution. However, in order to bring more evidence to those results, an in
depth analysis has to explore whether this is caused by the different tree representation,
or whether this is crucial to the helping-scheme applied.

A validation of the experimental results on a small scale multiprocessor system remains
to be done. We do not expect unforeseen behavior or results.

This experimental validation has to explore the costs of the TLB shootdown algo-
rithms. In order to make changes to the page table effective, the corresponding TLB
entries have to be invalidated. In symmetric multiprocessor system, this requires to
“shoot-down” the TLB entries on the other CPUs. The revocation of all directly and
indirectly derived mappings allows to collect the entries that have to be invalidated
before triggering the invalidation process with a cross processor interruptions.

United Mappings

United mappings allow to unite multiple pages that have been mapped both physically
and virtually adjacent and with the same rights into a single large page. Potentially, this
increases TLB coverage and thereby leads to an increase of overall system performance.
The difficulties in supporting united mappings in the mapping database, is that pages
no longer origin from only one source page. Instead, they may origin from several
source pages. The mapping database structure required to represent this relation is a
graph.
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Root Array Structures

To be able select an appropriate representation of the root array structure application
scenarios that mixes multiple page sizes have to be explored. In this thesis we assumed
that split mappings are rare. Furthermore, we assumed that if a page has derived split
mappings, that almost all possible parts of the page a in use and have been mapped
to other address spaces as split mappings. Therefore, we selected an array based root
array structure.

Mapping Node Reallocation

The possibility to reallocate mapping nodes to a different memory location might be
beneficial for some scenarios (see Section 4.1.2). In this thesis we discussed the required
pointer updates that have to be performed when reallocating mapping nodes in LL,
LL-Tree and LL-O1. We estimated the costs of those updates, however a cost benefit
analysis of reallocation is still outstanding.

Extensions

We see the possibilities to extend the work presented in this thesis in the following
three directions: large scale multiprocessors, external kernel resource management and
realtime capable unmap.

Large Scale Multiprocessors

The solutions in this thesis were targeted for small scale multiprocessor systems. In
order for the Recursive Virtual Address Space Model to be applied on larger scale
multiprocessors, further work is required. We expect, that the assumptions concerning
the expected level of contention on the locks will differ. Furthermore, the access times
to memory are not necessarily uniform in large scale multiprocessor systems. Therefore,
the locality of memory has to be considered for the design.

External Kernel Resource Management

Currently, the L4 p-kernel manages the kernel resources it allocates itself. This is of
course not desirable because it puts policy in the u-kernel. This policy might not be
optimally suited for all subsystems envisaged to run on top of the u-kernel.

Haeberlen [Hae01] proposed an extension to the Recursive Virtual Address Space Model
to allow for kernel resource management at user level. The key idea of this approach
is that whenever the kernel requires a resource that is not available, a resource fault
is generated. Similar to page faults, the resource fault is translated into a message
to a pager at user level. To resolve this resource fault, the pager maps a page to the
p-kernel. Prior to using this page, the kernel upon receiving this page prevents all
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threads in the system from accessing it. The important restriction is, that the pager
cannot map arbitrary pages to the kernel. Instead, only pages that it received with a
special access right: the k-right, can be mapped. The threads that mapped the page
directly or indirectly to the pager implicitly agreed that this k-page might be used for
kernel resource management and if so, that it is no longer accessible by them.

Realtime Capable Unmap

The Recursive Virtual Address Space Model does not threads mapping a page to limit
the number of mappings that can be derived form this page. Because of this, the
execution time of unmap cannot be determined a priori. Unmap is not capable to be
used by realtime threads.

An extension of the model, for example map-quotas would allow to limit the number of
derived mappings. However, further work is required to explore appropriate extensions.



Appendix A

Data Structures

This chapter presents the layout of the data structures used for the three tree repre-
sentations: LL, LL-Tree and LL-01 in the mapping database.

A.1 Mapnode

The mapnode data structure stores the mapping nodes of the mapping database.

The mapnodes of LL, LL-Tree and LL-O1-opt are aligned in memory to 32 bytes, the
mapnodes of LL-0O1 and LL-opt to 8 bytes.

LL:
map link (g ac (3)fm| Wy
unmap link (28) al (g)[u| Wy
parent link (37) (5) w2
space (10) depth (13) ws
pg table entry (30 2| w4
tb preemption Ist (»g) P (4) W
root overrun (sp) gll|  wsg
dummy (32 wr

map link: Pointer to the next node. New mappings are inserted in this direction.

unmap link: Pointer to the previous node. The unmap link of split mappings point
to the node of the large page.

111
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parent link: Pointer to the parent node. Again, the parent link of split mappings
points to the node of the large page.

m: Set if the map link points to a dual node, i.e. the next node contains split mappings.

u: Set if the unmap link points to a dual node, i.e. this node contains split mappings.

depth: The depth of the node in the tree, i.e. the distance to the og-mapnode.

space: Address space the mapping is established in.

pg table entry: Pointer to the page-table entry. The virtual address can be derived
by xor-ing the value of the shadow page-table with the address of the mapnode.

p: Index into an array of supported hardware page-size. The array contains the page-
sizes sorted by size.

ac: A cache for the access rights to be mapped. This field is required to simulate page
reference information on architectures without hardware set reference bits.

ai: The reference cache.

tb preemption Ist(ptl): Pointer to the head of the token-based-preempted-thread-list.
root overrun: Pointer to the root-overrun token.

I: Lock update pending.

g: Grant reallocation pending.

dummy: The dummy is used to align the mapping node of LL to 32 bytes.

LL-Tree:

map link (g ac (3y[m| Wy

unmap link (g P (4) w1

space (ig) u ptl (12) w2

pg table entry (30 ptls] w3

parent link (27 ptls (5) Wy

sibling link (27 ai (g)|llg| ws

root overrun (so) ptls] Wg

child link (o7 ptls (5) wr

child link: Pointer to the left most child node.
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sibling link: Pointer to the right sibling of the mapnode.

ptl: The link to the token-based-preempted-thread-list is split into 5 parts ptl; - ptls.

LL-01:
map link (20 (2)m  wWo
unmap link (9 @|ul w1
parent link (59 ac (3)| w2
sibling link (29) ai (3| w3
space (19) (13) W4
pg table entry (s0) gll|  ws
preemption Ist (og) P (1) We
up link (29 @)|r| wWs
down link (30 (3) wr
root overrun (sp) (2) w9

down link: Pointer to the first leaf node, null if a common root mapnode exists that
shares the same first leaf.

up link: Points to the common root mapnode that shares the first leaf.

r: Up points to a root array node if this flag is set.

LL-opt:
map link (20 ac (3| Wo
P (1) 0xF + unmap link (25 ai 3y Wi
ptl (s) 0xC + space (17) depth (7 wo
ptl2 (4 0xC + pg table entry (»g) ws
ptls (4 |ufm 0xF + parent link (5 Wy
ptls (3) gll1 0xF0 + root overrun (s0) W

0xF, 0xC and 0xFO0 denote the most significant bits that are assumed, 0xF0 means 8
bits are fixed: 11110000, 0xC fixes only the upper two bits to 11, OxF the upper four:
1111.
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LL-O1-opt:
map link (g ai (3)[ml  wop
P (1) 0xF + unmap link (a4, ai (3)|ul Wy
TO1 (15) 0xC + space (17) wo
ptly (4 0xC + pg table entry (»g) ws
g ptla (3) 0xF + parent link (33 Wy
up link (25 ro2 (1) Wy
ptls (3) f 0xF + down link (s3) We
ptla (4|1 sibling link (37) wr

A.2 Preemption token

The preemption token is the list token of the token-based-preempted-thread-list:

map link (20 centa wo
prev link (g cnts (1) W1
next link (o8 cnta (4] W2
lock link (50) enti (12) w3

map link: Pointer to the mapnode. Only the head of the list points to the mapnode.
prev link: Previous element in the list.

next link: Next element in the list.

lock link: The frame address to be locked.

cnt: Reference count. The counter is split into 4 parts cnty - enty.

A.3 Root overrun token

+

count (28) ai (3) wo

count: Reference count. Note only threads of the same address space may reference
this token.
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ai: Reference cache. This cache contains a copy of the reference cache in the root
mapnode, if this root mapnode has been overrun.

t: A root overrun occurred if this flag is set.

A.4 Multiple pagesize support

The dual node data-structure stores the dual nodes. Those nodes are used to link the
root array structures into the tree. Root array nodes are represented by the two data
structures rootnode and mid-rootnode. The first is allocated only for the smallest
hardware page-size. The second is allocated for all other page-sizes.

A.4.1 Dual node

map link (a9 ()M  Wo
unmap link (9 @|ul w1
root link (30) 2y W2
splitup list (2g) P (4) w3

map link: Pointer to the previous mapnode. This node has split mappings that are
stored in the root array structure this node links to.

unmap link: Pointer to the next mapnode.
m: Always 0 (see mapnode).

u: Always 0 (see mapnode).

root link: Pointer to the root array structure.

ps: The pages of the mapping nodes in the subtree, the root array nodes point to are
of the size ps.

splitup list: Pointer to the split-token-based-preempted-thread-list.

A.4.2 Rootnode

LL:

map link (g prliml  wy

map link: Pointer to the next mapnode.

m: Set if the map link points to a dual node.
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i: Mid = 0 because rootnode is allocated for smallest page-sizes only.

p: See mid rootnode below.

LL-Tree:

map link (g prlim wo

child link (27) (5) w1

child link: Pointer to the left most child.

LL-01:

map link (59 iml  wp

down link (59 Ph w1

down link: Pointer to the first leaf of the subtree.

A.4.3 Mid-Rootnode

Structure of rootnode wg .. Wy

root link (30 P Wn+1

root link: Pointer to the next root array.
i: Mid = 1, the root array node is a mid-rootnode

p: The pages of the mapping nodes in the subtree, the root array nodes point to are
of the size p.
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