
— Draft of April 22, 2002 —

Prototypical Design and Implementation of
L4-SMP Microkernel Mechanisms

Marcus V̈olp

Supervisor: Prof. Dr. Jochen Liedtke

Universiẗat Karlsruhe

1 Einleitung

Speichergekoppelte Multiprozessorrechner finden ihren Einsatz als
mittelgroße Serverrechner und Hochleistungs- Arbeitsplatzrech-
ner. Symmetrische MultiProzessor (SMP) Systeme bilden aus
der Sicht eines Programmierers die einfachste Architektur eines
speichergekoppelten Multiprocessorrechners. Die einzelnen
Prozessoren eines SMPs sindüber den Speicherbus (oder eine
Kreuzschiene) mit einem gemeinsam nutzbaren Hauptspeicher
verbunden. Dies erleichtert die Entwicklung von Anwendungen
und Betriebssystemen verglichen mit NUMA Architekturen oder
nachrichtengekoppelten Multiprozessoren.
Gleichwohl ist die Entwicklung eines SMP-Betriebssystems, selbst
für eine so einfache Architektur wie den SMP noch eine große
Herausforderung. Der zusätzliche Grad an Parallelität wirft dabei
Probleme auf, die mit konventionellen Lösungen nicht mehr zu
lösen sind, da das Aus- / Anschalten von Unterbrechungen (inter-
rupts) nur prozessorlokal wirksam ist.

Der L4 Mikro-kern ist einer der schnellsten derzeit verfügbaren.
Er steht auf folgenden Einprozessorrechnern: MIPS, Intel x86,
Alpha und Arm zur Verf̈ugung. Verschiedene Partnerprojekte
implementieren Anwendungen, Betriebssystemkomponenten bzw.
eigensẗandige Betriebssysteme auf L4-Basis wie zum Beispiel:

1. L4Linux1 ist ein Linux Betriebssystem, welches als Applika-
tion im Nutzermodus auf dem L4-Mikrokern abläuft.

2. DROPS 1 ist eine Echtzeiterweiterung zu L4Linux,
welche den gemeinsamen Betrieb von gewöhnlichen, wie
auch speziellen Applikationen, die Rechenzeitzusicherungen
ben̈otigen, erm̈oglicht. F̈ur erstere wird L4Linux, als Betrieb-
ssystemserver verwendet. Letztere können auf spezialisierte
Server zur̈uckgreifen.

3. Saw Mill Linux 2 ist ein Multiserver Linux Betriebssystem.
Bestimmte Betriebssystemdienste sind dabei als einzelne,
eigensẗandige Server realisiert, die nach Bedarf zusam-
mengef̈ugt bzw. ausgetauscht werden können. Diese erḧohte
Flexibilität kann u.a. dazu verwendet werden, auf besondere
Situationen zu reagieren. So kann das Betriebssystem etwa
auf den Verlust der Netzspannung, z.B: falls der Laptop vom
Strom genommen wird, reagieren und von hoch performanten
auf stromsparende Server wechseln.

4. Mungi 3 ist ein Einadressraum Betriebssystem. Alle Pro-
gramme teilen sich dabei einen einzigen grossen Address-

1TU Dresden:
http://os.inf.tu-dresden.de

2IBM Watson, Universiẗat Karlsruhe, TU Dresden:
http://www.reseach.ibm.com/sawmill

3University of New South Wales:
http://www.cse.unsw.edu.au/ disy/Mungi

raum. Dies hat zur Folge, da/3 Verweise auf Speicherbereiche
globale G̈ultigkeit haben.

Diese Studienarbeit untersucht, welche Auswirkungen ein sym-
metrischer Multiprozessor auf das Design und die Implementierung
eines L4 SMP Mikrokerns hat. Insbesondere wird der Einfluss des
SMP auf die grundlegenden Abstraktionen des L4 Mikrokerns un-
tersucht: Threads, Addressräume und Interprozess Kommunikation
(IPC).

1 Introduction

In the past years, shared memory multiprocessors became widely
used as midrange servers and even as high end workstations. Sym-
metric Multi Processors (SMPs) form the simplest architecture of
shared memory computers from the programmers point of view.
Several equally functioning processors are connected through the
memory bus (or a crossbar) with memory modules. Accesses to
those modules occurs in a unique manner for all processors. This
makes the development of applications and operating systems much
easier than in Non Uniform Memory Architecture (NUMA) pro-
cessing or message coupled multiprocessors.
Never the less, the explicit parallelism of the applications and op-
erating system servers, makes the multiplexing of the CPUs much
more difficult because, first the number of CPUs are increased and
second the invariant that when disabling the interrupts no other
program beside the one disabling the interrupt will interfere is no
longer true.
This problem leads to the challenge of how to design and imple-
ment efficient Operating Systems for SMPs in particular and Mul-
tiprocessors in general. However this thesis will deal with SMPs
only.
The L4µ-kernel has proven to be one of the fastest microkernels for
several uniprocessor systems like MIPS, Intel x86, Alpha and Arm.
Several partner projects are building applications and OS compo-
nents or even whole operating systems on top of L4:

1. L4Linux1 is a user level implementation of the Linux operating
system which runs as a normal application in user mode.

2. DROPS1 is a realtime extension to L4Linuxthat allows to
run a mixture of normal Applications and specialized ones,
requiring certain guarantees of computation times to do their
work, on the same CPU. The first kind of applications use
L4Linux as the operating system server. The last kind can rely
on specialized servers.

3. Saw Mill Linux2 is a decomposed multi-server Linux oper-
ating system. Certain operating system services are imple-
mented as several independent servers that can be composed
and exchanged on demand. The increased flexibility of such
a system can i.e. be used to adapt the system to special situ-
ations dynamically. When i.e. the Laptop is unplugged, the

— Draft of April 22, 2002 —

high performant servers can be swapped out and exchanged
by special power saving ones.

4. Mungi3 is a single address space operating system. All ap-
plications share a single huge address space which has the
immediate consequence, that pointers holding an address are
valid through the entire lifetime of the system.

Both, the increasing relevance of multiprocessors and the appli-
cability of the microkernel approach motivates for a L4-SMPµ-
kernel. This thesis will describe the prototypical design and im-
plementation of L4 SMP mechanisms. In particular it will try to
answer the question which extensions have to be introduced to the
basic uniprocessor concepts: threads, address spaces and inter pro-
cess communication.
The following two sections give a brief introduction to the L4
uniprocessorµ-kernel and to such parts of the Intel Pentium hard-
ware that are relevant for SMPµ-kernel design and implementation.
Those two sections are included in the paper to give a brief intro-
duction to the environment, the remaining part of this thesis is based
on. Readers that are familiar with the Pentium hardware and the L4
µ-kernel should skip these sections and continue in section 4.

2 The L4 uniprocessor µ-kernel

Monolithic kernels suffer from their inherent complexity and in-
flexibility. Changing the behavior of a single component, like the
paging policy for example, requires at least recompiling the entire
system. Faults and errors in the new component might propagate to
other components and thus may effect the whole system. Ensuring
fault tolerance of the system, has to take into consideration the
entire operating system and not only the changed parts. Even parts
of the system that are not depending on the changed components
might suffer. Frequent errors in the new component (like an unini-
tialized pointer) may result in a system crash.

Multiserver operating systems help to tackle this problem. Each
component of the system is implemented as a server, running in user
level like any application does. Almost every modern processor
implements at least two modes: supervised and user level.

• User mode: Applications run in user level. They are pro-
tected from being modified by other applications and from
modifying other ones. Only a subset of the instructions of the
processor is available in user mode. None of these operations
can be used to harm or to compromise other applications or
to monopolize the operating system as a whole. I.e. disabling
the interrupts (withcli) cannot be allowed to be used in user
level, because if this instruction is used by an application, the
timer interrupt is disabled as well and the operating system
may not get control of the processor in time.

• Supervisor mode: Code running in supervisor (or kernel)
mode has full control of the entire system. It can use all pro-
cessor instructions, even those that might compromise the sys-
tem (when not handled with care like if the system runs in an
endless loop while interrupts are disabled withcli). In su-
pervisor mode, the kernel code can switch between different
applications.
When an application generates an exception, i.e. dividing by
zero, the processor switches from user to supervisor mode,
invoking a kernel method to handle this error. The handler
eventually aborts the application, whilst the remaining appli-
cations in the system stay alive. However, if the same excep-
tion would occur while running kernel code, the system will
crash.

On an Intel Pentium exceptions in supervisor mode will in-
voke a handler method as well, but if the error cannot be re-
paired (i.e. a division by zero), the system will crash due to
an abort of the kernel.

Figure 1: Monolithic Kernel vs. Microkernel

While monolithic operating systems run all their components
in supervisor mode, multiserver OS components are executed in
user mode. Just opposite to a monolithic kernel design we can
place each component in a separated and protected address space4.
Errors in one of the server components might crash this particular
server but none of the others. Thus the rest of the system will
survive. In particular a corrected version of the formerly crashed
component can be installed on the fly and tested for correctness.
Altogether, we have an environment, where we can test the compo-
nents incrementally, making the system more robust.
The mechanism to exchange servers on the fly increases the flex-
ibility of the system. Special servers can be loaded to adapt to
new situations, like the power example described in the SawMill
part of the introductory section 1, more than one server per OS
function can coexist in the system at the same time, allowing the
system to adapt to the requirements of specific types of application.
The same system can be used to support a large database and a
personal digital assistant PDA. In the first case high performing,
large servers are combined, while in the second case lightweight,
power and resource saving servers might be the better choice.
However two problems still remain: First, as described above, only
a subset of the processor instructions are available in user mode
and second, some part of the operating system has to remain in
supervisor mode to multiplex the processor among the user level
system servers and applications. Furthermore it has to handle
exceptions and interrupts. This is exactly what aµ-kernel does.

The first µ-kernel approaches were constructed by extracting
as much of the operating system’s functionality out of the kernel
and put this functionality into as many separate user level servers.
The remaining part of the kernel should be as general and flexible
as possible to allow a large variety of OS services to coexist. The
separated components of the OS were protected against each other,
in the same way as applications are isolated on top of a monolithic
kernel. Provided theµ-kernel is correct. Faulty servers may crash
but they can no longer affect other correct ones.

However, the first generationµ-kernels like Mach failed! The
large communication overhead between the extracted components
that was introduced by theµ-kernel mechanisms like IPC, made its
use for a multiserver OS unaffordable.

4However, we can place more than one component into one address
space if needed due to performance reasons.

2

— Draft of April 22, 2002 —

Learning that lesson, the development of a second generation ofµ-
kernels had begun. While the first generation tried to extract several
parts out of an existing monolithic kernel, L4 was designed from
the scratch. The goal was to find a minimal but high performing
set of mechanisms, implemented in theµ-kernel, with which any
reasonable policy can be build on top. L4 implements only three
basic abstractions to achieve this goal: Threads, Address Spaces
and Inter-Process Communication (IPC). Threads and address
spaces are used to multiplex the CPU and memory. Inter-Process
Communication (IPC) is used to overcome these protection borders
introduced by address spaces in a save manner. In the following
subsections these three fundamental mechanisms and their usage
for the uniprocessor L4µ-kernel are described.

2.1 Threads

In L4, threads are small entities of code that can be executed con-
currently. In contrast to the event model, threads are created and
live until they are explicitly deleted. Synchronization between dif-
ferent threads has to be done explicitly through IPC for example.
The opposing model, the event model can be shortly described as
follows. On an event, a thread is created, computes and dies when
it has finished its work. In between or when dying the thread might
trigger further events that leads to the construction of further event
handling threads. Multiple of those events can coexist in the sys-
tem and are handled in parallel. In the event model, the threads do
not explicitly communicate with each other, they use the events in-
stead to trigger the service needed. Instead of synchronizing with
other threads implicitly, in the event model, those events implicitly
synchronize concurrent activities. I.e. in a matrix multiplication,
multiple events are triggered by the compute thread to activate the
working threads. When finished computing its part of the multipli-
cation, the working thread generates an “I am finished” event and
the compute thread collects all this events and if all working threads
finished, it can combine the results to the global result of the matrix
multiplication. So what was achieved in this example is a barrier
synchronization through events. In opposite to a thread model, the
worker threads are created on the first and die on the second event.
However, since the threads in the event model does not store state
information at the time they die on an event, the state has to be
included into those events. While in the thread model it makes a
difference whether an IPC (i.e. a call to a server to trigger some
action) is send in the if or in the else path of a client’s code (i.e. if
(condition) IPC: add (a, b) else IPC: subtract (a, b)). In the event
model, dependent on the condition, one of two different events, rep-
resenting the condition has to be triggered (i.e. condition true re-
quest add, condition false request sub events).
Because of this, L4 uses the thread model instead of the event
model.
The information needed to manage and control a thread is stored
in its Thread Control Block TCB. In the TCB, the current state
of a thread is stored, i.e. if it is ready to run, waiting for another
thread or currently communicating to another thread through IPC.
Within a thread switch, the general purpose registers, the stack and
instruction pointer are stored into the TCB of the current thread and
reloaded from the TCB of the thread to run next.

2.1.1 Scheduling

To be flexible, L4 does not implement certain high level schedul-
ing policies, but keeps this to the responsibility of a user level
scheduling server. However due to performance reasons, fine grain
scheduling is done by the kernel. The user level scheduling server
can parametrise this fine grain scheduler for each thread under its
control through the system callthread schedule. Those control

parameters for theµ-kernel’s dispatcher (fine grain scheduler) are
located in the TCB as well.
A thread can voluntarily release the CPU by callingthread switch.
This call can be parameterized to switch to a specific thread or to
let the dispatcher decide for the next thread to run.
In this case the dispatcher will chose the ready thread with the high-
est priority in the system. The priority of a thread is one of those
above described control parameters that is stored in its TCB.
In addition, each thread has a period of time, the timeslice, that
limits the time, the thread is allowed to run on the CPU. When the
timeslice expires, the dispatcher is invoked and will chose the next
ready thread of that priority in a round robin manner. So to sum up,
ready threads with the same priority share the CPU in rates spec-
ified by their timeslices as long as no higher priority thread gets
ready.

2.1.2 Thread Creation

Lthread ex regs is used to modify a thread’s instruction pointer,
stack pointer and pager (see below). Threads are created by setting
the instruction pointer to a valid value (Note, address spaces are
only the first 3GB of the available hardware space. So above 3GB a
user level instruction pointer is invalid because this area is reserved
for the kernel).Lthread ex regs works only for threads, sharing
the same address space. So the first thread has to be created in
different way. This is done when the address space is created. In the
nextµ-kernel version, threads will be created through the explicit
operationthread control.

2.2 Address Spaces

“What is an address space? To answer this question we take a
whole portion of nothing and call it an address space. In addition
we let threads operate in it and if they touch somewhere in that
nothing, it is up to the operating system to back the touched loca-
tion with a page of physical memory.”

When in the Intel Pentium processor the protected mode and
paging is enabled, the memory management change from direct
handling of physical memory to virtual memory. The physical
memory is split up into equally sized portions called frames. Each
frame is 4KB large and aligned, i.e. starts with an address that is a
multiple of 4KB.
The addressable area (4GB for a 32 bit address bus) is split up in
4KB regions as well. Those regions are called pages. We now
introduce another level of memory: Virtual memory that is the ad-
dressable area, so consists of pages. Note the size of the pages are
processor dependent, the Intel Pentium offers two different sizes
for example: 4 KB and 4 MB, but for simplicity reasons, address
spaces and mapping is explained for 4 KB pages only.
The page tables are used to store a map containing all information
needed to translate an access to a virtual page, i.e a virtual address
to a physical frame that backs that location. Accesses to a virtual
page are automatically translated by the Memory Management Unit
(MMU) into accesses to a physical frame by parsing the page tables.
The Intel Pentium hardware for example has two level page table
scheme. The virtual address (sometimes called linear address) is
divided into three parts: an offset (the lower most 12 bits), and two
indices (10 bits each) to address the first and second level page ta-
ble entries. Starting from the Page Directory Base Address register
(PDBA), that contains the offset of the first level page table, called
page directory, the upper 10 bits of the address are used to find the
page directory entry. This entry points to the starting address of the
second level page table (simply called page table). The mid 10 bits
of the virtual address index a page table entry that points to a 4 KB
page frame. The lower most 12 bits of the page table entry are used

3

— Draft of April 22, 2002 —

to decode several page attributes i.e. if the page is read only, or if
the frame is present at all.
Note, not all pages have to be backed by a frame (entry is not
present). Neither has to exist a translation to all the physical frames.
Each page may map to (i.e. be backed by) either zero or exactly
one frame. In the first case, we say the page is not present and if
accessed, the hardware will raise a pagefault. Multiple pages may
point to the same frame but one page may point to no more than
one frame.
With this, the entire address range of the processor can be used,
though not all addresses need to be backed by a frame at the same
time. In addition each thread or group of threads may have its own
virtual memory, called address space. When switching to a thread
that does not share this address space, the page tables are exchanged
and with this a new mapping of pages to frames is established.
In the paragraph above, mapping is used in its mathematical con-
text. The term mapping was used to describe pairs: page to frame.
Now we will use the term mapping for an operation on pages. We
will see, that there is not much difference. Above, the term de-
scribed a relation between virtual to physical addresses, i.e. pages
to frames. Now we use the term for describing a relation between
two pages, i.e. between two virtual addresses and construct an ini-
tial mapping concerning the physical addresses.

Figure 2: Virtual to physical address translation

L4 reaps benefit of the virtual memory concept to construct its
address spaces. In a monolithic system it is up to the operating
system to ensure, that the mappings of two address spaces do not
overlap involuntarily. When each address translates its pages to a
disjunct set of frames, there is no way for the first to corrupt the
data in the pages of the second address space.
In L4, the construction of address spaces is up to user level pag-
ing servers, threads that run itself in an address space. Assume by
magic, these address spaces get some data, i.e. a mapping (mapping
in the formerly described sense) of some pages, backed by frames,
was established. Address spaces can now be constructed by sharing
pages. The threads that share the pages with the new address space
are called this address space’s pagers. Those pagers can only share
pages owned by themselfs, i.e. only those backed by a frame can be
shared. This operation is called mapping. It is performed by theµ-
kernel on behalf of the pager. When a page is mapped to an address
space, theµ-kernel parses the page tables, like the MMU does, to
find the frame of the page to be mapped and creates a corresponding
translation in the target’s address space’s page tables to exactly that
frame. As a result, the page is now visible in both address spaces.
To avoid magic in theµ-kernel (because this is really hard to im-

plement), we construct an initial address space called sigma 0 and
establishes a mapping to all available frames (i.e. to those not used
by theµ-kernel itself) by hand.
From this point on mapping works from address space to address
space and operates on pages, i.e. virtual addresses. For the user
level pager, frames are no longer visible.

To sum up, address spaces cover the entire address range of the
processor, the entire virtual memory. However not all virtual mem-
ory locations (pages) may be covered by physical memory (frames).
They exist per thread or per set of threads and multiple address
spaces may coexist in the system. Two address spaces, with non
overlapping mappings, that is taken an arbitrary page from one
and another from the second address space, these pages will not
be backed by the same frame. In that case a protection border is
established, because threads in the first cannot corrupt the second
address space’s memory.

2.2.1 Mapping and Granting

Figure 3: Mapping and granting pages

In L4 based systems, address spaces are constructed hierarchi-
cally by mapping (i.e. sharing) or granting (i.e. donating) pages
from one address space to another. The entire hierarchy with sigma
0 as the root pager, is built up by mapping or granting pages from
address space to address space, so from virtual to virtual address.
Despite those operations, map and grant and an additional opera-
tion to undo a mapping: unmap, the construction of this hierarchy
is done by user level threads. Mapping works such, that a thread
in one address space, the mapper, invokes theµ-kernel to map
pages, that are in its address space to the destination’s thread,
the mappee’s address space. To make this operation secure, both
partners, the mapper and the mappee have to agree on the mapping,
which makes this a synchronous operation. In addition, the mapper
specifies the page that will be mapped and the mappee has to spec-
ify the destination where to map to. This has to be done to avoid
interferences, i.e. a mapper maps a page to a location where it
may harm the execution of threads of the mappee’s address space,
like when mapping a data page to a code page. Because of the
similarity of the control requirements, mapping and granting are
implemented as special message types of IPC (see below).

2.2.2 Unmapping and Pagefaults

By accepting a mapping, the mappee automatically agrees, that
the mapper can revoke this mapping any time. A mapping can be
revoked or weakened with the system callfpage unmap. Weak-
ening a mapping means that the page is not removed, but that the
access rights are changed to read only. Other architectures allow

4

— Draft of April 22, 2002 —

independent access rights for reading, writing and executing, so
weakening in those architectures would allow write only, execute
only, read execute, write execute and so on access right combina-
tions.
In contrast to mapping or granting, unmapping has to be asyn-
chronous. This means that the unmap operation will be performed
immediately and will not wait for the mappee’s agreement. This
is necessary to avoid that the client (the mappee) postpones the
unmapping request for pages formerly mapped by the server (the
mapper) because of a denial of service attack by the client or simply
by not listening to unmap requests. The asynchronous unmapping
is for example being used by pagers implementing swapping.
Before the memory pages are swapped out to disk the pages are
unmapped, so that the clients of that pager can no longer use the
page.
With these three operations: mapping, granting and unmapping,
any policy can be implemented for constructing address spaces. But
one point remains open: What happens if a thread accesses a not
present page? As described above, a pagefault is raised by the hard-
ware when either the page is not present or was mapped read only
and is written to. Theµ-kernel receives this page fault exception
and translates it into an IPC to the pager of the faulting thread. This
pager can be specified through the systemcalllthread ex regs and
is a thread being established to handle pagefault messages. With
this mechanism, any reasonable paging policy can be implemented.

2.2.3 Address space creation

Address spaces can be created and deleted through the system call
task new. This systemcall automatically initializes the data struc-
tures needed for an empty address space and creates the first thread
in this address space, which then can create the other threads with
lthread ex regs. L4 Version X was build around a task concept. A
task is an address space with a set of threads, sharing this address
space. The nextµ-kernel Version 4 X2 will weaken this concept
by creating the address spaces of the threads implicitly. Threads
that are supposed to share the same address space can be created by
specifying the thread, whose address space to share with.
The first thing this newly created thread will do when being started
is to raise a pagefault on its code page, since the address space was
created empty. This pagefault is send to its paging thread which is
now able to fill the address space with content using the mapping
IPC.
Up to now, we have learned about how to multiplex the CPU
and memory and how address spaces establish protection between
threads of different address spaces. Threads within the same task
can interact easily via their shared memory. However how to inter-
act with threads outside an address space?

2.3 Inter-Process Communication

Inter-Process Communication (IPC) is a mechanism to overcome
the restrictions introduced by address spaces. An IPC enables
that the two communicating threads can exchange data (a few
bytes only, several strings, or map or grant memory pages). IPC
is synchronous, which means both partners have to agree on the
communication. In particular the first blocks until the second is
willing to perform the communication. While waiting for the part-
ner thread to start the send / receive phase of the IPC, this thread
will be inactive. To avoid that one of the communicating thread can
compromise the others data, the receiving partner has to specify the
destination, where to map or copy the data, while the sender has
to specify which data to transmit. In addition, both partners can
specify two timeout values. The first one specifies the time that the
sender / receiver is willing to wait for the partner to get ready for

the transmission.
The second timeout limits the time for the partner’s pager to handle
page faults that may happen during an IPC. While the first timeout
allows to react to a never responding threads, the second is needed
to avoid attacks by a never responding pager.

Figure 4: Uniprocessor IPC path

With this mechanism communication between untrusted partners
(like a client with a server) can be established. A typical scenario is
a call (i.e. an atomic send and receive operation) from the client to
the server with timeout infinity, because the client trusts the server
to do the job, followed by a reply and wait (a send to the specified
thread followed by a receive from any thread) from the server with
timeout 0. The server does not trust its clients and will discard the
message if they are not listening to the answer (timeout 0). In this
scenario, the send phase of the call from the client corresponds with
the receive phase from a reply and wait operation from a previous
job to trigger the job on the server side. When the work is done, the
send phase from the server’s reply and wait operation corresponds
with the receive phase of the call. After answering, the server is
waiting (ready to receive) the next job, while the client that was
waiting for the servers answer is released and continues.
Though IPC is required for inter task communication only (intra
task communication could also be handled though shared memory),
IPC works for intra task communication as well. Since most client-
server protocols require only very short messages, special optimiza-
tions are done for very short messages that fit into registers.

2.4 Mirroring and Control of the Processor

The preceding sections showed how the CPU and memory of a pro-
cessor can be multiplexed. However theµ-kernel has to fulfill an-
other purpose: mirroring the processor features.
Since these special features are highly platform dependent. Some
are even processor stepping specific (like the performance monitor-
ing facilities), I will describe only another two examples: Interrupt
and Floating Point Unit multiplexing.

• Floating Point Unit: L4 multiplexes the Floating Point Units
FPUs to enable concurrent accesses of several threads. This
requires to save the state of the floating point unit including
all registers on each thread switch. The next time, this thread
gets the CPU, the registers have to be restored again.
The Intel x86 hardware allows the FPU to be secured from
accesses through others. Any access to a secured FPU raises

5

— Draft of April 22, 2002 —

a fault. L4 catches this fault and if the same thread has caused
the fault, no registers have to be saved. Only when a differ-
ent thread accesses the FPU, the registers are saved to the old
thread’s TCB and restored from the new one’s.

• Interrupts: In a monolithic operating system, the bottom half
interrupt handler is directly attached to an interrupt. This han-
dler is usually invoked in a disabled interrupt state to avoid
another interruption before the handler can set-up the infor-
mation for the upper half handler.
In a µ-kernel based system, multiple of those handlers may
coexist. Some may require direct control of the interrupt line,
like the bottom half handlers or specialized interrupt handling
routines. Some others may be satisfied with an acknowledg-
ment that a specific interrupt has occurred, like the top half
handlers.
L4 installs an internal interrupt handler for each line, that
translates the interrupt into an IPC from a “hardware thread”
to the handling routine, that waits for that interrupt (receive
from hardware thread). With this mechanism, it is achieved
that high priority threads are preferred compared to lower pri-
ority interrupt handlers. We may even distribute interrupts to
a pool of handler threads. This is similar to a multithreaded
server.

Up to now, we know how the uniprocessor L4µ-kernel works
and that it is easy to build operating system servers on top of L4
like user level pagers and drivers. We know threads and address
spaces as two majorµ-kernel objects and IPC as a communication
mechanism between threads. The next section should give an un-
derstanding of the SMP hardware features of the Intel Pentium pro-
cessors which is the targeted platform for the implementation part.
For the design section, the Pentium hardware is general enough to
get a basic idea has to design aµ-kernel for other architectures,
too. Though certain parts may be different the behavior of the In-
tel Pentium hardware can be generalized to other SMP platforms,
i.e. similar orders of magnitude in the latencies of memory accesses
can be considered on cache coherent SMPs, though the exact imple-
mentation of the coherency protocol and of course the exact access
times may differ a little bit.

3 Pentium Hardware Support for
Cross-processor Communication

Intel x86 SMPs couple the 2 to 8 functionally identical CPUs
through a memory bus with main memory modules. Bus accesses
are guaranteed to be atomic. In addition, the bus can be locked to es-
tablish atomic read-modify-write operations. Memory accesses are
not ordered with respect to the other processors, but the accesses
of any single processor are observed by all the others (i.e. they are
snooped by the cache coherency protocol).

3.1 The Memory Hierarchy

Two fast memory modules (Level 1 and Level 2) represent pro-
cessor local caches. Whenever an access misses in the L2 cache,
the request is transmitted through the bus and carried out in one of
the memory modules. In addition, a bus snooping MESI protocol
establishes cache coherency. Both caches have 32 byte wide cache-
lines which are usually organized in 8 banks of 4 bytes each.

Figure 5: Intel Pentium SMP memory hierarchy

The L1 caches are virtually indexed and physically tagged and in
size and associativity exactly that large, that the index information
can be extracted out of the physical bits5 of the virtual address. On
a read or write, the index of the address is put in parallel into the L1
Cache and the Translation Lookaside Buffer TLB, that caches the
least recently used translations from virtual to physical addresses.
When hitting in the TLB, the physical address is compared to the
tags of the selected set of the cache and the data is delivered on a
match. In the case that none of the L1 tags matches, i.e. the L1
cache misses, the address is put into the physically indexed and
physically tagged level 2 cache. If the TLB misses, that is when no
translation exists for this virtual address, the MMU is triggered to
parse the 2 level deep page tables6 and refills the line in the TLB.
The page table entries itself are cached in the L1 and L2 cache and
read from it on a TLB miss. This is possible because the L1 cache
is at the same time virtually and physically indexed (see above).

3.1.1 TLB Shootdowns

The processor local Translation Lookaside Buffers are used to
cache the least recently used translations of virtual to physical ad-
dresses.
When switching to another address space, the same virtual page
may point to a new physical page frame. Without TLBs, switching
the page directory is sufficient, because an access to the virtual page
requires to walk the page tables and translates to the correct, that is
the new physical frame. Taking TLBs into account, a translation
of the same virtual page to the old physical frame may be cached.
Accessing the page would hit in the cache and finds the translation
to the old frame, instead of walking through the page tables. This
inconsistency may result in compromising the old address space.
To avoid this, the cached TLB translations of the old address space
have to be removed, i.e. the TLB has to be flushed.
To avoid this flushing, tagged TLBs were developed. In addition
to the two addresses a number representing the address space ID is
stored in the tagged TLB. Complemented by that ID, the virtual ad-
dresses differ and thus need not to be deleted explicitly. Untagged
TLBs like offered by the Pentium processors do not store this addi-
tional information. Due to this lack, virtual to physical translations
may be cached, though the corresponding entries in the page ta-
bles have been changed. To keep the TLB consistent, the modified
translations have to be flushed so they are reloaded the next time,
the page is accessed. Especially when switching to another address
space, the TLB have to be flushed and reloaded.

5the lower 12 bits of the virtual address specify the offset within a 4KB
pages.

6Intel calls these page tables page directory for the first and page table
for the second level

6

— Draft of April 22, 2002 —

The Intel Pentium offers two instructions, to invalidate parts of
the TLB: invlpg invalidates a single line,mov cr3 reg loads a
pointer to a page directory (specified in reg) into the page directory
base register (PDBA or CR3) implicitly flushing the entire TLB.
Both instructions work only processor local.
As an immediate result, deleting one or more page table entries
(Mapping a page to an occupied location is specified to unmap the
old page first. The implementation does no real unmap, but over-
writes the old page table entry. Switching to a new address space
can be viewed as deleting the entire page table.) has to result in
triggering the invalidation of the corresponding translations in all
TLBs. Even those of the other processors. This operation is called
TLB shootdown.

3.1.2 Cache Coherency

The Pentium processor has two caches L1 and L2 to hide memory
latency. The caches are kept coherent even in SMPs. This means,
that reading a value from the caches will always return the last mod-
ification, even when done by another processor. A bus snooping
MESI protocol establishes this coherency.
MESI stands for the possible states of a cacheline: exclusive mod-
ified (M), exclusive unmodified (E), shared unmodified (S) and in-
valid (I).
Initially the cache is in invalid state (I). When reading, the line is
filled and becomes exclusive unmodified (E). Writing to an exclu-
sive or invalid line would change the state to exclusive modified. In
the latter case the contents of the line is loaded from the underly-
ing cache / memory before the write is performed. When a second
processor P2 reads a line that is in exclusive unmodified (E) state
in P1’s caches, i.e. was read before, the read is snooped by both
processors. Instead of P2 changing to exclusive unmodified, both
processors will change the state to shared unmodified (S) noting
this line is in some other processor’s cache, too. When writing to a
shared line or a line not in the local caches (exclusive unmodified
in P1’s cache when P2 is writing), any processor, that holds this
line (P1), snoops the write and invalidates it before the write is per-
formed. When reading or writing to a line that is modified in the
other processor’s caches, the write is snooped similar to the last ex-
ample. But before invalidating, the processor holding the line (P1)
writes it through to memory, so P2 can read or write to it. Modern
chipsets no longer write through to memory and then read again
from the memory chips, but in parallel snoop the contents written
back to memory from the bus into the cache. For the read operation,
both cachelines are in shared state afterwards.

3.2 MESI, Cache and TLB Performance

In the last sections we learned how caches work, how the MESI
protocol establishes cache coherency and what to gain from TLBs.
This section should give an overall idea of how that hardware per-
forms. I will not describe any pathological cases since those special
cases occur very infrequently if at all in reality.
The measurements were done on a dual PIII SMP with a 450MHz
CPU, a 16 KB 4 way set associative level 1 and a 512 KB level 2
cache. The processors were plugged in a 440BX board with 100
MHz memory bus frequency and a 64 MB RAM.

3.2.1 Cache and Memory access times

To get a feeling about the order of magnitude of accessing cached
data compared to non cached date, I consecutively read a dword
from memory addresses, that correspond to the first dword of dif-
ferent cachelines and measured the delay of that operation with a
CPU internal cycle counter. To avoid side effects, I read one byte
of each page in advance, assuring that a valid translation is cached

in the TLB. To generate L1, respectively L2 misses, the caches were
flushed by reading some other data that clashes with one to be used
for the measurement. To get the overhead of the measurements it-
self, I also read a dword directly from a register. After preparing
the caches with loading the data, followed by to flushing of specific
parts I measured:

1. reading 256 dwords from register

2. reading 256 dwords that hit in the L1 cache. Each dword was
read from a memory location that would be stored in a sepa-
rate cacheline.

3. reading 256 dwords / lines that misses in the L1 cache, but
hits in the L2 cache.

4. reading 256 dwords / lines that misses in the L1 as well as in
the L2 cache.

on a single processor while the other one was idling without ac-
cessing the memory bus in between. Table 1 shows the cycles spent
for the entire loop, a single iteration of the loop, the time needed
for reading the line, without the overhead of the measuring loop
which are the cycles per iteration subtracted by the iteration cycles
for register reads. The last column is added to get an idea what is
happening on the memory bus. The cycles spend for reading a line
are transformed according to the frequency of the memory bus. 1
memory bus cycle equals 4,5 = 1 * 450 MHz / 100 MHz processor
cycles. So while only one tick is available to transmit data for the
memory bus, 4.5 ticks have to be spent in the CPU.

cycles per cycles per cycles memory bus
256 lines iteration per line cycles per line

Register 571 2,20 0,00 -
L1 hit 815 3,18 0,98 -
L1 miss 2491 9,73 7,53 -
L2 miss 11462 44,77 42,57 9,46

Table 1: Average times for cache and memory accesses of a dual
PIII 450 MHz

The results show, that accessing data within the L1 cache can
be done in one cycle. Actually two cycles are needed for L1 ac-
cesses, but two requests can be handled in parallel which results
in a 1 cycle average. Missing in the L1 but hitting in the L2 cache
takes about 8 to 10 cycles, delaying a program by one order of
magnitude, if the reads are not hidden behind the computations.
Data missing in the L2 cache, has to go through the memory bus
to the RAM modules, leading to a delay of almost another order of
magnitude (another factor of 5).
This result shows, that it really pays to reuse data in the L1 cache.
In the PII and PIII processors, certain prefetch operations are in-
cluded into the processor core that may be used to load data into
the L1 or L2 cache in advance, provided the bus is free and the
prefetch command can be setup early enough.

3.2.2 MESI performance

Table 2 shows the performance of the MESI protocol for the same
experiments like above with the difference that the same data is
read or written to by two processors. In order to do the measure-
ments, the cache on the first processor was prepared to hold 2 times
256 dwords exclusive unmodified in the L1 cache, i.e. a read on
this processor would hit the line, and 2 times 256 dwords (lines)
in modified state. Like in the experiments above, the addresses of
the data is chosen such, that each of the dwords accessed would be

7

— Draft of April 22, 2002 —

cached in a separate cacheline. Given that preparation the measure-
ment code will find the data in the caches in the right states.
One after the other, the following operations are performed by the
second processor:

1. 256 dwords are read, that were prepared to be in the first pro-
cessor’s caches in exclusive unmodified state. So the same
256 dwords were read before by processor one. The lines in
both caches change to shared state.E to S.

2. As above, except that the 256 dwords, that formerly were in
exclusive unmodified state in the first processor, are written
by the second processor. This results in invalidating the lines
in the first and setting them to modified state in the second
processor’s caches.E to M .

3. The next two experiments operated on modified data, i.e. on
data that was written to by the first processor. First, the
dwords are read by the second processor, leading to change
the state of the lines in both processor’s caches to shared un-
modified.M to S.

4. Second, the dwords were written by the second processor,
leading to an invalidation of the lines in the first processor
and the caching in modified state on the second.M to M .

5. The last experiment operated on shared lines, i.e. the dwords
are present because of former reads in both processor’s
caches. In this experiment, the second processor writes the
dwords leading to an invalidation of the lines in the first cache,
and changing the lines to modified state. In contrast to the M
to M case, the lines have not to be read into the caches before.
S to M.

cycles per cycles per cycles memory bus
256 lines iteration per line cycles per line

E to S 16902 66,02 63,82 14,18
E to M 13212 51,43 49,23 10,94
M to S 23482 91,72 89,52 19,90
M to M 23448 91,59 89,39 19,90
S to M 13211 51,43 49,23 10,94

Table 2: Measurement of the MESI protocol timings for the same
loop

The results show, that snooping a read on a unmodified line re-
quires about 1.5 the time of a L2 miss, because the cache has to
read the line from memory and to wait for the second cache that is
snooping the read, to modify the state of its lines from exclusive to
shared. When a modified line is involved, the costs double. In that
case, the line has to be written back to memory when snooping the
write, even if the second cache would modify the line again. Note
that the dirty lines have to be written to memory, before they can be
read into the second processor’s cache in the 440 chipset, the writ-
ten data cannot be snooped from the bus in parallel. Writing a line
results in reading it first, because the modifications may be done to
parts of the line only.
In the last experiment, writes to a shared line were measured. In
this case, the contents of the line has not to be written back to mem-
ory, but the cache lines have to be invalidated in the first processor’s
caches.

3.3 APIC

The Advanced Programmable Interrupt Controller (APIC) extends
the hardware interrupt mechanism by additional interrupt lines,

a clock and the possibility to trigger software interrupts in other
CPUs. To accomplish that, the APIC network consists of three
different units: the local APIC, the IO-APIC and a three line APIC-
Bus. Each CPU has a build in local APIC that allows to handle
processor local devices and contains a cycle counter derived from
the memory bus clock that can be programmed to trigger timer
interrupts. Each IO-APIC chip receives additional 240 hardware
interrupts (int 0 .. 15 are reserved) and delivers them through the
APIC-BUS network to the least loaded or one selected CPU’s local
APIC. Least loaded in this case means that the processor with
the lowest priority is selected. When receiving an interrupt, this
priority is raised. Compared to the 21 cycle short message for
delivering interrupts to a fixed location (see below), a 34 cycle bus
message is used that is send to all processors. Each processor’s
local APIC publishes its inverted priority for this case and that with
the lowest priority wins and receives the interrupt. In the same way
that the IO-APIC triggers an interrupt in a CPU, the local APIC
chips deliver Inter Processor Interrupts (IPIs) to other processors
[2].

For our purpose, IPIs are the most interesting feature of the
APIC, because they can be used to trigger some action in the other
processors. The sender, processor A initiates the inter processor in-
terrupt by writing its number into the Interrupt Command Register
(ICR). The destination processors can be selected through a mask
in the upper most byte of the ICR. Setting the nth bit selects the nth
processor as the target. In this mode, any group of the at most 8
processors can be selected as a target for the IPI. There are further
modes for machines with more than 8 processors, but in those, the
any-cast facility is lost, so either the APIC can deliver the interrupt
to one specific or all processors. The local APIC hardware acquires
the APIC bus, selects the target and initiates the interrupt. On the
target processor B, the currently running thread is interrupted (pro-
vided the interrupt was not masked) and the interrupt handler code
is activated. Though IPIs are software initiated, for the target pro-
cessor they are identical to hardware interrupts because they happen
asynchronously to the executing code. To acknowledge the inter-
rupt, the handler code on B can send an End of Interrupt (EOI)
message back to A, however A has to poll for this answer if it is
required. If A does not need an acknowledgment it may continue.

Figure 6: The Intel Pentium APIC and its network

8

— Draft of April 22, 2002 —

3.3.1 IPI Performance

To evaluate the IPIs, two numbers are of interest: obviously 1. the
time required to deliver the IPI and 2. the time, the target processor
is interrupted for handling the IPI interrupt.

1. IPI delivery time: The APIC bus is three lines wide and runs
at a frequency of 16 MHz. One of the lines is used as a clock,
the remaining two for data. A short interrupt message, i.e. a
message to a fixed destination requires 21 cycles on the APIC
Bus: 4 for Arbitration, 3 to specify the mode, 4 (8 bits) for the
interrupt number which can be up to 256, 4 (8 bits) to specify
the destination plus some checksum, status idle and normal-
ize cycles. On a 450MHz PIII this would sum up to roughly
590 processor cycles (Note one APIC bus cycle corresponds
to 450 / 16≈ 28 processor cycles).
I measured the time needed until the interrupt is delivered to
the target. To achieve this, the destination processor B polls
for the interrupt request register (IRR) in which a bit per in-
terrupt is set, if the request comes in. The target processor B
copies this information into some memory location, where the
sender polls for. While polling and copying, the interrupts are
disabled, so that the polling is not interrupted. A measures the
time between writing the ICR, i.e. sending the IPI and receiv-
ing the acknowledge in the memory location updated with the
IRR contents.
But why not measure in the interrupt handler? At first it is
not for sure that the cycle counter is synchronized. So reading
at the same time from the two processor local counters (on A
and B) may return different values. On the other hand, the
destination processor B has to finish the currently executed
instructions, flush the pipelines, refill the pipelines with the
interrupt handler code that has to be looked up first in the in-
terrupt descriptor table, change the privilege level and so on.
All this activity take quite some time (roughly YYY cycles)
and varies because of many reasons. Compared to that, trig-
gering the send in the ICR takes about 40 cycles plus another
20 for polling for the IRR to change. Additionally we have to
modify a shared line on B and reread it on A, but for this we
already know the time needed, which sums up to 50 + 90 =
140 cycles. This sums up to additional 200 cycles.
The measurements resulted in 1230 - 1250 cycles to deliver
an IPI and detect this in the above described manner. The es-
timated value was 590 + 200 = 790 cycles. The remaining
450 cycles (note this are 16 APIC Bus cycles only) can be ex-
plained by the work, done in the APIC state machine, before
the IPI is send over the APIC bus.

2. Interruption time: the second value of interest is the time,
the destination processor B needs to handle the interrupt
triggered by the sender A. To measure that, a thread reads the
clock in a closed loop. When being interrupted, the interrupt
handler stores the value read by the user level thread before
being interrupted and sets the loop condition to finish after the
clock was read one more time. The difference of the two val-
ues minus the time needed to store the first and set the break
condition is the time spent to enter and exit supervised mode
and invoke the interrupt handler. If in addition, the handler
code itself reads the cycle counter, a distinction between the
two phases: enter kernel mode and activate handler, and re-
turning to the interrupted thread again, can be distinguished.
In the Pentium processor, the hardware pushes the eflags
register, stack and instruction pointer of the user level thread
on the kernel stack. The EFLAGS register contains the state
of the processor immediately before the interruption. For the
loop break condition, the carry flag is used. The handler can
modify this flag by resetting it on the kernel stack, where it
was pushed when entering supervisor mode. When returning

to the user level thread, the EFLAGS register is popped au-
tomatically. In contrast to the EFLAGS register, the general
purpose registers are not pushed on the stack automatically.
So they can be modified by the handler code directly when
being used. The current system timestamp is read into the
processor registers immediately before the interrupt and im-
mediately after entering the handler code giving the cycles
needed to switch from user level code to kernel mode into the
handler code.
For the kernel entry phase I measured between 120 to 160
cycles. The exiting phase costs between 170 to 250 cycles.
Including the privilege level change from user to kernel and
back to user mode.

In total roughly 1030 (1230 - 200 for the polling) cycles after
the sending processor A writes its ICR to trigger the IPI, the inter-
rupt arrives on the destination processor B. B then enters supervisor
mode (provided the interrupt was not masked) and activates the in-
terrupt handler 120 to 160 cycles later. So about 1200 cycles after
processor A triggered the IPI, the handler code gets activated. The
currently running thread on processor B is interrupted for 290 to
410 cycles plus the time needed for executing the handler code. No
further interrupts of a lower or equal priority can be received by
B’s local APIC until B ends A’s interruption by writing an arbitrary
value to the End Of Interrupt EOI register of the local APIC. So to
sum up, every 1200 cycles (2µs) an IPI can be received by the
target processor B, that interrupts the currently running thread for
about 400 cycles (1µs). All at all, up to one third of the available
processor cycles may be spent in handling inter processor inter-
rupts. Two things can be concluded from this:

1. Inter processor interrupts should not happen more frequently
than once per 100µs to get no more overhead than 1% of the
processor cycles.

2. Kernel entries and exits should be avoided if possible.

4 Outlook of the Paper

The last two sections gave a brief introduction to the L4 uniproces-
sorµ-kernel, on which the following design is based on, and to the
Pentium hardware that is relevant mainly for the implementation
part of this thesis (see Section 8).
The remaining part of this paper is structured as follows:
Section 5 describes the major design goals of the L4 SMPµ-kernel
and section 6 the design itself. Section 7 summarizes the changes
to the system calls that are effected by the design decisions. In sec-
tion 8, the implementation issues on a Intel Pentium hardware are
described. Sections U and V explain the open points and conclude
the paper.

5 Goals

There are six major goals for the SMPµ-kernel design:

1. Flexibility

2. Generality

3. Performance

4. Compatibility

5. Transparency

6. Non Transparency

9

— Draft of April 22, 2002 —

The CompatibilityandTransparencygoals are required to pro-
vide backward compatibility to existing uniprocessor code. Such
software should not need to be modified to run properly on the SMP
µ-kernel. Thecompatibilitygoal ensures the interface compatibil-
ity, while the Transparencygoal ensures the compatibility of the
SMPµ-kernel mechanisms compared to the uniprocessor ones. In
particular this means that a task designed for an uniprocessorµ-
kernel should not have to care about SMP extensions.
TheNon Transparencygoal, however, enforces the support of SMP
specific applications (like parallel numeric programs - for example
matrix multiplication) and servers (like network or load balancing
servers).

5.1 Flexibility / Generality

The basic idea of theµ-kernel approach was to provide basic mech-
anisms to implement any reasonable policy in user level servers. To
achieve this, theµ-kernel mechanisms have to be as flexible and as
general as possible.
This particular goal has already lead to the design of the uniproces-
sor L4µ-kernel and hopefully will hold as well for SMPµ-kernels.

5.2 Performance

An application or server, designed to run on a uniprocessor, should
have the same execution time running on the uniprocessor machine
as well as on a specific processor of a SMP.
The bottleneck of tightly coupled SMP architectures is the memory
bus. It connects the processors and DMA chips with the memory
modules, but only one processor or DMA chip may acquire the bus
at one time. Because of memory bus contention, tasks accessing
memory on an SMP may lead to even worse results than if running
on two separate uniprocessor machines. Some preliminary ideas
dealing with these effects are presented in [1, 3]. The solution of
this problem however is out of the scope of this paper.
Never the less, theµ-kernel mechanisms should not suffer from
SMP side effects and therefore have to be carefully designed and
implemented.

5.3 Compatibility

Existing L4 application and OS servers should run on the SMPµ-
kernel without modification. This means that the system calls have
to keep their functionality and binary interface or at least we have
to provide backward (uniprocessor) compatible interfaces.
Some applications may rely on uniprocessor specific synchroniza-
tion mechanisms, like disabling interrupts. Those unconsciously
designed applications will not be supported any longer in the SMP
µ-kernel and may fail.

5.4 Transparency

In the large, it should be possible to construct and implement appli-
cations and system servers such, that how its threads are assigned
to the processors of an SMP does not effect their functionality. In
the small, a thread should see no functional difference whether its
partner thread is on the same or a different processor.

5.5 Non Transparency

Though at the first look, this goal contradicts to thetransparency
goal, both have to be taken into consideration when designing a
SMPµ-kernel. While thetransparencygoal requires to hide SMP
specific situations from existing uniprocessor applications to avoid
modifications in the code, thenon transparencygoal requires to

give user-level programs access to SMP specific features (like the
migration of threads) in a secure and comfortable way.

6 SMP specific µ-kernel Design

The measurements of the cache MESI protocol show that the
latency of accesses to shared data structures differ only slightly,
assuming the data reads have to fetch from main memory. For
cached data instead, the delay for cross-processor reads and writes
cannot be neglected. This holds in particular for performant critical
kernel mechanisms like IPC. Additional synchronization overhead
adds to this, when synchronization is required.
In the Pentium processors, only read and write operations are
guaranteed to be atomic. Some read-modify-write operations can
be made atomic by locking the memory bus during their execution.
However with none of those operations, more than one dword (4
bytes) can be modified7. So software synchronization primitives
like spin locks and semaphores are needed when having to syn-
chronize complex operations.

In the L4 µ-kernel only few “global” i.e. sharedµ-kernel data
structures, can be identified. Basically only mapping data including
the page tables and the coarse-grain wakeup queues are of such
type and have to be protected against cross-processor access. None
of those structures are used by time critical operations.

Thread Control Blocks (TCBs) and the ready queues, require
similar cross-processor access synchronization only if we decide to
have fine-grain inter-processor scheduling (dispatching) of threads,
that is if the dispatcher selects the next thread from a global pool
of ready threads. In that case, we would have to explicitly synchro-
nize every dispatching access to a TCB, even to the current TCB to
avoid inconsistencies. If not, per-processor dispatching data struc-
tures and some IPC tricks (see below) would enable us to man-
age TCBs such that cross-processor accesses can be restricted to
very special cases: cross-processor IPC, explicit migration to a new
processor and cross-processor TCB accesses by the system calls
lthread ex regs andthread schedule. None of those operations
– remember only cross-processor operations are listed – seems to
be first-class time critical.

6.1 Processor Scheduling Granularity and Migra-
tion

When pinning a thread – from its birth to death – to one spe-
cific CPU, fine grain scheduling automatically works locally only.
However, restricting aµ-kernel to this simple design contradicts
the flexibility goal. In multiprocessor operating systems, several
load balancing policies have been proposed, making use of thread
migration in case of overload situations. To support those kind of
policies, theµ-kernel has to offer some basic mechanism to migrate
threads. At first the granularity of such a migration mechanisms
is examined. This inflame when and how frequently threads may
migrate. (The discussion of how to migrate threads is postponed
for the time being.)

6.1.1 Implicit transfer through the dispatcher

Some older SMPs with small cache memories permitted quite
inexpensive transfers, nowaday SMPs do not. Transferring a thread
with a working set of 50 dirty lines and 50 read only lines – we

7Note: the Pentium string operations are implemented as a loop of a
single operation. Each iteration can be set to be atomic, but not the entire
loop

10

— Draft of April 22, 2002 —

assume that these lines are at least in the L2 cache – would require
roughly 90 cycles per dirty and 65 cycles per read only (exclusive)
line which sums up to 7750 cycles (see section 3.2). Between 4500
and 7750 cycles (10 - 20µs) on a PIII dual 450 MHz SMP are
required to transfer only the dirty (minimum time) or all (maximum
time) lines of this thread’s working set. It can be assumed that the
threads to be migrated have most part of their current working set
at least in the L2 cache. If not, it means that either this thread is
not scheduled for a long time, or that its working set was replaced
due to clashes with other frequently used threads. For the first case,
this thread will not be the primary target to reduce the load of one
processor. The latter case should be avoided by system design or
by cache coloring techniques.
The cycles needed to transfer the working set can even be worse
on machines with 4 or more processors because of memory bus
contention, i.e. due to concurrent bus accesses of the remaining
three processors (the source processor is not actively involved in
this transfer and may run another threads in between). Caches
contravene this delay, because accesses hitting in one of the caches
and not triggering cache coherency actions, do not require to access
the memory bus. In addition to that, there exists data that cannot
be cached effectively (i.e. video stream data or accesses to a large
database in a randomly or hashed manner). This analysis is e.g.
corroborated by the analysis and experiences of the K42 project
[5].
To sum up, executing a thread transfer more often than ones per
200µs seems to be unreasonable. This leads to

• Design decision 1:Fine grain scheduling will not implicitly
transfer threads to other processors. Migration has to be ini-
tiated by a user level scheduler.

There are three immediate conclusions from design decision 1:

1. Dispatching and fine grain scheduling works processor local,
this implies that ready lists and “short wakeup queues” have
to exist per processor.

2. The system callthread switch switches to processor local
threads only. Specifying a non local thread works as if nil-
thread was specified. In that case, the next ready and local
thread is selected to run.

3. Theµ-kernel has to offer some mechanism to let a user level
scheduler migrate threads.

6.1.2 How to migrate threads

Concluding fromdesign decision 1, the migration requests will be
initiated by a user level server. On the other hand it is obvious,
that someµ-kernel intervention is required, because threads are
µ-kernel objects. We still have to decide what type of intervention
is required for migrating threads.
The symmetry of the SMP architecture makes the decision on
which processor to run a thread independent from special features
of some processors in the system. Processor local vector computing
units for example need not to be taken into account.
The load of the system is controlled by user level scheduling
servers, that have to keep track of all relevant information i.e.
indicators of the load of the processors by themselves.
Because migration decisions are triggered by user level schedulers,
an in kernel migration mechanism has to consider the thread trans-
fer, only.

When migrating a thread from one CPU to another, its TCB has
to be deleted from all local data structures on the source proces-
sor and reinserted into the destination processor ones. Note,design

decision 1lead to processor local ready and short wakeup lists for
example.
One possible way is not to support a special migration mechanism,
that moves existing threads around, but instead to use the thread
creation and deletion mechanism. Migration would then mean to
delete a thread on one CPU and create a new thread on the desti-
nation processor. When implementing migration in that way, the
current state of the thread would be lost, so it has to be saved before
the deletion and restored afterwards. However the kernel internal
state is not available in user level, i.e. the list of sending threads,
that are waiting for the thread to enter the receive path, is present in-
side the kernel only. A second counterargument is the time needed
to create and delete a thread. Creating a thread requires to build up
and initialize a new TCB, which costs some time. Additionally, the
old TCB information cannot be reused without restricting the delete
operation.
Third, the current kernel implementation does not support real
thread deletion. A thread can be aborted by theµ-kernel or through
lthread ex regs, but its TCB will never be released.
This leads to

• Design decision 2:Migration has to be initiated by a system
call.

A system call is needed to migrate threads. Obviously this call
has to be somehow protected to avoid attacks against the load bal-
ancing and scheduling system (i.e. by migrating all threads to one
CPU). We extend the system callthread schedule, that already
controls the other scheduling parameters like timeslice and priority
by a parameter to specify the current processor. Changing this pa-
rameter will migrate aimed thread to the specified processor.
The thread schedule can only be used by threads with a higher
MCP. The maximum controlled priority (MCP) value of the sched-
uler thread specifies the highest thread priority it is allowed to con-
trol. Only the scheduling parameters of threads with a lower priority
than the MCP value can be modified withthread schedule. Nor-
mal, non scheduler threads, will have a MCP of 0, so they are not
allowed to modify the scheduling parameters of any thread in the
system. In the nextµ-kernel version, a specific scheduling server is
specified for each thread. Only this thread is allowed to modify the
scheduling parameters and by this to migrate.
So far, a thread can be migrated by a system call, initiated from a
user level scheduler. It will not be migrated by the dispatcher of the
kernel. Next we have to discuss some situations where the thread
itself may want to migrate, i.e. to be mobile.

6.2 Thread Mobility at µ-kernel Level

Mobility is a thread’s ability to migrate itself between several pro-
cessors.
Design decision 1 already rejects thatµ-kernel dispatching mi-
grates threads and also concludes in a way to let user level
scheduling and load balancing servers migrate threads by extend-
ing thread schedule.
However, two possible scenarios remain: restricted explicit thread
transfer and implicit mobility on IPC.

6.2.1 Restricted Explicit Thread Transfer

Explicit thread mobility would enable application threads to mi-
grate to other processors by themselves. Though nice to have, i.e. to
automatically parallelize a problem for computation and join again
to compute the results, this functionality has to be restricted to pro-
tect certain processors (i.e. those dedicated to realtime threads).
However since migration costs are about 1 to 2 orders of magnitude
higher compared to a call to a local scheduling server and since
more frequent migrations than once per 200µs result in drastically

11

— Draft of April 22, 2002 —

down performing the system, the additional short IPC per migration
to contact a user level scheduler is neglectable. From the policy
point of view it is always preferable to contact a user level server
when this additional performance loss does not hurt. This server
can implement an arbitrary migration policy and i.e. protect pro-
cessors dedicated to realtime threads from being burdened with ad-
ditional load.
To sum up, explicit mobility will not be implemented by theµ-
kernel. Instead a user level scheduling server should be contacted
which is able to migrate the thread using thethread schedule sys-
temcall.

6.2.2 Implicit Mobility on IPC

A somehow similar scenario is implicit mobility due to an IPC.
For performance reasons, a server or a client thread may want to
automatically migrate to the partner’s CPU to be able to process
on local and presumably cached data. Another reason might be to
improve the performance of following IPCs to the partner. If both
partners have to communicate frequently in the near future, the
higher startup costs for cross-processor IPCs can be saved, when
migrating to the partners processor at the first IPC. Especially for
short IPCs, where the startup costs dominate the overall perfor-
mance of the IPC, avoiding cross-processor IPC pays. For very
long messages, which means that probably not the entire message
fits into the caches and that some pagefaults may happen in be-
tween the transfer, the higher startup costs for cross-processor IPC
are neglectable.

Implicit mobility would allow a thread to specify whether to
automatically migrate to the partner’s processor on IPC. A server
thread that migrates on a receive would always migrate to its
clients processors before executing its task. A migrate on send
server would migrate to the client thread’s processor after it pro-
cesses its request on the last clients processor. The next obvious
idea is to let the server decide on a case by case basis whether to
migrate or not.
This example shows that mobility on send / receive is insufficient
and that any other, more complicated mechanism would include
policy. This makes the mechanism either to restrictive or not
general enough and therefore contradicts to theflexibility and gen-
erality goal.

Provided the kernel implements an efficient detection mecha-
nism for cross-processor IPC, an arbitrary mobility on IPC policy
can be implemented by calling the scheduling server after cross-
processor IPC was detected. This mechanism should even be pre-
ferred from the policy point of view, because the additional knowl-
edge of the desired communication can be taken into consideration
for the schedule. I.e. the scheduler may avoid to distribute com-
municating partners to different CPUs for load balancing reasons.
This leads to:

• Design decision 3:Theµ-kernel will not implement implicit
mobility on IPC, but support a fast cross-processor IPC de-
tection mechanism.

6.2.3 Detecting Cross-Processor IPC

Detecting cross-processor IPC is like a “two sided blade”. On the
one hand it is required to implement arbitrary mobility policies and
fast adaptation to the new environment for mobile threads, on the
other hand it opens a covert channel by allowing threads to mors a
message only by the information on which processor they reside.
Section 9.1 describes the problem of covert channels a little more
detailed. But since we currently do not know how to deal with

covert channels while having an acceptable performance indepen-
dent of a fixed security policy, we will ignore the problem for the
time being.
When talking about cross-processor IPC detection, two questions
have to be answered: When to inform the IPC partners, and what
information to deliver?

When to inform the IPC partners? The IPC operation is
implemented as a systemcall which means that usually supervisor
mode is entered and the kernel IPC code performs the operation on
behalf of the threads. The next kernel Version will implement an
IPC path for some special flavors of the IPC in user level, but fall
back to the within kernel IPC mechanism whenever needed. This
means that independent of when to inform the partners, the current
µ-kernel has to enter and exit supervisor mode. In Version 4, some
cross processor IPCs may be detected in user mode, saving the time
needed for the switch.
In general, cross-processor IPC can inform the communicating
partners before the message is copied or afterwards. In between the
copy sequence does not make sense, because no additional benefit
can be gained compared to informing before the message transfer.
A partly copied message is of no use and has to be copied again.
So two potential ways remain when to detect cross-processor IPC:
a) IPC signals the invoker that it has been a cross-processor IPC
after the transfer is completed, and
b) IPC fails in the cross-processor case before it happens.
Conceptionally a) is a trap, while b) is a fault.

XP-IPC detection after the message transfer Mecha-
nism a) extends IPC such, that it reports cross-processor IPC after
it happened. Despite the additional costs for moving the message
data to the destination processor’s cache, the major overhead of
cross-processor IPC is in the startup phase. For long messages, this
startup costs becomes less relevant, so detection after the message
transfer is not critical in those cases, assuming the message has to
be delivered anyway. For short messages, the additional overhead
of cross-processor versus processor local IPC has to be taken into
account. In those cases, detecting cross-processor IPC after the
transfer might be to late.

XP-IPC detection before the message transfer Com-
pared to a), mechanism b) informs the invoker before the IPC
happens. In the startup phase, the kernel checks whether IPC is
going to cross the processor boundaries and fault in this case. If
b) is implemented, any thread, even those that do not care about
cross-processor IPC, has to implement a recovery mechanism for
the cross-processor case. But this contradicts to thecompatibility
goal and requires code modifications to existing uniprocessor ap-
plications, which is unacceptable. To avoid this, the invoker has to
specify whether cross-processor IPC should fault or not, so when
enabled, the IPC will fail in the cross-processor IPC case. When
disabled, this mechanism degenerates to a). Obviously, mechanism
b) works only for the send phase of the IPC, that is on a send or a
call. For a receive only IPC this mechanism degenerates to a).
To avoid the additional overhead of mechanism a), we will imple-
ment mechanism b) which can be degenerated to a), by disabling
the faulting feature explicitly.

What kind of information will the detection mechanism
supply? Basically there are three different levels in the amount
of information that is useful to retrieve through such a mechanism:

12

— Draft of April 22, 2002 —

1. the information whether this IPC was cross-processor or not.
A single bit is retrieved that indicates if the IPC was cross
processor.

2. the partner thread’s processor number.
I.e. the number of the processors that are participated in the
IPC.

3. the partner’s processor number plus some guaranteed time in
which the partner is pinned to this processor. Which means
that the processor number of the partner will not be changed
within the specified time.

Retrieving thread pinning information The time infor-
mation retrievable through the third option can only be retrieved
through the partner’s user level scheduling server. Of course the
µ-kernel can be extended by a call to specify the time a thread is
pinned. But in addition, theµ-kernel has to ensure that this time is
not decreased and that no migration will happen in between. How-
ever this restricts thread migration drastically. Second, to retrieve
the information from the user level scheduler, the kernel has to send
the request and wait for an answer of this scheduling server which
creates a not acceptable dependency between those two. Either way
this option is unacceptable for aµ-kernel mechanism. In general,
no information that can’t be kept in theµ-kernel itself can be deliv-
ered.
Remaining, a decision between 1 and 2 has to be made.

Thread mobility For thread mobility there is no difference
between 1) and 2), because the migration requests can specify
the target processor implicitly through a target thread. For this
purpose a protocol like “Transfer me to B’s processor” should
always be preferred to a processor based like “Migrate me to pro-
cessor n”, because then the additional knowledge of the thread B
makes it easy for the scheduling server not to transfer B in between.

Adapting to thread migration Another scenario is when
adapting to a thread migration. That is when a thread B is some-
times contacted from thread A. In this scenario two possible
situations show up: B is migrated and has to detect on which pro-
cessor it currently is i.e. to contact a local thread of a multithreaded
server, or A has to detect the new position of B.
In the currentµ-kernel version (Version X), B has to ask its sched-
uler for its current processor. In the next version, B can read the
processor number of all threads of its task from the UTCB field:
processor number8. So when detecting a cross-processor IPC to
a formerly local thread, reading the UTCB field reveals the new
processor.
For A the situation is somehow different, because B might not be
in A’s task so A cannot read B’s UTCB field and B’s scheduler
might not be known to A. In this case, option 2 is required to find
out about B’s new location.

Drawbacks What drawbacks does the second option bear?
First, we decided to detect cross-processor IPC before it happens.
This means the message is aborted and that there are enough reg-
isters available to return the processor number. In the non faulting
case this might be a problem on processors with very few registers,
since the registers are in use for the message transfer. Then a single
bit for detecting XP-IPC is preferable (a status flag i.e. the zero or
equal flag can be used for this purpose). Despite this, transmitting

8The User Thread Control Block UTCB is a user level accessible part of
a threads TCB required to implement fast user level IPC

only one bit compared to at least 4 bits for the processor number,
reduces the bandwidth of potential covert channels, but only by a
factor of 8. This leads to:

• Design decision 4:Theµ-kernel will offer a mechanism to
detect cross-processor IPC in that way, that the sender of an
IPC can specify to abort the IPC in the cross-processor case.
In this case the kernel will return the processor number of the
target thread.

• Design decision 4a:Covert channels will be ignored for the
time being. The detection mechanism will be revisited for the
covert channel problem.

6.3 Address Spaces

Since L4 multiplexes the CPUs at thread granularity and not at task
granularity, two threads of the same task can be running on two dif-
ferent processors in parallel. But how does the address spaces look
like on this two processors? Thecompatibility and transparency
goal require the same address space layout, however thenon trans-
parencygoal leads to ask for the support of processor local data
structures.
The compatibility towards the uniprocessorµ-kernel leads to an-
other problem when looking at the above situation: How to deal
with concurrent memory accesses?

6.3.1 Processor Local Data Pages

L4 allows to compose address spaces by mapping or granting pages
into it. Beside the mechanisms for mapping, granting and unmap-
ping pages, the decision which pages to map where and when is up
to user level paging servers.
Shared memory multiprocessors can access any physical memory
location from any CPU. Nevertheless the access time to different
portions differ from fast for local memory to slow for memory that
is far away and has to be accessed via some interconnect. This
holds for NUMA architecture machines, but not for SMPs. Mem-
ory access in tightly coupled SMPs is uniform. However, a similar
effect can be observed when caching is considered (though in an-
other order of magnitude). Data in the local cache can be accessed
fast, while data in another processor’s cache may have to be written
back to memory first leading to even worse performance than if di-
rectly read from memory (see section 3.2).
When local data can be accessed faster in general, there is the ques-
tion for theµ-kernel to support local data, i.e. data structures that
are visible on one processor only. Theµ-kernel has no knowledge
about application internal data structures, however the kernel knows
pages and the application data is stored in memory pages. The map-
ping mechanism can easily be extended to support local data struc-
tures, i.e. local data pages. Each mapping is extended by a mask
specifying on which processor the pages are mapped. In the flex-
page structure, that specifies the pages to be mapped or granted,
there is no free field to store this information. So either thecompat-
ibility goal has to be ignored in this case or an additional flexpage
structure has to be introduced for the SMP kernel.
However, implementing this would require a page directory per pro-
cessor per task and for the local data pages additional page tables
per processor are required. With the same overhead in space, an ad-
dress space per processor can be created using the existing mapping
mechanism to build almost identical tasks, that share all, but some
local data pages.
To sum it up, processor local data pages are not supported. If
needed, this can be implemented in user level easily.

13

— Draft of April 22, 2002 —

6.3.2 Concurrent Memory Accesses

In general, concurrent memory accesses occur in the same way as
on uniprocessor machines. The only difference is, that at the same
time, more than one thread can have access to the shared data. De-
spite the atomic operations for reading and writing to memory, there
is no hardware mechanism to synchronize accesses, so this has to
be done in software. In the uniprocessor L4µ-kernel a thread can
be interrupted at an arbitrary position in the granularity of single
instructions9, i.e. when a higher priority thread gets ready to run.
Because of this, even in the uniprocessor system, synchronization
for concurrent data accesses is required.
Several monolithic operating systems offer a large variety of syn-
chronization primitives like semaphores, locks and monitors to syn-
chronize concurrent accesses to shared objects like files. The large
variety of different synchronization primitives and policies that ex-
ist, requires a user level implementation of such synchronization
primitives i.e. in a library or in special synchronization servers, but
for flexibility reasons not in theµ-kernel.
However in a uniprocessor system, atomicy and synchronization
can be achieved by disabling the interrupts for the time of the op-
erations to be atomized. In a uniprocessor system, the invariant
holds, that at most one thread is actively running on the CPU. If
this thread has a higher priority compared to all the others between
which to synchronize, only this one thread of those would be sched-
uled. Some applications construct synchronization primitives rely-
ing on this fact. However, since disabling interrupts has to be se-
cured to avoid that a thread can monopolize the system and since
scheduling should be orthogonal to synchronization and its policy
might even change when changing the user level scheduling server
or the kernel primitives, those implementations are simply incorrect
and short sighted and will not be supported by theµ-kernel. Soft-
ware relying on that type of synchronization may fail on a SMP
kernel.

• Design decision 5:Theµ-kernel will offer no special support
for processor local data nor for concurrent memory accesses.
Both can be implemented in user mode, easily.

6.4 Cross-Processor IPC

Thecompatibility goaland thetransparency goalalmost automati-
cally enforce the next design decision:

• Design decision 6:IPC works cross-processor as well as pro-
cessor local. Both flavors have identical functionality. IPC
can be used transparently. That means the communicating
partners don’t have to care about on which respective proces-
sors they run. However they can care about that using the
cross-processor IPC detection mechanism explained above.

This of course means that the API and ABI has to be identical
for the non detection case.

7 Affected Systemcalls

7.1 L4 Version X0

• ipc: Due to the lack of control bits in the input parameters,
the IPC abort functionality will be postponed until Version
4 X2. However on return the zero flag indicates if it was a
cross-processor IPC.

9Some of the Pentium loop instructions like the string operations are
interruptible after each iteration

• thread switch: Thread switch can be used to switch to
the specified thread, donating the remaining part of the own
timeslice. Since fine grain scheduling is processor local, this
call will not switch to a non local thread. In such a case, the
kernel dispatcher will look for the next local and ready thread.

• thread schedule: The input parameters are complemented
by the processor number10 Bits 16 - 19 of the param-word
hold the processor number. When specifying a valid proces-
sor number 1..k (where k is the highest available processor
number in the system), the thread will be transferred to that
processor. Specifying the processor number zero means no
transfer happens.

• l thread ex regs / tasknew: Both calls can be used to create
threads, the last one to create the first thread of a new task.
Threads will be created locally on the current processor of the
creator and have to be migrated to another processor on behalf
throughthread schedule.

• kernel info page: In the kernel info page, theµ-kernel pub-
lishes the highest available processor number (k processors
are numbered 1 .. k, 0 means invalid) in the 8-bit word at rel-
ative address 0xB8. The higher 24 bits are reserved for future
use, i.e. in n-way SMPs and NUMAs.

7.2 L4 Version 4 X2

• Schedule:specifying a valid processor number (1..k where k
is the highest available processor number) transfers the desti-
nation thread to that processor. Specifying the processor num-
ber zero means that no transfer will happen.

• Thread switch: Thread switch can be used to switch to
the specified thread, donating the remaining part of the own
timeslice. Since fine grain scheduling is processor local, this
call will not switch to a non local thread. In such a case, the
kernel dispatcher will look for the next local and ready thread.

• IPC: when the cross-processor fault bit f, bit 12 of the send
word 0 (snd.w0), is set, the IPC is aborted in the cross-
processor case. In this case the error code 7 is raised with
offset 0. In this case the processor number of the destination
thread is returned in XXX. After completion, bit 11 of the
receive word 0 (rcv.w0) is set if the IPC was cross-processor.

• LIPC: since cross-processor IPC requires kernel intervention,
LIPC will enter the kernel and setup the correspondingIPC
operation in the cross-processor case.

• Thread control: This call is used to create threads11.
Threads will be created locally i.e. on the creator’s current
processor. They have to be explicitly transferred through
thread schedule on behalf.

• UTCB: The threads current processor number is published in
the UTCB at relative address 12 (24 for 64 bit processors).
This field is read only, which means a write to this field leads
to undefined behavior and perhaps even to the destruction of
the task. The processor number is a value between 1 .. k
where k is the highest available processor number.

10The Bits 16 - 19 are defined to be zero in the Version X uniprocessor
API. Starting with processor number one and defining zero to no migration
will happen provides compatibility with the uniprocessor L4µ-kernel.

11Note lthreadex regs which is now exchangeregisters does no longer
create threads

14

— Draft of April 22, 2002 —

• kernel info page: In the kernel info page, theµ-kernel pub-
lishes the highest available processor number (k processors
are numbered 1 .. k, 0 means invalid) in the 8bit word at rela-
tive address 0x20.

8 Implementation

Up to know we discussed the design of a SMPµ-kernel, summed
up by the design decisions in section 6 and described the effects
and modifications to the system calls, i.e. the API of theµ-kernel
in section 7.
In the following chapters, we take a look at the implementation of
a L4 SMPµ-kernel on an Intel Pentium SMP. In detail we discuss
the implementation of the cross-processor IPC and its implications
on the thread control block structure. We consider what has to be
done to migrate threads and how to implement local data structures
efficiently. In the next subsection we discuss how to bootstrap a
SMPµ-kernel.

In a uniprocessor system, there is a helpful invariant, which
was used to implement most system call functionality in the L4
uniprocsessorµ-kernel: When running inside theµ-kernel, i.e.
system call code, there is no actively running thread on the CPU.
Disabling the interrupts ensures, the code is not interruptible.
Obviously this is not true for multiprocessor system, however a
similar invariant can be constructed:When running inside the
µ-kernel, there is no actively running thread on thecurrentCPU.
Disabling the interrupts ensure, the code is not interruptible by
processor localthreads.
The main difference is, that in the latter case some other non local
thread can be actively running and in a SMP system modify the
system call’s data concurrently (provided the thread is allowed to,
i.e. is executing some kernel or supervised code). Theµ-kernel
itself has to deal with this concurrency.

8.1 Single versus per processor µ-kernel in-
stances

When looking at a SMP as a uniprocessor with some few additional
processors plugged in, implementation decisions were derived from
uniprocessor kernels. The SMP features are viewed as extensions
to a uniprocessor design. On the other hand, when looking at a
SMP from the multiprocessor perspective, the SMP is a very tightly
couple of processor nodes. Having this in mind, the implemen-
tation decisions were derived from multiprocessor kernels. The
following section discusses both for deciding how to bootstrap a
µ-kernel.
When bootstrapping aµ-kernel on a multiprocessor machine, we
have to decide whether to start an instance of theµ-kernel on each
processor or node, or one single instance for the entire system. Like
mentioned above, the first idea is derived from multiprocessors,
while the second one is derived from an uniprocessorµ-kernel
design.

The single nodes of which a message coupled multiprocessor is
constructed are quite similar to uniprocessors. A CPU is connected
to memory that is locally accessible only. The several nodes are
connected with some kind of interconnect, sending data packages
around. In the cluster case, the individual nodes are real uniproces-
sor machines like PCs. In such an environment, the first idea would
be to use uniprocessorµ-kernels on each single node and add some
features (if possible as a user level server to keep theµ-kernel flex-
ible and small) to handle cross processor activity.
The SMP however has a very tightly binding of the CPUs in the

system to the memory modules. Single nodes can’t be identified.
In such a type of system on the first look, a single instance of theµ-
kernel would be preferred instead. In the following two subsections,
the two approaches are compared for building an SMPµ-kernel.

8.1.1 Per processor µ-kernel instance

A per processor instance of theµ-kernel requires to separate the
machine into p mostly independent parts, where p is the number
of processors in the system. Each single instance takes control of
its single part of the system, i.e. its physical memory and its CPU.
Design decision Xalready implies to have only processor local fine
grain scheduling and a certain processor locality for threads. So in a
per processor instance SMPµ-kernel, threads are only local kernel
objects. Only in cases of migration, a thread has to be transferred to
another processor, i.e. to anotherµ-kernel instance. Since threads
are local kernel objects, an interface has to be implemented in the
µ-kernel to send and receive threads.
Address spaces on the other hand are system global kernel objects.
L4 allows to schedule two threads that share the same address space
on two processors at the same time. But with this, inconsistencies
in the address spaces may occur, i.e. through concurrent mapping
and unmapping operations. Note not the operations itself bear the
problems, because threads can trigger concurrent operations on ad-
dress spaces in a uniprocessor system, too, i.e. when sending two
long IPCs containing overlapping mappings. Since long IPCs are
interruptible it is not guaranteed which of the two will win and get
its page mapped.
The problem of the concurrent operations is located in its imple-
mentation. Instead of an atomic modification of the page table en-
tries when mapping a page, like in the uniprocessor, the mapping
operations (that modify the page table entries) may be carried out
in parallel.
A per processorµ-kernel instance means that the maintenance data
for address spaces including the page tables are kept locally. This
requires some mechanism keep the maintenance data consistent,
like a MESI style protocol that was already presented for caches
coherency.
On the other hand, any one single instance of the per processor in-
stanceµ-kernel can be exchanged easily, provided the interfaces
remain unchanged. This can be done as easily as migrating all the
threads to the other processor’s kernels and back again after the ex-
change happened. This works because eachµ-kernel is completely
independent from the others and therefore increases not only the
availability of the system but as well the fault tolerance. A single
faulting instance will no longer affect the entire system.
Especially in SMPs, global while consistent data comes for free.
Even worse, the partitioning of the physical memory in the SMP is
not architectonical but has to be done artificially. A faultingµ-
kernel instance, i.e. one that references an invalid pointer, may
crash the entire system, because no architectonical protection be-
tween the memory modules are available. These arguments speak
for a single instanceµ-kernel for SMP systems.

8.1.2 Single µ-kernel instance

In contrast to a per processor instance, a single instance of the
µ-kernel can be chosen to control the entire system. In this model,
the µ-kernel implements per processor data structures as needed,
i.e. for threads and scheduling, but also shares global data. Shared
resources are managed globally, so no additional kernel interfaces
nor any partitioning of the system is needed.
Migration (see below) can be implemented easily as a cross proces-
sor operation on internal objects, accessing them through the shared
memory. However, exchanging theµ-kernel on the fly is a little
more complicated compared to having per processor instances. In
the worst case this requires to shut down the system and reboot

15

— Draft of April 22, 2002 —

with the new kernel, saving all threads in advance. Additional care
has to be taken when implementing theµ-kernel because of the
single point of failure, having a single instance only.

When considering caches, a similar situation like in a NUMA
(Non Uniorm Memory Accesses) case shows up. However the ac-
cess times are at least one to two orders of magnitude lower. Section
3.2 showed that accessing data in the local caches is about a factor
of 50 faster compared to accesses to main memory. This has to be
taken into account when implementing a highly performing SMP
µ-kernel.
For a per processor instanceµ-kernel, this is hard to achieve, be-
cause the interfaces have to be specified in advance and for a wide
range of different architectures and processors. Having a single in-
stance however, those tricks can be hidden in the implementation.
For a SMPµ-kernel we can conclude, that the benefits gained from
a single instance implementation dominate those of the per proces-
sor instance implementation. In this case, it is preferable to con-
struct the SMPµ-kernel starting with a uniprocessor implementa-
tion. So to sum up:

• Implementation decision 1: The µ-kernel will be imple-
mented as a single instance.

8.2 Bootstrapping and Startup

In the following section we look at how to bootstrap theµ-kernel
on an SMP system. Implementation decision 1 concluded to have a
single instance only, i.e. it is up to this single instance to initialize
and bring up all the processors in the system to a state, where the
threads can run on. The Intel Pentium hardware selects one sin-
gle processor to be activated when starting the machine. This pro-
cessor is meant to bootstrap the system and to initialize the other
processors. After this happens we end in a state, where a single
user defined thread (besides sigma 0) is started while all the other
processors are waiting to get a thread migrated to them. This user
defined thread and its address space (called booter task) is meant
to bootstrap the remaining basic user level servers needed. Note,
the bootstrap processor plays a special role only during the boot-
strapping process. After that it acts like any other processor in the
SMP.

8.2.1 An example bootup sequence

The following bootup sequence resulted from extending the L4
uniprocessor assembler kernel (codename lemon pip) with the re-
quired SMP functionality.
When the processor starts up, one processor, the bootstrap proces-
sor, wins and loads the basic kernel components. It switches to pro-
tected mode, initializes the processor local tables needed for paging
and initializes the basic interrupt handling routines. At this point,
the kernel sends a startup inter-processor interrupt (IPI) to all the
other processors in the system (called Application Processors AP)
to boot them up. While depending on the processor and the boot-
ing environment (DOS, Grub) the L4µ-kernel may be started on
the bootstrap processor in real or in protected mode, the applica-
tion processors start in real mode. The first part of the started code
switches to protected mode, using the tables initialized by the boot-
strapping processor. After synchronizing with all the other pro-
cessors, the bootstrapper initializes the memory pool and from this
point on all processors start their initialization of processor local
data, requesting memory from the system global pool. Since the
Interrupt Descriptor Table IDT can be shared, it is sufficient for the
bootstrap processor to fill in the descriptors needed to find the han-
dlers and the system call routines, provided the handler and system
call routines are reentrant.
After each processor has initialized the dispatcher thread (note, the

dispatcher thread needs to be processor local due todesign decision
1) and all local kernel tables are initialized, the application proces-
sors idle, waiting for a thread to be migrated from the bootstrap
processor.
After synchronizing with the application processors to know that
the system is up and waiting for threads to be migrated, the boot-
strap processor starts the booter task which is meant to bring up
the remaining system servers. The specified synchronizations are
of a barrier type, i.e. all processors wait until all processors in the
system reach this barrier. After this synchronization point, only
the bootstrap processor is running and the other processors wait
until being released explicitly. When no synchronization can be
achieved, that is when not all processors reply, theµ-kernel can
take some recovery actions i.e. to restart a single not responding
processor or to mask this processor out by reordering the processor
numbers such, that the highest available processor number can be
decreased.
During the bootstrap process, the application processors spin for
their processor numbers using an atomic exchange and add instruc-
tion. With this number, the local APIC chip is programmed such,
that the address of the local APIC, i.e. the destination to which the
IPI is sent, matches the processor number. This trick allows to find
a processor easily through its processor number and to detect fail-
ures in the bootstrapping process.
The current implementation detects missing processors and panics,
but future implementations might take steps to solve the problem,
i.e. starting a special and correspondingly privileged correction
code.

8.3 Cross-processor IPC

Cross-processor IPC is a special case of IPC, in which the two com-
municating partners currently reside on different processors. De-
sign decision 6 already concluded to have transparent cross pro-
cessor IPC which means that there should be no difference in using
cross processor IPC compared to intra processor IPC. Cross proces-
sor IPC was intended not to migrate the communication partners.
Design decision 4 described a detection mechanism that can be set
to abort the IPC if it would be a cross processor IPC and if doing so
return the partner’s processor number. If not aborted, theµ- kernel
signals whether the IPC has been cross processor or not.
The remaining section is structured as follows. First we discuss the
API and different message types of the uniprocessor IPC. Then it
is told how IPC was implemented in the uniprocessor L4µ-kernel
and it is to identify what no longer works when switching to the
cross processor case. Finally we start a general discussion of how
to perform an operation on a destination processor, i.e. how to trig-
ger cross-processor operations. Given this, we can construct an
IPC path for cross processor IPC with the leading goal of keeping
the normal case: short intra processor IPC, high performant. This
section is concluded by the evaluation of the described IPC path
and what it needs to abort such a cross processor IPC (i.e. when
lthread ex regs is called to one of the communicating partners).

8.3.1 Uniprocessor API and message types

Though IPC is implemented as a single system call, it can be used
in different flavors. In general we can differentiate betweensending
andreceivinga message. In addition two atomic “send and receive”
operations are supported:
1. call and
2. reply and wait.
A call contains a send phase immediately followed by a corre-
sponding receive. Acall is used whenever we want to contact a
server and wait for its answer when its job has been done. This
operation has to be atomic to allow the server to reply with a zero

16

— Draft of April 22, 2002 —

timeout. Meaning the replyingsend(that corresponds to thereceive
of thecall) fails and the server will probably discard the message if
the receiver is not listening to it.
If a call would not be an atomic operation, the client might be
interrupted before it is able to setup the receive and the server
might reply before the client was able to listen.
The second operationreply and wait is a send, followed by a
receive from anyone(called open receive in contrast to close when
specifying a target to receive from). This operation is atomic, too,
but only for performance reasons, i.e. to safe the additional kernel
entry / exit between thesendandreceiveoperation.
Though we have those atomic operations, we can differentiate
between the send and the receive phase of the IPC. In more detail
we have a phase where one of the two partners is waiting for the
other to get ready to send or receive and a phase where the message
is transmitted. So to speak we have a wait for receive or a wait for
send and a transmit phase in the IPC.

Timeouts The time, a thread is willing to spend in each of these
three phases, can be limited by two timeouts per thread. The sender
specifies the send timeout, that is the time he is willing to wait for
the receiver to get ready and (since Version 4) a transmit timeout
to limit the transmission phase. In the same way, the receiver
parameterizes the IPC with a receive timeout, i.e. the time he is
willing to wait for the sender, and as well a transmit timeout. The
effective transmit timeout is the minimum of both, the sender’s and
receiver’s transmit timeout. In L4 version X, the transmit timeout
degenerates to a pagefault timeout, i.e. the time a thread is willing
to wait for the partner’s pager to handle pagefaults that occurred
within IPC.

Message Types IPC can be used to send untyped words, as
well as typed elements like strings or memory pages that will be
mapped or granted. As long as no more than 3 dwords (in Version
4: 4 dwords) are transmitted, i.e. the message fits into the registers,
the message is transferred directly. Messages larger than this have
to be stored in memory and therefore addressed indirectly. When
transmitting those messages in the IPC, called long IPC, page faults
in the sender’s as well as in the receiver’s address space may hap-
pen. Long IPC messages are interruptible and the copy routine runs
in the uniprocessorµ-kernel with interrupts enabled. Because of
this, the page fault IPC can be setup as usual, interrupting the cur-
rent message transfer process until the pagefault is handled.
A detailed specification of the message format and the IPC param-
eters can be found in the L4 Reference Manual for version X, re-
spectively Version 4 [?, ?].
Above, we discussed how to use IPC. Now we will look at how it
is implemented in the uniprocessor L4µ-kernel (codename Hazel-
nut).

8.3.2 Uniprocessor IPC Path

As described above, IPC can be divided into a send operation and
a receive operation to setup the IPC, followed by the transmission
phase. We assume, we entered the IPC system call code in supervi-
sor mode i.e. through anint 30, or sysenter instruction and the
interrupts are disabled. Starting in this state, we now discuss the
send and receive path separately. Note the only difference for the
atomic send and receive operations was that we do not leave super-
visor mode between the end of the send path and the beginning of
the following receive path.

Send Path At first we have to check whether the target is
present and valid. Therefore we need to find the TCB of the target
thread which was specified through its thread iddest. To check
whether the TCB is valid and present12, we check themyself field
of the target TCB. This field contains the thread id of the owner
of the TCB, in this case the target thread’s id. Thread ids in L4
are basically composed in two fields, a number defining the thread
itself and a version number to allow to make the ID unique in time.
Threads with the same thread number share the same TCB, which
means that only one thread can exist per thread number, so no
two threads with different thread ids but equal thread numbers (i.e.
where only the version field differs) may coexist in the system. In
Version X this thread number is composed of a number defining
the task, plus a thread number within that task. A thread id of 0
means this thread is not present. To sum up, we check themyself
field of the target thread against 0 and compare it withdestand
abort IPC when either the first comparison resulted in a match, that
is the myself fieldwas 0, or no match is achieved in the second
comparison.
Next we set the sender’s (A’s) partner field to the receiver’s (B’s)
TCB, indicating that A wants to send to B.
If at this moment B already is waiting for us, we can directly trans-
fer the message. To find out whether this is the case, we check for
B’s state, if he is waiting and for A, i.e. if B is in a closed receive
from A, or in a open receive. If so we can prepare A to send, if not,
we have to wait for B to get ready to receive.
If A has to wait for B, A sets its send timeout by inserting itself
into the wakeup queue of the system. Second, A enqueues itself
to B’s send queue, a linked list of all threads that want to send to
B. This is done to avoid actively checking whether B got ready to
receive from A. Actively checking, i.e. polling would be a correct
implementation, however it generates unnecessary overhead in
the system. Instead of letting A actively poll for B, A is inserted
into B’s send queue indicating the wish to send. B, when getting
ready to receive, dequeues A from this send queue and reactivates
it. Never the less we have to denote that A is prepared to send
but waiting for B. This is done by setting A to polling state, not
indicating that A will poll actively, but that A is waiting for B and
like if actively polling will be activated again when B gets ready to
receive. See the receive path below to see how B activates A.
Now A switches to B with a normal thread switch. When A gets
activated again (Note polling was implemented as an inactive oper-
ation) two things may have happened: either B got ready to receive
and did wake up A, or the timeout occurred. In the second case, the
IPC operation is aborted with completion code timeout, in the first
case A has to dequeue itself from the wakeup list and prepare for
transmission. If B was ready to send to A before, we would end up
in exactly this state, so now we continue with preparing A to send.
At this point, we lock A and the receiver B to denote that both
are currently within an IPC operation and that no other thread will
send them in between. Since on a uniprocessor system it is fully
symmetric whether the sender or the receiver transmits the message
(see the transmit path below), we chose the sender as being actively
copying. Therefore A has to be in a ready to run state, like if no
IPC is happening. To differentiate this, the lock prefix is added, so
A is set to locked running, meaning it is ready to run, so it can be
scheduled at any time, but no IPC can be send to it because it is
locked.
Now we can transmit the message. The transfer finishes, either
successfully or it was aborted due to an error or timeout.
If the message was transferred successfully and no receive phase
follows, we set A to ready, enqueue it into the ready list and return
with completion code success. Otherwise, we continue with the

12When no TCB is present, it is either zero filled or if no page is present
and a pagefault occurs, a zero filled page will be mapped.

17

— Draft of April 22, 2002 —

receive path (see below).

Here in short what was described above:

// send path
if isSend()then

from TCB = getTCB(A)
to TCB = getTCB(B)

if not exists(toTCB) or to TCB.myself 6= B then

abortIPC (“target does not exist”)

endif

from TCB.partner = B

if B is not waitingor not for me or openthen

enqueueWakeup (A with A’s send timeout)

to TCB.enqueueSendQ (A)
from TCB.state = polling

switchTo(B)

if returned with timeoutthen

abortIPC (“send timeout occurred”)

endif

dequeueWakeup (A)
endif

// At this point, B is ready to receive from A

from TCB.state = locked running
to TCB.state = locked waiting
enqueueReadyList (A)

// A is now schedulable

transmitMessage ()

to TCB.partner = A

if error in the transmit phasethen

abortIPC (“transmission error”)

endif

if not isReceive()then

from TCB.state = ready
enqueueReadyList (A)

returnIPC
(“message successfully transmitted”)

endif
endif

Receive Path Again the source thread A sends to the current
thread B, the receiver. Note that this is the corresponding receive
path for the above described send IPC. When read as the receive
operation that is part of a call, i.e. A formerly send to B, the letters
have to be swapped: A receives from B.
The receiving thread B can specify its IPC to be open, i.e. he is
willing to receive from any thread, or B may want to receive from
one specific thread (A) only. We call the case, the receiver is waiting
for a specific sender thread closely.
Remember, the sender A is in polling state if it is ready to send and
waiting for B to enter receive state. Semantically it would be correct
to prepare this receive state and wait for the next polling cycle of
A to startup the message transfer. However this would result in
frequent overhead of polling threads in the system. To avoid this, L4
implements no real polling, but checks and reactivates the inactively
polling sender if the receiver becomes ready to receive.
To reactivate the sender we need to find it. When in closed IPC the
sender is implicitly known. In an openly receiving IPC the sender
has to be extracted from the send queue, a linked list of threads that
are ready to send to B. If any thread is present in the send queue,
we take the first one and specify it as IPC partner. If not we have to
wait.
Therefore we check A, the sender, against nil, no thread was in the
send queue, if it is polling, i.e. ready to send to us and finally if it
is sending to us, i.e. if A’s partner is B. If A is a valid ready to send
to us thread, i.e. all but the first question was answered positively,
we can reactivate A. If not we have to wait until A gets in that state
and reactivate it then.
Like in the send path, we wait by enqueueing ourselves (B) into the
wakeup queue, but now we have to take the receive timeout of B.
Additionally B has to be set to waiting state before it can release the
CPU through switching to preferably A if A is known at this time.
In this case, B is either woken up because its timeout occurred or
by A because it is now ready to send to him. If the first case, the
timeout, happened, we abort the IPC like in the send path with a
timeout error message. Otherwise, we dequeue B from the wakeup
queue.
If we found a ready to send thread in our send queue or directly
specified, we have to reactivate it. We set its (A’s) state to locked
running, enqueue it into the ready queue, so it would be scheduled,
dequeue A from our send queue and from the wakeup list that it
entered while waiting for us to get ready. Next we have to prepare
B for the receive by setting its state to locked waiting, i.e. B is
waiting for receiving a message, but no other thread can send to
him because it is locked. After that we switch to A.
When we return, because when A finished transferring the message
it switches to B, we have to set B’s state to ready, enqueue it into
the ready queue and return from the IPC call.
Again here a shortcut of the above described:

18

— Draft of April 22, 2002 —

// receive path
if isReceive()then

to TCB = getTCB(B)

if closed receivethen

from TCB = getTCB(A)

if from TCB is an invalid TCBthen

abortIPC (“Invalid source”)

endif

else
// open
from TCB = B.sendQueue.dequeueHead()

endif

if from TCB not presentor A is not pollingor
A is ready to send but not to Bthen

enqueueWakeup
(B with B’s receive timeout)

to TCB.state = waiting
to TCB.partner = A (nil for open receive)

switchTo (A)

if timeoutthen

abortIPC (“timeout occurred”)

endif

dequeueWakeup (B)

else

// A was ready to send to B
from TCB.state = locked running
enqueueReady (A)
dequeueWakeup (A)

B.dequeueSend (A)

to TCB.state = locked waiting

switchTo (A)
endif

to TCB.state = ready
enqueueReady (B)

returnIPC (“message successfully transmitted”)
endif

The above described startup path of an IPC is an implementa-
tion of the version X API. Version 4 mainly differs in the message
structure. We have to deal with slightly different thread ids for lo-
cal threads, i.e. IPC between threads of the same task offer special
means of optimization, but this is out of the scope of this paper
because this special IPC, referred to as LIPC will not work cross

processor. Additionally we have to include a transfer timeout. This
will be done in the transfer path.

Transmit Path In the code described above, the sender is the
active partner and copies the message to the target’s address space.
For uniprocessorµ-kernels this is a symmetric task, i.e. it does
not matter whether the sender or the receiver plays the active role.
This result is not obvious, especially when you consider caches
and TLBs in your system, that might result in additional overhead
because of cache and TLB misses and refill costs. This paper
comes back to this in the next paragraph after the transmission for
an active sender is discussed.
From the API point of view we can differentiate between three
message types: single words, strings and flexpages. From the
implementation point of view, another differentiation is more rele-
vant: register versus memory messages. For register only messages
it is sufficient to ensure that the data remains in the registers or is
reloaded at the end. When the message descriptor or the message
itself is stored in memory, page faults may happen. In this case, the
kernel code has to deal with pagefaults in one of the participated
user spaces.
If the pagefault happens in the sender’s address space, the kernel
sends it to the sender’s pager. Remember, the sender was the active
partner, so no additional activity is required for that. If the page
fault occurs in the receiver’s address space instead, the kernel has
to intervene. Because of the active sender, a normally generated
pagefault would be transmitted to the sender’s pager. Even if the
pagefault is captured and transmitted to the receiver’s pager, it hap-
pens in the context of the sender. In both cases, the corresponding
pagers may not reply with a mapping simply because they are not
responsible for the faulting thread / address space. To solve this
problem, the kernel page fault handler, when detecting a page fault
in the receiver’s space, temporarily switches to the receiver thread’s
context and invokes the pagefault again. This can for example be
done through operations that do not modify the contents of the
memory cell like adding a zero for write faults or reading the cell
for read faults. After the pagefault is resolved, the receiver switches
back to the sender that continues copying. In version X both, a
pagefault in the sender’s or in the receiver’s context, are bound by
the corresponding pagefault timeouts. The receive pagefault time-
out, specified by the sender, limits the time, the receiver’s pager
has to handle the pagefault. The send pagefault timeout, specified
by the receiver, limits the time, the sender’s pager has to handle the
pagefault. In Version 4, a transfer timeout limits the total time of
the message transfer including pagefault handling times.
Up to now, the environment for the message transfer is described,
open remains the actual way, the message is transmitted. Already
mentioned was how to deal with register messages, so string copies
and mappings remain.
String copies: When a string is copied by the sender, the sender’s
address space is active. In addition, only the kernel address space
is present and accessible, because it is mapped in the upper part of
each address space and the IPC is performed in supervisor mode,
but not the receiver’s address space13. The first approach would be
to copy the message into a buffer in the kernel space, switch to the
receiver’s address space and copy the message from the buffer out
to the specified destination. However this copy in copy out requires
two copies and result in an additional possibility for cache misses
in the in kernel buffer. To avoid this, the uniprocessor L4µ-kernel
implements the copy by temporary mapping the destination area of
the receiver’s address space into the kernel space. With this trick,
one copy can be saved by adding additional costs for managing the

13Small spaces, a tagged TLB simulation on the Intel Pentium, allow part
of the receiver’s space to be present even if the sender’s space is active. In
this case, the message can directly be copied

19

— Draft of April 22, 2002 —

mapping which can be neglected for longer messages. Pagefaults
in that communication space are translated as if they happen in the
receiver’s address space like described above.
Mapping pages: Mapping a page means to copy the page table
entries from the source address space’s page tables to the destina-
tion one’s. Since both the sender address space’s and the receiver
address space’s page tables are present in the kernel space, a simple
copy can be established. Starting from the first level page table, an
entry points to the offset of a second level page table if present. If
not, an empty page table may be initialized and assigned for the
receivers space. Note since only present pages can be mapped, a
missing page table entry of the sender, first or second level, results
in an abort of the IPC.
When mapping to a destination where a page is already present, the
specification tells to unmap this page, i.e. to delete the entry in all
following address spaces, i.e. those where this page was mapped
to. However, any currently existing implementation overwrites the
location without unmapping the page.
In addition, the mapping database has to be updated with by this
new mapping. Granting works like mapping except that the trans-
lations to the granted pages are deleted in the senders address space
and the node in the mapping database is moved instead of creating
a new child node as done for mapping.
Before starting the copy / mapping the destination area has to be
checked for border violations. Remember, the receiver specifies
the location where to copy / map to while the sender specifies what
to transfer. If the message exceeds the receive window, the IPC is
aborted with an IPC cut error.

This concludes in the following pseudo code:

// transmit Pathif short IPCthen

// ensure the to be transfered dwords
// are in the registers

endif

if long copy Messagethen

while more strings to copy
do

map destination area to comm space
prepare cleanup activity on interruption of the IPC

enqueueWakeup(Sender with min(X-fer timeout
sender, X-fer timeout receiver))

enable interrupts

copy message from sender’s space to comm area

/* When switching to another thread of this task,
* the comm are has to be cleaned up
*/

disable interrupts

if timeout occurredthen

abortIPC (“timeout occurred”)
endif

od
endif

if map Messagethen

parse source page tables
copy page entry to destination page table

if pagefault occurred in 1.lvl ptabthen

map free page for 2.lvl page table

endif
endif

// page Faults in the Communication Space
if pagefault occurred in Comm Spacethen

store current IPC state on the stack
switch to receiver context
enqueueWakeup(Receiver with rcv timeout)
unlock Receiver
redo page fault
if timeout occurredthen

abortIPC (“timeout occurred”)

endif

relock Receiver
dequeueWakeup(Receiver)
return to sender context
load interrupted IPC state from the stack

endif

20

— Draft of April 22, 2002 —

The above explained pseudo code contains only a briefly descrip-
tion of the transfer path. Additional activity has to be implemented
for example in the switching code, to avoid conflicts of two threads
of the same task that perform long IPC and occupy the comm space.
Since the cross processor IPC problem is more a problem of how to
startup the IPC, this paper will not go any further into the details of
this transfer path.
Up to now, we got an idea how the transfer is performed when hav-
ing an active sender. The next section discusses why for uniproces-
sors it is symmetric whether the sender or the receiver is the active
partner in the IPC. Later when considering the proxy thread imple-
mentation, we come back to this problem for cross processor ICP.

Active sender via active receiver As mentioned above, it
is symmetric for uniprocessorµ-kernels whether the sender or
the receiver is the active partner in an IPC. This is not obvious,
especially when taking cache and TLB misses into consideration.
The following paragraph tries to explain this symmetry and points
out the asymmetries in the cross processor case.
In the current implementation, the sender is the active partner of
the IPC. It copies the data to the receivers address space through a
temporary mapping of the destination area into a communication
space within the same address space. Assume the to be copied data
is contiguous in the address space of the sender and no pagefaults
happen in the sender’s or receiver’s space and no other thread is
scheduled in between14.
Copying a datastream ofn bytes result in at mostn / c + 1 cache
misses –c the cacheline size – on the sender’s side plus additional
n / c + 1 on the receiver’s side, remember we assumed contiguous
data. The additional cache miss results from non aligned data, i.e.
when the string starts in the middle of a cache line. This sums up to
2n / c + 2cache misses for the pure copy. Considering, the receiver
will use the transferred data immediately, additionaln / c + 1 cache
misses may occur for very largen, i.e. when the receiver starts
reading the copied string from the start, because during the copy,
the last part displaces the first part of the string.
When switching to an active receiver, the corresponding parts of
the sender’s address space are mapped into the communication
area that is part of the receiver’s address space. After that, the
receiver copies the data from the communication area into its own
address space. In this scenario, up ton / c + 1 cache misses may
occur on the sender’s side as well and the same amount on the
receiver’s side. For largen, the additionaln / c + 1 misses may
occur as well through displacement in the caches. So in both cases,
active sender or active receiver, up to2n / c + 2 cache misses for
small and additionaln / c + 1 for largen may occur. Assuming,
the sender or the receiver accessed the location to copy from / to
before, reduces the cache misses required for copying. At least for
physically tagged and indexed caches like those from the Pentium
processor, temporary mapping does not harm the cache situation.
The temporary mapping generates an additional virtual to physical
mapping to the destination data (in the active sender case and to
the source data in the active receiver case). Since the cache is
physically indexed15, the data is cached at the position determined
by the result of the mapping. So accessing data though different
mappings does not displace the lines accessed through the former
mappings. To conclude, considering cache misses, an IPC with

14Those assumptions ease in the following discussion, but can be dropped
easily. Non contiguous data copies can be viewed as multiple contiguous
data copies. Interruptions through page faults or other threads may influ-
ence the current cache and TLB layout which can be bounded through con-
sidering multiple incessant IPCs.

15Remember the L1 caches of the Pentium processor are physically as
well as virtually indexed because the index is extracted from the part of the
address describing the page offset. The L2 Cache is both physically tagged
and indexed.

active sender is symmetric to an active receiver IPC.

What about TLB misses? The translation lookaside buffer stores
the least recently used translations from virtual to physical ad-
dresses at page granularity. When accessing a page whose entry
was not in the TLB, the translation is computed and stored. Follow-
ing accesses hit in the TLB until the entry is flushed or displaced
by clashing ones. Copying the samen bytes as above, therefore
results in at mostn / p + 1 – p the page size – TLB - misses assum-
ing the above described conditions of an incessant copy operation
of contiguous data. Those misses occur in the sender’s space when
accessing the pages to copy the first time. In additionn / p + 1
TLB - misses are raised in the communication area in the receiver’s
context. So to sum up2n / p + 2 misses may occur in an active
sender IPC. After the transfer is completed, the kernel switches to
the receiver’s address space requiring to flush the TLB. This leads
to anothern / p + 1 misses when accessing the copied data on re-
ceiver’s side.
Assuming the sender accessed the data to copy before, reduces the
TLB misses by ones the described value which leads to2n / p + 2
misses including the receiver side accesses to use the data.
Switching to an active receiver results in flushing the TLB on the
sender’s side when switching to the receiver’s address space. How-
ever two timesn / p + 1 misses may still occur. Once the misses of
the communication area to read the data and second for writing to
the destination in the receiver’s space.
Which results in2n / p + 2TLB - misses for both scenarios, actively
sending or receiving.

XP message transfer In the cross processor case, this symme-
try is broken up. Caches, as well as TLBs exist processor local, i.e.
per processor, and cannot be used for cross processor operations.
Copying data, to read it, followed by a write, need to be performed
on a single processor and therefore uses the local TLBs and Caches
of a single processor. One may think of parallelizing the transfer,
i.e. to copy on the sender’s as well as on the receiver’s side. The
following paragraph discusses this issue first for sender and receiver
only copies.
As an immediate result, the fact that the to be copied data may be
cached on the inactive thread’s processor will not benefit the IPC
performance. It can be even worse as concluded in section 3.2.
when the to be copied data is modified. The performance results of
the MESI timing section show that up to twice the cost of a miss has
to be taken into consideration. So to sum up, in the above described
scenario we haven / c + 1 cache misses for sure, though the data
might be in the cache.
Considering an active sender, i.e. the message is copied on the
sender’s processor,n / c + 1 cache misses occur only if the sender’s
data is not cached. To this, anothern / c + 1 misses have to be
added, which probably require MESI cache coherency activity if
cached on the destination processor16. After the transfer is com-
pleted, anothern / c + 1 MESI including cache misses occur on the
receivers side when the data is used. Compared to the uniprocessor
side, we again have2n / c + 1 cache misses when the sender pro-
duces no cache misses, but those misses occur for large as well as
smaller n and include cache coherency activity which might even
double the latency.
For an active receiver IPC, the situation is better. Again we have the
n / c + 1 cache misses for the inactive thread, i.e. the sender. Those
misses occur when the receiver reads the data from the communi-
cation area and therefore include MESI activity. Compared to an
active sender, that writes the destination data which are read again

16Cache coherency activity may occur through not participated proces-
sors and threads when the source or destination area is shared (i.e. mapped)
somewhere else, too

21

— Draft of April 22, 2002 —

when used, the active receiver reads those lines. Because of this,
only some cachelines might lead to the costly modified to shared
transition, but not all. After this cross processor read, the data is
written to the destination area in the receiver’s space which results
in up ton / c + 1 misses only if the buffer is not cached. MESI ac-
tivity occurs only if the destination area is shared with some threads
on another processor. Like in the uniprocessor case, anothern / c
+ 1 misses may occur for largen due to displacement. So to sum
up, 3n / c + 3 misses may occur in total, like in the active sender
scenario when the data is not cached by the sender. However only
n / c + 1 misses include MESI activity and in the case of a cached
destination buffer and smalln, only thosen / c + 1 misses occur.
As an intermediate result, the copy operation should be done on the
receiver’s processor.
Page table entries are cached in the local L1 and L2 caches of a
processor as well and therefore are kept consistent, too. They are
written to (to set the accessed bit) when a page is accessed. How-
ever despite this fact, there is no difference compared to the unipro-
cessor case.
Remaining is whether to use both processors, the sender’s and the
receiver’s for the message transfer. Transferring a single string of
contiguous data on two processors in parallel, requires to separate
the task into two disjunct parts. Obviously copying every second
byte is not such a good idea. Copying every second cacheline is
a little better, but requires to synchronize for each string to copy.
Copying every second string is the best to do, because each single
string (portion of at most 4MB contiguous data) is the preferable
granularity. For each string, the temporary mapping has to be set
up anyhow, so the startup is much easier. But still we have to deal
with IPC interruptions. How to signal where to restart when IPC is
aborted or cut, i.e. because of a too small receive buffer. On the
other hand, most messages are short, i.e. a few bytes or at most
one string. When copying on one processor only, the other is free
to run another thread in between. Since those overall performance
benefit dominates and since long copy IPC is not such performance
critical, only one processor, i.e. only one thread will actively copy.
This leads to:

• Implementation decision 2:The message is actively trans-
ferred on the receiver’s processor. Only this processor is ac-
tively participated in the cross processor IPC.

8.3.3 Problems in the Cross Processor Case

In the last section we discussed the problems that occurred in the
transmit path. We concluded to transmit the message on the re-
ceivers processor, so remaining is how to startup the IPC, i.e. how
to implement the send and receive paths. Before this discussion is
started, this section points out the problems that occur if the unipro-
cessor IPC paths are used for cross processor IPC.
Design decision 1already implied to have processor local ready and
short wakeup lists to avoid the synchronization overhead for ma-
nipulating those lists cross processor. However as seen above, the
uniprocessor IPC code has to manipulate those lists several times.
If one of the two participants in the communication is not yet ready
for the IPC, the other has to wait and therefore to be inserted into
the wakeup queue. When the partner got ready for transmission, the
waiting thread has to be woken up, so removed from the wakeup
queue again. When the sender finished the tests, it inserts itself into
the ready list. Since we decided to transmit on the receivers pro-
cessor, this would be a cross processor operation, too. In an active
receiving IPC, this can be avoided, since the receiver itself copies
the message, however one point remain where the sender and the
receiver are enqueued into the ready lists. This is when the IPC
is finished. Both partners are enqueued into the ready list again to
continue their work.
Despite this performance problem of enqueueing or dequeueing

threads into the processor local lists, there are some more serious
problems and race conditions. In the send path, before starting the
IPC, the state of the receiver has to be checked, whether it is ready
to receive, open or closed from the sender. If the receiver is ready,
the sender starts transmitting the message. If not, it enqueues itself
into the wakeup queue, waiting for the receiver to get ready or the
send timeout to occur. In the uniprocessor example, those checks
are done with disabled interrupts, so no other thread is able to in-
terrupt this code. In a multiprocessor system however, immediately
after the sender checked the state, the receivers state may change
due to a timeout or because it just ran into the receive path becom-
ing ready to receive now. In the first case, the sender copies the
data though the receiver is no longer willing to receive and perhaps
is working on the destination area. It might even be the case, that
another thread takes control over the receiver’s processor because
we did not yet require the receiving processor to have interrupts
disabled. If i.e. the receiver was openly waiting and the sender
checked this state but before being able to lock the receiver, another
thread interrupts the receiver and finds it openly waiting, too, the
two threads start the transmission and clash in the destination area
specified in the receive descriptor. This example was designed for
a dual processor and becomes even worse in a n-processor system.
In this case, up to n threads may concurrently send to the receiver.
This problem can be avoided on dual processor machines by dis-
abling the interrupts on the receiver’s processor before checking
the state. On a Intel Pentium this can be achieved i.e. by sending an
inter processor interrupt IPI and wait until the interrupt is acknowl-
edged.
Assume, the problem is solved, as described above, for a dual pro-
cessor machine. Even then there is a race condition – found by
Volkmar Uhlig –, when both the sender and the receiver concur-
rently enters the IPC path. Assume, the sender wins the race and
sends the disable interrupt signal as an IPI. However before the in-
terrupts are disabled, the receiver enters its receive path, sending its
disable interrupt signal and itself disables interrupts on its proces-
sor. The sender now detects the receiver is not yet ready to receive
and inserts itself into the send path and sets himself ready to send.
But immediately before this, the receiver detects the sender not to
be ready yet and sets himself waiting, too. In this situation, both
threads, now ready to send and receive, are waiting for the other
to reach this state. Because the polling of the sender is not im-
plemented actively, but through a check of the send queue at the
receiver’s side, the threads will wait until their timeouts occur or
forever when specifying timeout infinity, even though the partner is
ready for the communication.
To avoid this, in Volkmar’s XP-IPC path, the IPC partner’s TCB is
locked through a spinlock before critical operations are performed.
Through this, only one thread can modify the receiver, i.e. no more
than one IPC will be setup to one thread and, the receiver will not
change its state until the lock is released, i.e. the concurrent check
of the receiver that leads to blocking both threads will not happen
until the sender finished to put himself into a ready to send state.
After that, the receiver continues and finds the sender in this state,
setting up the IPC.
To sum up this section we can enumerate some guidelines that if
not met would lead to race conditions and incorrect IPC paths.

• No more than one IPC is permitted to be set up to any one
receiver at the same time.

• Only one, the sender or the receiver should setup the IPC at
the same time.

• The processor local queues should be modified on that pro-
cessor, only.

• Modifying the thread state cross processor requires to secure
the operation through locks.

22

— Draft of April 22, 2002 —

Beside this, we have to take care of an additional problem intro-
duced by the Pentium hardware when using IPIs. The local APIC
of the Pentium processor allows only to send two inter processor
interrupts that are not acknowledged by the destination processor
through an end of interrupt EOI signal. So if relying on the third
interrupt to be delivered, i.e. in a scenario, where one IPI is spent
for sending a cross processor IPC, a pagefault occurred to a pager
thread on the sender’s processor. In the mean time another thread
performs a cross processor IPC blocking the second IPI and finally
lthread ex regs is used to interrupt the first IPC which requires
another IPI to cancel the pagefault IPC on the destination processor
of the first IPC. If non of the IPIs were acknowledged, the third IPI
would never go through.

8.3.4 How to trigger cross processor operations

Before actually discussing the IPC path for cross processor IPC,
this section focuses on how to initiate an arbitrary operation cross
processor, i.e. how processor A can invoke a method on B’s pro-
cessor.
Methods in general have a set of input parameters, some code that
describes the desired operation and a set of return parameters. I.e.
a cross processorthread schedule call might be implemented by
calling thread schedule on the processor of the targeted thread
with the same parameters like specified by the thread invoking the
method. For our purpose it is sufficient to discuss only how to in-
voke a method with input parameters only. Output parameters can
be handled as if an empty method is called on return.
Looking at the Pentium hardware, there are two possibilities to
transfer information between the processors: the shared memory
and the cross processor interrupts (IPIs). In the amount of trans-
mittable data, the first one bears no strict limits, however the re-
ceiving processor needs to be triggered to know when to execute
the method. The second possibility can transmit only very few
amounts of data like the source processor number. But in oppo-
site to the first triggers the operation itself. The interrupt handler
can be used to start or even execute the operation itself. If only few
different methods with no parameters are needed, the IPI handlers
can directly be used. However at the cost of one of the 256 available
interrupt vectors.
To sum up, the parameters have to be transmitted in some memory
location called mailbox. With the Pentium hardware no more than
one dword (4 bytes) can be modified atomically, i.e. without being
interrupted. For larger amounts of parameters we have to secure the
mailbox from concurrent accesses. To accomplish that the mailbox
is locked in advance of the modification with a spinlock (see ap-
pendix A for a sample implementation for the Intel Pentium).
Provided we got a free mailbox and set up the message in it, we still
need to trigger the destination processor to setup the operation with
the parameters from the mailbox. To achieve this we can either im-
plement polling, i.e. an active scan for filled mailboxes or send an
IPI.

• Polling: When polling, the destination processor frequently
checks the mailboxes for pending operations. The source pro-
cessor sets up the mailbox by writing the parameters into the
mailbox. After that, a flag is set to indicate that the destination
processor should read the mailboxes contents and set up the
appropriate operation.
In the best case, immediately after the flag is set, the destina-
tion processor reads it and sets up the operation. In the worst
case, the destination processor checked just before the flag
was set. Then the operation is delayed until the next check.
So the polling frequency bounds the setup of the cross pro-
cessor operation.
How often the destination processor can poll the mailboxes is
determined by the time needed to check. If checking is too

costly, polling becomes unaffordable and therefore impracti-
cable. So how costly is checking?
If the flags of all potential mailboxes are spread over the
boxes, polling requires to readn cache lines forn mailboxes
(provided the parameter size is at least one cacheline size).
If packing the flags to a single cacheline, up to 32 mailboxes
(1 dword) can be checked at the same time through a simple
comparing by zero. In addition the remaining 7 dwords (for
32 byte cachelines) will hit in the L1 cache. So with the cost
of at most one cache miss and 7 L1 hits, 32*8 = 256 mailboxes
can be checked. Assuming the first access hits in the L1 cache,
too, the costs for checking those 256 mailboxes sum up to 8
cycles (8 xcmp rm32, 0). This assumption can be met for
all checks that do not result in triggering an operation, pro-
vided no clashes occur in that line. When setting the flag, the
source processor writes the line which leads to an invalidation
in the destination processor’s cache. At the next check, the
modification is detected leading to a transition from the mod-
ified on the source and invalid on the destination processor
to shared on both. However a flag was set and the operation
is triggered. After that the flag is reset which leads to a line
in modified state on the destination and an invalid line on the
source processor. Any following checks that do not detect a
modification then hit in the L1 cache on the modified line. The
next time, the source processor triggers another operation, the
line is again transferred to the source and so on. However this
is only true if the source processor only writes this line to trig-
ger an operation and no other processor interferes.
To sum up, despite the situation where an operation needs to
be triggered, polling 256 mailboxes require 8 cycles which is
neglectable.
When checking each time the kernel mode is left, the polling
frequency can be bound by the frequency of the periodic timer
interrupt. In the L4µ-kernels the timer ticks periodically ev-
ery micro second. Each such tick, the timeslice of the cur-
rently running thread is decreased by one and if necessary
some cleanup work in the wakeup lists is done. However a
µ-kernel can be constructed such that the timer interrupt oc-
curs at the end of the timeslice, only. The above described
polling mechanism works as well for this kind ofµ-kernels,
despite the fact, that the polling frequency can no longer be
bound by a constant timer interrupt frequency.

• Inter Processor Interrupts: In contrast to polling, inter pro-
cessor interrupts require no additional activity on the destina-
tion processor if the operation is not triggered. IPIs are sent by
writing to the Interrupt Command Register (ICR) of the local
APIC. The interrupt is delivered to the destination processors
specified in the upper part of the ICR. To up to 15 processors,
the IPI can be delivered simultaneously by selecting the pro-
cessors through a mask.
When one of the two LINT slots LINT0 or LINT1 is available,
the interrupt request is stored in the local APIC of the desti-
nation processor and the source processor can continue. The
next time the interrupts were enabled on the target processor,
the interrupt occurs and the handler specified by the interrupt
vector is called. If both slots are occupied, the source proces-
sor blocks resending the IPI until one slot gets free. A slot
has to be freed by the interrupt handler by sending an end of
interrupt message EOI.
For the purpose of triggering a cross processor operation, the
interrupt handler has to check the mailboxes when activated
and is responsible for the operation to be performed.
For synchronous operations, i.e. those where the source pro-
cessor has to wait actively until the operation is performed,
the time to setup is determined by the time needed to transmit
the interrupt request plus the execution time of the operation

23

— Draft of April 22, 2002 —

and the time needed to transmit the EOI message. For asyn-
chronous activation, i.e. those operations where the source
processor can do something else in between, the time to setup
the message is the time needed to write the ICR, provided
a free slot exists on the destination processor. Note the op-
eration is meant to be asynchronous for the processor only,
not for the thread. The thread triggering the operation is in-
terrupted until the operation is performed but its processor is
free to schedule another thread in between. For the thread it
is like if the operation is synchronously.
However compared to the polling case, there is no span when
after being set up, the operation will be performed. The IPI
handler that activates the operation is started exactly when the
IPI is delivered (see chapter 3.3.). However provided a free
slot exists, the interrupt is not delayed, so the delivery time
bounds the time needed to trigger the request.
Section 3.3. also discusses the costs for the interrupt deliv-
ery on the destination processor. The most part of this time is
spent for entering and exiting supervisor mode which can be
saved when polling is used before leaving kernel mode.
Most of the assumptions made to determine the delivery time
require a free IPI slot. To keep the slots free, even when longer
operations are to be performed, the handler code should as
early as possible acknowledge the interrupt by sending an
EOI. Therefore it is preferable to let a thread perform the oper-
ation and use the handler only to setup this task for the thread.
Those threads we call proxy threads.

Both polling and IPIs have their pros and cons: Polling has a
potential higher response time and saves the additional kernel entry
/ exit however it is hard to bound and guarantee the response time.
IPIs give this bound when handled with care, i.e. when the LINT
slots were kept free. This leads us to combine both in the following
algorithm:

// method invocation on source processor
find free mailbox()

lock mailbox()

setupmailbox(parameters)

unlock mailbox()
setactivatemailbox flag()

if next check(destination)< max latencythen

if not yet acknowledgedthen

sendIPI()

endif
endif

// receiver’s side checking
/* This is called at the end of the timer and by the handler*/
checkn ack()

while mailbox flags != 0
do

// find mailbox id
id = bit scanforward(mailboxflags)

link mailbox to proxy(mailbox[id], mailbox[id].proxy)
setproxy to running(mailbox[id].proxy)

clearmailbox flag(id)

od
return

// IPI handler
ipi handler()

EOI()
checkn ack()
iret

In the algorithm described above, the IPI is send only, when the
next check of the destination processor is later than it would take
to deliver the IPI. Or in general is later than a maximal latency that
could be accepted. Knowing when the next check occurs however
needs to have a synchronous clock of all processors and to publish
the time to check next which is known for the timer interrupt, only,
but not for the systemcalls that enter supervisor mode. Unfortu-
nately on the Intel Pentium processors there is no synchronous
clock available.
Note since both the check called before leaving supervisor mode
and the check called by the interrupt handler run in disable inter-
rupt mode, no conflicts occur. In the worst case, polling triggers
all operation and immediately afterwards the IPIs occur finding
nothing to do.

The proxy thread when activated and no operation currently in
work takes the first mailbox, performs its operation and deletes this
box from its queue. If the list is empty, the proxy sleeps until being
woken up by the checking procedure.

24

— Draft of April 22, 2002 —

Up to now we discussed in general how to trigger an operation
cross processor. Now finally we continue with the XP - IPC paths
in the following section.

8.3.5 The XP - IPC paths

For the ease of constructing the cross processor IPC paths, we first
consider, the receiver B still waiting to receive from the sender
A. A and B run on two different processorsA andB. We further
restrict the IPC to short register messages, i.e. no page faults may
happen in the transmission.

Send Path Before trying to send, we have to check whether the
receiver is present. Though we assumed the receiver to be present
and waiting for the example this check is obvious so we start dis-
cussing it here. Like mentioned above, if we check for the receiver
to be present on processorA, we cannot rely on this information.
Though we found the receiving thread, it may be deleted in just
this moment on some other processor includingB. Sending the
message then would find an invalid thread and therefore cannot be
permitted. In this case, we have two possibilities: 1. perform any
check followed by the corresponding operation onB or 2. do not
delete the thread B without aborting A’s operation.
1. requires both, the check and the delete to be performed onB
while 2. requires to analyze A’s state to know whether A is still
before the check or started the IPC already. Assume for the time
being, we know B is present and will not be deleted in between the
IPC.
We found B, but now B has to be checked if it is ready to receive.
This check leads to a similar race condition like the deletion exam-
ple above. One possibility is that in the moment we found B not yet
waiting for A, B enters the receive path and sets itself waiting for
A. Another is that we found B ready to receive from A, but after the
check, the receive timeout or an IPC abort throughlthread ex regs
aborts the IPC. Again, those races can be avoided by performing
the checks on processorB or by delaying the timeout or abort after
the check. Again assume that we found B ready to receive from A
and that this will not change until the IPC happened.
We found B to be present and receiving from A, so remaining is the
message transfer which is easy because no user level page faults
may happen in between. The registers are copied into some kernel
area (i.e. into the TCB or a mailbox) and copied out to the destina-
tion registers. By choosing the kernel stack frame as the buffer, the
registers may directly be pushed onto B’s stack and will be popped
when returning to user mode. However after this transfer, B has to
be woken up and inserted into the ready list which has to be done
processor locally, i.e. onB.

As shown in this short (note this is only the easiest possible path
for an IPC) lots of state information have to be kept, where the
checks failed or were changed later on. Even worse, at the end we
have to operate on processorB anyhow to insert B into the ready
list after successfully receiving the message. So to conclude, 2. is
impracticable because it makes the implementation of every other
operation likelthread ex regs extremely hard. So how about 1. ?
Above we pointed out how to trigger an operation cross processor.
As an immediate result of this section, combined with section 3.3.
discussing the IPI handling times, one single longer operation bears
less overhead compared to many short cross processor operations.
In addition to that, performing the entire critical path of the IPC on
B avoids the above described race conditions. This leads to:

• Implementation decision 3: Any operation modifying a
thread is only performed on its current CPU.

So to sum up, as soon as we detect, the target B is on a different
processor than A, we perform the entire IPC path on B’s processor
B. Unfortunately checking the processor of a non existing thread
is impossible, so we have to check the presence of the TCB in ad-
vance. This leads to the following preliminary send path:

// preliminary send path 1
if isSend()then

from TCB = getTCB(A)
to TCB = getTCB(B)

if not exists(toTCB) or to TCB.myself 6= B then

abortIPC (“target does not exist”)

endif

if from TCB.cpu 6= to TCB.cputhen

xp operation:IPC Send

endif

// common intra processor IPC

endif

At first we check whether the thread B exists by comparing the
myself field of the TCB with the destination id B after checking if
the TCB exists at all. If so, the current CPUs of both threads are
compared and if not equal the cross processor operation:IPC Send
is triggered. If equal, the common uniprocessor IPC path can be
used, because this path is synchronized with any other cross pro-
cessor operation through disabled interrupts, because we decided
to allow critical cross processor operations only to be performed on
the current cpu of the targeted thread.
With this trick, we reap benefit of three advantages:

1. CLI can be used to make the operations, though being trig-
gered cross processor, atomic when affecting a thread. This
is because any modification on that thread is done on its local
processor only.

2. For intra processor IPC, most parts of the common uniproces-
sor IPC paths can be used.

3. The above described race conditions are automatically
avoided because the operations on the targeted thread are
made atomic withCLI

Note to point 2: Though most parts of the uniprocessor IPC
paths can be used for short IPC, additional care has to be taken
for long, i.e. interruptible IPC when migration is considered (see
below).

Before actually discussing the XP send operation, we focus on
how to setup the mailbox correctly. Implementation decision 2
concluded in transmitting the message on the receiver’s processor.
However due to implementation compatibility reasons with the
existing uniprocessor implementation, the sender will be actively
involved in the IPC. This will require only few changes in the
receive path and makes the send path implementation comparable
to that of the uniprocessor L4 kernel.
The sender, when detecting that the thread to send to is currently not
on its cpu, sets up the XP send operation and triggers a proxy thread
to handle it. Once the proxy thread gets to handle the triggered

25

— Draft of April 22, 2002 —

request, it disables interrupts so no interference of other threads
including the receiver may occur in between. The problematic time
intervals however are after the sender started, but before the proxy
thread was activated, so directly before the XP send operation and
after the proxy finished its work but before the sender is reactivated
again.

Let’s first take a look at the first interval: If the sender is on a dif-
ferent CPU than the receiver, the receiver has to check the state of
the sender’s proxy thread instead of the sender’s state. To find this
proxy we store a pointer to it in the sender’s thread control block. If
the sender not yet accomplished this link or if the proxy is not yet
started, the receiver will sleep, setting its receive timeout, waiting
for being woken up by the proxy when it enters its send path. When
the sender finished to set up the send proxy and this proxy starts
handling the requested operation it will find the receiver ready to
receive. Unfortunately if the receiver specified timeout zero, it will
find the sender not ready to send and got woken up by the timeout,
though the sender started its send phase already. Fortunately we
can ignore this problem, because in the most common case when
specifying a receive timeout zero, it wants to poll for the sender to
become ready. Most often the receiver will then poll sometimes
later again and then will find the sender’s proxy ready to send.
We discussed how to solve the problems that the first internal bears.
In the second interval there might occur a problem if the receiver
immediately after it got the message starts a second receive opera-
tion from the sender. The problem occurs if the sender changes its
proxy thread because it starts a second send operation, too, exactly
in between the checks of the receiver. Note the receiver B has first
to check whether the receiver is present, then if it is ready to send
and if so if it is willing to send to B. When between two of those
checks the proxy is changed, the IPC may fail or even worse, a
non valid pointer to a non existent proxy may be dereferenced. To
solve this, we store the pointer to the proxy in a temporary variable.
All checks are performed by dereferencing this pointer which will
not change in between. Additionally before returning from the XP
send operation to the sender, the proxy clears the proxy pointer of
the sender.

Including the above described cross processor operation startup
this leads to a) the send path and b) our proxy path:

// send path
if isSend()then

from TCB = getTCB(A)
to TCB = getTCB(B)

if not exists(toTCB) or to TCB.myself 6= B then

abortIPC (“target does not exist”)

endif

if from TCB.cpu 6= to TCB.cputhen

ipc proxy = getipc proxy
(from TCB.cpu, toTCB.cpu)

ipc mailbox = getipc mailbox
(from TCB.cpu, toTCB.cpu, A, ipcproxy)

// write parameters for the xp send operation
// into the mailbox
write ipc datato mailbox

// Set Proxy pointer
from TCB.proxy = ipcproxy

trigger mailbox

// set own timeout to infinity
from TCB.timeout = NEVER

// Release the CPU
from TCB.state = locked waiting

switchTo(Anyone)

/* the proxy now performs the
xp operation:IPC Send*/

/* Here we get activated by the proxy when
returning from the xpoperation */
XP RETURN

if some error occurredthen

returnIPC (error message)

endif
if not isReceive()then

from TCB.state = ready
enqueueReadyList (A)

returnIPC
(“message successfully transmitted”)

endif
endif

// common intra processor IPC

endif

Get ipc proxy and getipc mailbox selects a free proxy and
mailbox through an for the time being arbitrary policy (see below:
Proxy Threads). The data written to the mailbox is a pointer to

26

— Draft of April 22, 2002 —

the sender’s TCB, the destination id (B), the send descriptor and
the ipc timeout of the sender. The last value has to be transmitted
because we concluded fromdesign decision 1to have processor
local wakeup queues. Having this in mind we enqueue the proxy
thread into the wakeup list in behalf of the sender if required.
To do this, we have to transmit the sender’s ipc timeout. Easing
implementation we set the sender to timeout infinity and let the
receiver if being woken up activate the sender. For the time being
we postpone the wakeup of the sender from the proxy thread (see
below).

// xp send path
/* This path is performed by the
proxy in the context of the sender */

xp sendpath (fromTCB, B, snddesc, ipctimeout)

// Check again if destination exists
if not exists(toTCB) or to TCB.myself 6= B then

wakeupsender (“target does not exist”)

endif

from TCB.partner = B
proxy.partner = B

if B is not waitingor not for me or openthen

enqueueWakeup (Proxy with A’s send timeout)

// Whom to enter into the send queue???
to TCB.enqueueSendQ (A orProxy)

proxy.state = polling

switchTo(B)

if returned with timeoutthen

wakeupsender (“send timeout occurred”)

endif

dequeueWakeup (proxy)
endif

// At this point, B is ready to receive from A

proxy.state = locked running
to TCB.state = locked waiting
enqueueReadyList (proxy)

// A is now schedulable

transmitMessage ()

to TCB.partner = A

if error in the transmit phasethen

wakeupsender (“transmission error”)

endif

from TCB.proxy = NULL
wakeupsender(“Message successfully transmitted”)

return to proxy

One open question is remaining in this path: whether to enqueue
the proxy or the sender into the send queue of the receiver. The
problem disappears if the proxy handles only one send operation
at one time. Then it does not matter whether to activate the proxy
directly in the receive path or indirectly when finding the original
sender in the send queue. However to be free for further extensions
of the proxy thread implementation, i.e. the proxy will perform
another request while waiting for the receiver, we have to insert the

27

— Draft of April 22, 2002 —

sender into the send queue.

Receive PathAs already mentioned above the receive path for
the cross processor IPC is in most parts similar to the uniprocessor
IPC path. The only two differences that we have to care about is 1)
whom to wake up, the sender or its proxy and 2) which of the two
to delete from the queues.

1. When the receiver, checking its send queue, respectively the
specified the destination, finds the sender on a different CPU
than it is, it has to check whether the sender’s proxy is ready to
send to us. If so it wakes it up the sender’s proxy and switches
to it. In the intra processor case however, the receiver has to
wakeup the sender directly instead of its proxy.

2. In the intra processor case, when the uniprocessor IPC code
is run, the sender is inserted and so has to be removed. In
particular the sender might be in the receiver’s send queue
and in the wakeup queue where it has to be removed from
if the receiver becomes ready to receive. Additionally, when
activating the sender, it has to be inserted into the ready list.
In the cross processor case, the proxy does the work for the
sender. However the proxy enters itself to the wakeup queue,
but the sender to the send queue of the receiver. So when
the receiver finds a thread in its send queue that is not on its
processor, it will remove it, the sender, from its send queue,
but removes and activates its proxy. Activation no longer sets
the sender to running, but its proxy, so the proxy has to be
inserted into the ready list.

This immediately leads to the receive path for cross processor
IPC:

// receive path if isReceive()then

to TCB = getTCB(B)

if closed receivethen

from TCB = getTCB(A)

if from TCB is an invalid TCBthen

abortIPC (“Invalid source”)

endif

else
// open
from TCB = B.sendQueue.dequeueHead()

endif

if from TCB.cpu = toTCB.cpuor
from TCB not presentthen

// uniprocessor receive path

endif

sendproxy = from TCB.proxyif sendproxy not presentor
sendproxy is not pollingor
sendproxy is ready to send but not to Bthen

enqueueWakeup
(B with B’s receive timeout)

to TCB.state = waiting
to TCB.partner = A (nil for open receive)

switchTo (Anyone)

if timeoutthen

abortIPC (“timeout occurred”)

endif

dequeueWakeup (B)

else

// A’s proxy was ready to send to B
sendproxy.state = locked running
enqueueReady (sendproxy)
dequeueWakeup (sendproxy)

B.dequeueSend (A)

to TCB.state = locked waiting

switchTo (sendproxy)
endif

to TCB.state = ready
enqueueReady (B)

returnIPC (“message successfully transmitted”)
endif

28

— Draft of April 22, 2002 —

If the thread to receive from is not yet present, no proxy threads
are involved, so we can use the uniprocessor path to wait for it.
When this thread is going to be created and starting a send oper-
ation to the receiver, it will wakeup the waiting receiver anyhow.
Note switchTo (Anyone) lets the kernel dispatcher decide which
thread to run next.

Concluding, we discussed the problems that occur when con-
structing a cross processor IPC path. A sample cross processor IPC
path was constructed that requires a proxy thread and an ipc mail-
box. Those two resources bear problems that we will discuss in the
next section: Proxy Threads. Additional to that, we have one open
point: How to activate the sender if the proxy is finished with its
work. For the time being we assume this happens by magic some-
how in the same way as the proxy was started and begin evaluating
the IPC path. We will come back to this in detail in the next section.

8.4 Proxy Threads

This section looks in more detail what is happening at the proxy
beside the xp send operation that it calls when being triggered to
call it. The proxy thread is woken up with one or more mailbox
hooked into its mailbox list. The firstmailbox pointer points to
the head of this list and is used to find the current request. The
last mailbox pointer is used to more efficiently hook new mailboxes
into the mailbox list and therefore points to the tail of the list.
When being activated it has to look at the first mailbox in its list and
find out what operation was triggered. This can be done in three
different ways: a) there is a tag in the mailbox to define the opera-
tion, b) the mailbox id itself defines the operation, i.e. there are no
generic mailboxes but a set of mailboxes that are structured for a
particular operation and c) the proxy id specifies the operation. Ob-
viously b) works only for few operations and has to reserve at least
one mailbox per operation but compared to a) it exactly contains
the fields needed. Like b) requires a mailbox per operation, c) re-
quires a proxy per operation. The benefit of this is however, that the
proxy does not have to distinguish which operation to perform. In
the current implementation the proxy thread performs at most one
operation at the same time. As long as those operations are atomic,
i.e. not interruptible by other threads, and the operation does not
require to wait on other threads to synchronize with, the proxy is
kept busy and the time it starts handling the nth operation in its list
is determined by the execution time of the n-1 previous operations
(This assumes the proxy works without being interrupted between
two operations as long as there are mailboxes in its list). However
the xp send operation of the IPC has to synchronize with the re-
ceiver and if it is a long IPC it is interruptible. Both requires the
proxy to wait though there might be other operations that might be
executed in between.
As long as the proxy thread is busy, i.e. there are jobs pending in its
mailbox, no further activation is required, however if the mailbox
list is empty the system would hang if the proxy is actively polling
for the mailboxes because it is still running with interrupts disabled.
A far better solution would be to lay down sleeping, waiting to be
reactivated through the checkn ack operation. So the proxy would
set itself to state waiting and switch to any other thread (i.e. let the
dispatcher decide). The checkn ack operation when finding the
proxy waiting, it reactivates it and the proxy will go on checking its
mailbox list. However if somewhere in between an ongoing oper-
ation the proxy would enter waiting state and the activation check
is performed, it would get reactivated, too. This bears no problem
as long as we take this fact into account and never in any proxy xp
operation enter waiting state. Note the sender of the IPC (i.e. here
the proxy) enters the special waiting state: polling when waiting for
the receiver to get ready to receive so this bears no problems.
The remainder of this section is structured as follows: First we dis-

cuss how to wakeup the sender when the proxy finished the xp send
operation. After that we look at how to implement long IPC in the
proxy xp send path. Finally we discuss how to abort ongoing IPC
in the cross processor situation and take a look at the problem of
how to avoid that the proxy blocks waiting or some other thread to
synchronize with while there are more jobs to do.

8.4.1 Wakeup of the Sender

Remembering the section about cross processor operations, we sim-
plified the model of calling a cross processor operation by dividing
it into two single path operations. A invokes a cross processor oper-
ation with the input parameters taking B as its proxy and B replies
with an empty cross processor operation taking A as its proxy and
transmitting the output parameters in the mailbox involved.
The same trick can be used for reactivating the sender. We define
the sender to be the receiving proxy of a cross processor operation.
The sender when activated reads the output parameters which hap-
pen to be none and frees the mailbox it receives the cross processor
operation in.
With this in mind we can fit in the open operations into the IPC
paths:

//wakeupsender
wakeupsender (error code)

// set error code
from TCB.xp cc = error code;

ipc mailbox = unhook first mailbox from list
from TCB.proxy = NULL

setup ipcmailbox with proxy = A

trigger mailbox

return to proxy at end of IPC

// XP RETURN
free and release all mailboxes in the sender’s mailbox list

Wakeup sender writes the error code to the senders TCB and sets
up a mailbox and triggers it. Since the ipcmailbox previously used
to trigger the xp send operation is no longer needed, it can be used
for the reply. In the uniprocessor send phase, abort IPC respectively
return IPC leaves the kernel directly. However wakeupsender has
to return to the end of the IPC path because the proxy has to do
some cleanup work.

8.4.2 How to deal with page faults in the long IPC

A long copy IPC is specified through a message dope in the address
space of the sender. It no longer restricts the message to copy to
few registers, but requires to copy some strings from the sender’s
address space into the receiver’s address space. As the sender does,
the receiver specifies the location where to copy to through a mes-
sage dope in memory.
So what might happen is that we get a pagefault in one of those four
regions, the sender’s message dope, the receiver’s message dope,
the location from where to copy in the senders address space and
the location where to copy to in the receiver’s address space. As
mentioned in the introductory sections the destination location is
mapped to a comm area that is part of the kernel space. So what
to do: If there is a pagefault in the sender’s context we can directly
generate a pagefault IPC. If there is a pagefault in the copy area

29

— Draft of April 22, 2002 —

we first have to translate it to the corresponding location in the re-
ceiver’s space and setup the operation for the receiver.
How does this change if a send proxy is included? Before starting
the copy, the proxy switches the user space (Note the proxy itself
has no address space but runs inside the kernel, only) to the sender’s
space. When starting the copy and there is a pagefault on the re-
ceiver’s side, it is translated to the receiver’s context like it is done
in the intra (uni-) processor case. However instead of the sender
faulting directly, the proxy thread faults in behalf of the sender. In
this case we have to setup the pagefault IPC to the senders pager as
if the sender did fault directly and if the sender receives the mapping
(i.e. the reply to the pagefault) reactivate the proxy. Unfortunately
if a proxy is involved, the sender is on a different processor.
To solve this, the proxy has to restart the sender, not with an empty
operation, but with a request for redoing this pagefault. The sender
when being activated generates a pagefault in its address space of
the appropriate type by touching the same location. After receiv-
ing the mapping, the sender reactivates the proxy at the interrupted
position. Unfortunately this takes quite some time.

8.4.3 How to abort ongoing IPCs

When calling lthreadex regs, any ongoing IPC from or to the tar-
geted thread is aborted. If a pagefault IPC is nested, i.e. because of
a pagefault that occurred during a long IPC, both, the nested page-
fault and the previous IPC have to be aborted.
In a single uniprocessor IPC at most three threads are involved: the
sender (A), the receiver (B) and if a pagefault happened in between
one of the two thread’s pager (P). In the cross processor IPC case,
those three threads are on three different processors which means
that additionally up to two proxies are involved: the sender’s proxy
(S.X) and one additional proxy for sending the page fault IPC or
the mapping replied (P.X).
In general a fourth processor is involved, that of the thread (L) call-
ing lthread ex regs requesting to abort the ongoing IPC. What we
have is a cross processor operation, but instead of two processors
being involved, up to four might be involved depending on the states
of the three other threads. Assuming we have the worst situation,
where all four threads are on different processors, then L triggers a
proxy L.P1 on the destination processor which is one of the three
threads A, B or P. This proxy checks the state and initiates a second
and if a pagefault happened a third proxy. Once all those proxies
were activated, the IPC can be aborted. As long as the IPC proxies
may block, we need to have a second type of proxy handling IPC
unwind operations. To ease implementation we take the same mail-
box for all those (up to three) proxies, collecting the state of the
participated threads and unwinding the IPCs of all the participated
threads local to that proxy. The following picture shows the possi-
ble state of all the participated threads. Each unwind proxy has to
find out in which state the threads that are locally participated are
and after collecting this, unwind the IPC. Note when those proxies
are all activated, the state is no more changed because all proxies
disable the interrupts. Because of we are using the same mailbox
for all proxies, no additional proxy has to be activated if two or
more threads are on the same processor. The proxy will automati-
cally find it in the shared mailbox though not triggered explicitely.
Two or more concurrentlthread ex regs operations may be per-
formed concurrently, as long as the proxy thread detects the state of
the thread whose IPC it eventually has to abort, sets up the depen-
dent operations and after finishing the abort operation handles the
next operation. This of course assumes that in between the partic-
ipated threads are not migrated. This i.e. can be achieved through
aquireing a “do not migrate” spin lock (see below).

8.4.4 How to avoid blocking the Proxy on XP IPC

As mentioned above, the Proxy may block on non atomic opera-
tions or on operations that require synchronization. IPC does both.
The obvious first try is to construct the proxy such, that if it blocks
it continues with another operation. Assuming there are sufficient
many mailboxes in the system, we may continue with the next
job. However in this case, more than one operation is currently in
processing and we have to keep track of all. To do this we may
remove the mailbox from the proxy’s mailbox list and insert it to
some datastructure that keeps currently in work mailboxes. Instead
of the first mailbox, we include a pointer indicating the operation
currently in work. Remaining is the problem of how to reactivate
an interrupted operation. To solve this, we have, when we block
on the current operation or when the operation is finished, to check
the pending operations if one of them can be continued before
accepting the next operation. This again bounds the startup time of
the nth operation to the sum of the handling time of the previous
n-1 operations plus some management overhead for the pending
operations.
The details, how to organize this data structure, how to construct
the proxy operations to be easily restartable and how to optimize
the polling for a change of the pending operations open a large
playground for implementation tricks, but those are beyond the
scope of this thesis so we will not go any further into detail here
and continue with another approach.

For short, fast operations, proxy threads are preferable, because
they need just to be triggered and perform the desired operation
in behalf of the triggering thread. Another possibility however to
perform an operation cross processor is to migrate to this processor,
perform the operation and finally migrate back. Unfortunately mi-
grating is costly and involves a request to a user level scheduler if
it is not hidden in the kernel implementation. Of course migration
itself has to involve a proxy thread on the destination processor. So
what if we use this trick to block the sender directly instead of its
proxy.
For ease of discussion we restrict ourselfs to cross processor IPC
for the following paragraph. When the proxy has to block it mi-
grates the sender to its processor and lets the sender perform the
appropriate operation itself. But before returning to user level, it
has to migrate itself back to its originating processor. This can
be achieved by inserting an artificial frame on the sender’s kernel
stack that when leaving the IPC operation returns to some special
code that migrates the thread back. Of course for any user thread,
the sender should remain on its current processor and the migration
should be transparently performed.
With this trick, we can handle pagefaults in long IPC more effi-
ciently because now, the sender directly faults and if reactivated
because of receiving the mapping from its pager, the sender may
directly continue.
If we expect that long IPC will probably generate a pagefault, we
can directly migrate the sender instead of involving a proxy thread.
As an immediate result, the proxy is busy all the time when an
operation is pending.

8.5 Races due to migration

The above described IPC paths implicitly require that none of the
participated threads are migrated after one of the threads entered
its IPC path until the IPC is finished. If this is not met, there might
occur three race conditions for short IPC:

1. the sender is migrated in between the proxy thread reads its
CPU and the activating IPI reaches the sender. The IPI will

30

— Draft of April 22, 2002 —

be delivered to the destination processor, however the sender
will no longer be there.

2. The second race occurs if after the sender checks the CPU
of the receiver and before the proxy is started, the receiver
is migrated to another CPU. Those two race conditions have
in common, that the target is migrated in between the deliv-
ery time of the cross processor operation. Once the proxy is
started, it runs in interrupts disabled and no migration request
may be performed in between.

3. Unfortunately there is a third race condition if the sender sets
up its proxy, this proxy finds the receiver not yet ready to re-
ceive and inserts the sender into the receiver’s send queue and
blocks. At this points the receiver is migrated before it is able
to enter the receive path. The receiver might be migrated to a
third CPU, i.e. the sender, the receiver and the sender’s proxy
are on different processors. In this case, we have to include a
proxy thread on the receiver’s proxy and abort the operation
of the current proxy. But what if the receiver is migrated to
the sender’s processor. In this case we can restart the IPC lo-
cally for both threads, the sender and the receiver as a simple
intra processor IPC.

As seen above there are many operations to distinguish for the
cross processor IPC path even worse, we have to take into account
all these conditions into thelthread ex regs path when aborting
the IPC. To circumvent this, we have to reduce the possible states.
To avoid the first kind of race conditions, we can spin lock the tar-
geted thread, so enforcing the migration request to aquire the lock
before. For the sender, the same can be reached if we do not mi-
grate the sender while a proxy thread handles a request for it.
The second kind of race condition can be avoided by when migrat-
ing the receiver, we check its send queue for threads whose proxies
are still activated and migrate those requests with the thread. Pend-
ing requests, i.e. those that did not yet activate a proxy thread we
will find by calling checkn ack before and migrating all the re-
quests to that thread until no request is pending.
Both methods are at the cost of delaying or blocking the migra-
tion request. Migration however is used by the scheduling server
or more precisely by the load balancing server to migrate threads
to adapt to unbalanced loads. Blocking the scheduler to long might
then affect the entire schedule.
Lazy migration, i.e. the receiver sets up a request for migration and
the kernel hooks this request to some proxy but in between return
back to the scheduler (i.e. the thread callingthread schedule) im-
mediately and performing the request sometimes later. This would
solve the problem of delaying the actual migration to a safe point,
but future work about cross processor scheduling which was not
covered in this thesis has to show whether this approach pays. This
however, including to find the right abstractions for scheduling is
far beyond the scope of this thesis.

8.6 Thread Control Block structure

Looking at the IPC path, we can divide the entries in a thread’s
TCB into three different groups:

1. fields that are used processor local only,

2. fields that are frequently written cross processor and

3. fields that are read only.

3) also includes fields that are modified very infrequently but read
more often.
From section 3.1. can be easily concluded that no two fields of
different groups should be in the same cacheline. Having this in
mind we just have to identify and rearrange the fields of the TCB
appropriately.

1. group: local fields:

(a) ipc buffer: a buffer used to temporarily store the regis-
ter dwords in the C++ kernel

(b) ipc timeout: the send / receive timeout of the thread

(c) pager: the thread to deliver this thread’s pagefaults to

(d) stack: when switching to another thread, the stack
pointer is stored in here

(e) thread state: the state of the thread, i.e. running, wait-
ing, polling

(f) priority: the priority of this thread

(g) timeslice: the total timeslice

(h) remaining timeslice: the remaining part of the total
timeslice

(i) link pointers for the ready, wakeup

(j) resources:the resources held by this thread

(k) comm area: which part is mapped into the comm area

(l) link pointers for the send queue

2. group: global modified fields:

(a) partner the partner to communicate to (the proxy sets
this field for the sender and the receiver)

(b) proxy pointer to the proxies TCB

(c) xp cc the completion code of a cross processor IPC

(d) pointer to first and last mailbox if the thread is a proxy
(or a sender see above)

3. group: global read only fields:

(a) myself: Thread id of the thread represented by this TCB

(b) cpu: The cpu, this thread is currently assigned to. This
field is assumed read only because migration should
happen much less frequently, than this field is checked.

(c) link pointers for the present list

This leads to the following possible structure of the TCB for 32
byte cachelines like they are in the Pentium processors17. The TCB
structure is noted in C-style and is derived from types of the L4-
ka Hazelnut kernel. In brackets after the name, the size of each
element in bytes is denoted.

As seen above, the TCB needs only one global cacheline that
can be assumed to be in shared state because it is modified infre-
quently and one line for that is modified more often. However we
have to spent three local lines, so how to arrange the fields above.
If processor local IPC should be most efficient we can optimize this
by analyzing the sequence of accesses to the TCB fields that oc-
curs in the “fast” IPC path, i.e. for short IPC where the receiver is
willing to send while the receiver is still waiting. As can be seen
above, I arranged the fields of the tcb such, that the first line covers

17Note P4 has 64 byte wide cachelines

31

— Draft of April 22, 2002 —

Type Field Size
Processor local cachelines
dword t ipc buffer[3]; (12)
timeout t ipc timeout; (4)

tcb t *ready prev; (4)
tcb t *ready next; (4)

dword t threadstate; (4)
ptr t stack; (4)

—
tcb t *wakeup prev; (4)
tcb t *wakeup next; (4)
dword t resources; (4)
dword t comm area1; (4)
dword t comm area2; (4)
tcb t *send queue; (4)
tcb t *send prev; (4)
tcb t *send next; (4)

—
dword t priority; (4)
sdwordt timeslice; (4)
sdwordt remainingtimeslice; (4)

l4 threadidt pager; (4)
DUMMY FIELDS (16)

—
global shared cacheline
l4 threadidt myself; (4)
dword t cpu; (4)
tcb t *presentprev; (4)
tcb t *presentnext; (4)

DUMMY FIELDS (16)
—

global modified cachelines
l4 threadidt partner; (4)
tcb t *proxy; (4)
dword t xp cc; (4)
mailbox templatet *first mailbox; (4)
mailbox templatet *last mailbox; (4)

DUMMY FIELDS (12)
—

Table 3: Sample TCB structure for 32 byte cachelines (— denotes
end of cacheline)

the fields needed for short IPC like the message buffer, the stack
that is read when entering the kernel, and the thread state. The sec-
ond line holds the remaining fields participated in IPC: the send
queue, the resources including the comm area and the wakeup list.
The third line covers the remaining fields for scheduling and the
thread’s pager. The ready list is put in the first line too, to fill up the
remaining space.

8.7 Migration

Migration moves a threadt1 from a source processor B to a destina-
tion processor C.Design decisions 2 and 3concluded in extending
thread schedule to migrate threads explicitly. We already rejected
implicit migration i.e. on IPC or due to fine grain scheduling in the
design decision process described above.

Figure 7: Thread migration

8.7.1 Thread migration

What is required to migrate a thread? First an algorithm for migrat-
ing ready to run threads will be explained and discussed. Later on
this algorithm is extended for waiting threads and threads that are
migrated within the IPC message transfer.
From the design section we concluded to have processor local
ready lists. The main reason for this was because they require no
synchronization when accessed locally only. Transferring a ready
to run thread however has to remove and reinsert the migrated
thread from B’s and into C’s ready lists. In the general case, the
migration request can be initiated by a thread on a third processor A
which complicates the implementation, because then both, deletion
and insertion is a cross processor initiated operation.
Despite managing the ready lists, the migration code has to free all
locally held resources, before the transfer can be completed. As de-
scribed in the introductory section 2.4., the Intel Pentium processor
allows to delay the saving of the floating point registers until used
by a different thread. However, since the FPUs are processor local
and since we are migrating a thread which might have accessed
the FPU before, the floating point registers have to be saved and
the FPU be released before migration. Note, the storing can’t be
delayed until the to be migrated threadt1 uses it again, because
t1 can be scheduled on the new processor without notification to
the old one. Remember, there is no easy and fast way to trigger a
processor local operation cross processor, i.e. to store the registers
of B, when C’s FPU is used next. Similar actions like for storing
the FPU registers are required for the remaining resources.
The last thing to do is to transfer the TCB which results because
of the MESI cache coherence protocol and the shared memory
architecture in changing the current processor number, only. This
is possible because the TCBs are mapped to each processors kernel
space (see below) so they are visible from any processor in the
system.
The critical point in the above explained algorithm is the deletion
and insertion into the ready lists. If not done processor locally, this
would require an atomic operation to do the job or synchronization
whenever the lists are accessed, even for the currently executing
thread. Some processors offer atomic operations to compare and
exchange two times two values in parallel. The Intel Pentium
does not. Since both, a two to two compare is not available and
synchronization is not acceptable, the operation has to be invoked
locally.

8.7.2 A Migration algorithm

The algorithm is divided into three parts, whereA is run
on processor A, i.e. wherethread schedule is called, B
on the source processor B andC on the target CPU C.

32

— Draft of April 22, 2002 —

Notation: (= x) indicates the xth synchronization barrier.

A
if destination threadt1 needs to be migratedthen

trigger migration taskB andC

endif
(= 1)
exchange the timeslice and priority
(= 2)
return to the invoking scheduling sever.

B
enter kernel mode in B
(= 1)
deletet1 from local ready list
free any resources held byt1

(= 2)
set new processor number
(3)

if t1 was currently runningthen

switch to next thread

else

return to currently running thread

endif

C
enter kernel mode in C
(= 2)
insertt1 into local ready list
(3̃)

if t1 priority is higherthen

switch tot1

else

return to currently running thread

endif

When callingthread schedule, the processor A enters kernel
mode, because the TLBs have to be modified. Like in the unipro-
cessor case, the call parses the arguments, selects the targeted thread
and checks whether modifications are allowed. Depending on the
arguments in the registers, the kernel code exchanges the corre-
sponding TLB entries with the new values. The old values are pre-
pared for the output parameters. In the algorithm, exchange times-
lice and priority stands for that. Of course, since triggering cross-
processor operations takes some time, it is preferable to initiate the
request as early as possible. In fact this can be done directly af-
ter finding the thread, checking whether modifications are allowed
and that the thread has to be migrated. In the cross-processor case,
when A and B differs, we have to wait until B enters kernel mode,

Figure 8: The thread migration algorithm

i.e. until the invariant, described above takes into account, because
otherwise this thread might be scheduled on B with inconsistent
values.
The ready lists are organized as a connection of TLBs of threads
with the same processor. In particular, a processor local array con-
tains a head pointer per priority. This head may point to a TCB
of the same priority which might itself be connected with the next
TCB. Since within the same priority, round robin is implemented, a
double linked list is used to find the next (i.e. where the head points
to) and the tail of the list (the backward pointer of the next thread).
Due to this header array, the dispatcher has to parse in the worst
case the entire array for a head pointer to a valid thread. As an im-
mediate consequence, changing the priority of a thread requires to
delete the thread from the old priorities list and reinsert it to the new
one, which is nothing more than executing firstB and thenC on the
same processor. When migrating, the processor B and C differs.
B deletes the thread from its current ready list, frees the resources
held byt1 and C reinserts it.
Obviously we should not insert a thread into the new queue before
deleting it from the old. But this is not true. If we know that the
B and C are in kernel mode with interrupts disabled, no thread is
actively running, so especiallyt1 cannot be scheduled in an incon-
sistent state. To ensure this precondition, we have to explicitly syn-
chronize the three methods, A, B and C after entering kernel mode.
At that point, the insertion and deletion can be performed and the
scheduling parameters can be modified. To avoid on the other hand,
that one of the three methods return, before the operation is com-
plete, a second synchronization is needed afterwards.
In detail, the situation is as follows. To exchange the scheduling
parameters, A has to ensure that B is in kernel mode, i.e. no thread
is running on B. This is done by the barrier synchronization point
(= 1). For the rest, of the operation B is independent from A and C
and might continue, even return back to user mode.t1 is no longer
present on B and will not be found locally, if a concurrent schedul-
ing request is performed. This is because B changed the processor
number before returning from the cross-processor operation so by
now, t1 is on the target processor.
C instead can start immediately after the scheduling parameters are
written, because the new priority need to be known to insert the
thread into the right priority ready list. This is ensured through the
synchronization barrier (= 2).
At this point A gets independent of C and may continue to user
level, provided no acknowledgment of the operation is required.
But since the receive of the IPI or the request in a mailbox was ac-
knowledged by (= 1) and (= 2), the operation will not fail provided
implemented correctly. C inserts the thread into the ready queue
and has to decide, whether to directly switch to it, ift1 is now the
highest priority thread or to the last thread, that had the highest pri-
ority before.

33

— Draft of April 22, 2002 —

The additional synchronization point (= 2) in B has to be inserted
when using a single link location in the TCB for the ready list. Then
the link has first to be freed by the deletion process, before it can be
used for reinsertion. Otherwise the following threads in the list are
lost, when the pointers to them are overwritten by the new values
of the destination.
The last synchronization point (3̃) is not a strict synchronization,
but requires weaker condition only(denoted byĩnstead of =). For
the above described synchronization points it was always required
that both reach the synch barrier before any of the two may con-
tinue. However (̃3) requires only C to wait until B has set the pro-
cessor number, but B may already switch. If C would not wait, the
next operation ont1 might still find the old processor number which
might lead to wrong assumptions and unnecessary cross processor
operations or even lead to fail the operation.
Normally, a race condition occurs when immediately after B fin-
ished, a secondthread schedule system call is initiated ont1.
However since the operations A, B and C are performed atomically
in interrupt disable mode, the insertion operation on C would first
be completed before any other modification to the ready lists can be
performed, so no race condition occurs.
For the two special cases A == B or A == C, A has to be performed
first. The remaining synch points with B respectively C can be ig-
nored and of course no IPI has to be send.

8.7.3 Waiting threads

In contrast to running threads, waiting threads are additionally en-
queued into a waiting queue with a certain timeout. Note when
setting a thread to wait, it is not explicitly deleted from the ready
queue, but the dispatcher checks the queue for not ready threads
and skips those. This implementation trick is an optimization for
threads that are frequently waiting for some one, but only for a
short time. It already was built in the uniprocessorµ-kernel by
Jochen Liedtke.
So additionally to deleting and reinserting a thread from the ready
lists, it has to be deleted and if the timeout did not expire in between
reinserted into the destination processors wakeup queues. Threads
waiting with an infinitely large timeout are not inserted into the
wakeup lists.
Migrating waiting threads does not evolve new problems com-
pared to migrating ready threads, however migrating threads that
are within an IPC may cause some problems (see below).

8.7.4 Migrating the Migrator

Migrating the migrator itself causes serious problems. When the
scheduling server wants to migrate itself, the algorithm can be ex-
ecuted like for any other thread, however when actually switching
back to user level the kernel stack of this thread is compromised by
the remaining part of the migration code on the other processor.
However it can be assumed that in a multiprocessor operating sys-
tem, a scheduling server exists per processor because of perfor-
mance reasons. Otherwise any scheduling would crosses the pro-
cessor boundaries and is thus far to slow.
Restricting migration such, that the originator cannot migrate itself
does not harm. On the other hand, if needed, it can be implemented
in user level easily by taking two threads a scheduling server thread
and a scheduling server migrate thread. When the first wants to be
migrated, it sends the request to the migrate thread and afterwards
pulls this thread to its new processor. This leads to:

• Implementation decision 4:No thread can migrate itself. The
request will simply be ignored by theµ-kernel.

8.8 Kernel Address Spaces

In L4, the kernel address space, including all local data structures
and the physical memory is mapped to the upper 512 MBs of each
task. This allows to efficiently call the kernel functions i.e. the
system calls, because the intermediate switch to a kernel address
space can be avoided. When switching to another thread in a
different address space, the new page directory is loaded (and the
TLB is flushed and refilled), but no intermediate loading of a kernel
page directory is required.
In a message based or NUMA multiprocessor, local data is kept in
the local memory modules that are within the same node. In SMPs,
all memory modules are processor local, so in which part of the
physical memory the local kernel data structures are stored does
not matter.

8.8.1 How to find processor local data?

Figure 9: Processor local data implementation

Usually each processor of the SMP has some specified register
or memory mapped hardware like the local APIC. Those locations
(we use the Task Register TR and the memory mapped APICID
register) are used to store the current processor number. Given this
number, the local data structures can be found by storing them con-
tinuously in memory and adding the processor number times the
size of the data structure to a fixed offset to get the ith processor’s
data.
As mentioned above, we use the Task Register of the Intel Pentium
to store the processor number. However because of the build in op-
erating system of the Intel Architecture, the register can be loaded
with a valid task state segment descriptor only. Because of this, we
built a temporary Gate Descriptor Table (GDT) containing a task
state segment per processor and switch to that GDT temporarily for
loading the processor number. To get this number, the processors
spin on a processor field in memory with an atomic exchange and
add instruction, increasing the processor field and storing the old
value as processor number. When switching back to the system’s
GDT, the task register remains valid and is never checked against
the task state segment descriptors again, provided it is never written
thereafter. Note loading the task register, which can be done with
LTR, can be done in supervisor mode only. Reading the task reg-
ister can be done in roughly 10 cycles with theSTR instruction in
supervisor as well as in user mode.
Though the processor number can be found efficiently, each access

34

— Draft of April 22, 2002 —

to local data requires to compute the offset address first. To avoid
this, two additional tricks can be applied. First, execute different
code, in which the pointer addresses have been computed at com-
pile time. This requires additional space to store the different code
and to know the maximum available processor number in advance.
The second trick, that we use requires no modification to the ac-
cessing code at all. The MMU and the TLBs are used to translate a
virtual address to the corresponding physical address. This can be
used to translate the same virtual address on different processors to
different physical addresses. However this restricts the granularity
of local data to memory pages and requires a first level page table
per processor per task. With this implementation trick, the pro-
cessor local kernel tables are mapped to the same virtual addresses
on all processors and the MMU scatters them to different physical
pages.
Additionally to the simple implementation of local kernel tables,
three other tricks come for free: local long IPC communication
spaces, a local dispatcher thread and local proxy threads. How-
ever remember,p-1 additional pages are required per task wherep
is the number of CPUs in the SMPs. Second, this additional page
tables have to be synchronized18.

8.8.2 Long IPC Com Spaces

When copying data between two address spaces, the IPC code first
has to copy the data into the kernel area, switch to the destination
task and copy the data back to user space, because no direct copy
to the destination address space is possible. However, this method
is inperformant because two copies are needed which will for sure
miss in the kernel area and additional switches are required, if the
message size exceeds the buffer size. To avoid this, the uniprocessor
L4 µ-kernel temporarily maps the pages of the destination task into
a kernel area called com space. Since at most 4MB portions can
be specified and copied as a single string, 2x 4MB are mapped to
avoid border checking19. In the SMP kernel we have to reserve
an area per processor to map the copy destination, since we do not
want to restrict long IPC such, that only one copy operation may
be performed at the same time. However with the per processor per
task page directory trick, we get the local mapping area for free.

8.8.3 Processor Local Dispatcher Threads

Design decision 1requires that the dispatcher thread and the ready
queues are processor local. Though the L4 dispatcher thread needs
no state information (this means no TCB is required to store its
state on a switch), it needs access to the ready queues which are
realized as an array of priorities, holding the head pointers to the
next ready TCB of that priority. The TCBs itself are connected in
a double linked list. Since we decided that this information is ac-
cessible processor local only (design decision 1), it can be kept in a
local page.
This automatically avoids a cross-processor access to those tables.
Remember, allowing cross-processor accesses would lead to unac-
ceptable overhead for synchronization.

8.8.4 Processor Local Proxy Threads

The proxy thread concept is a trick to perform cross-processor op-
erations like IPC locally. The cross-processor IPC request is trans-
mitted to a proxy thread through a mailbox. Then, this thread sets

18E70: Some Pentium processors may deadlock if the access and dirty
bits of two page directory entries pointing to the same page table are allowed
to become inconsistent. Theµ-kernel has to ensure the consistency of those
two bits.

19Note 4MB is the area that is covered by an entire 2. level page table, so
mapping requires only to copy the two page directory entries.

up a normal intra processor IPC to the original receiver (see above).
Since proxy threads exist processor local only they can be stored in
a local page.
A thread is contacted through its threadid. This id is unique and
globally visible in the system. Unfortunately there exists a direct
relationship between the threadid and the position of the TCB in
the current kernel, which is permanently used to find a thread’s
TCB by masking out the version and chief (a relict from Version
2, see Version 2 spec) bits and adding the offset of the TCB area
to the threadid. So when sending or receiving a regular IPC to or
from a proxy thread, this threadid is parsed and since the TCBs are
mapped locally only, the local proxy thread is reached.
In other words, another processor’s proxy threads are invisible and
can’t be accessed, except through its mailbox (which better should
not be in a local page).

8.9 Superfast IPC

Super fast IPC (LIPC) is an implementation of some flavors of IPC
in user level. Avoiding the kernel entry and exit restricts this IPC
to very few cases. On the other hand, it makes those cases really
fast. Implementing an IPC path in user level requires access to some
parts of the thread control block (TCB) in user level. These parts
are stored in the UTCB.
Since cross-processor IPC requires kernel intervention, LIPC will
setup a normal, in kernel IPC in the cross processor case. LIPC
is for intra task communication only, which means that the UTCB
is readable and especially the current processor field of the UTCB.
Cross-processor IPC will be detected and if specified aborted before
entering the kernel.

At this point the work done in this study theses ends. The re-
maining section describes some open questions that came up during
my work and are not handled in this thesis. Afterwards this paper
is concluded.

9 Open Questions and Future work

This section refers to open questions and not yet evaluated ideas
and optimizations for the L4 SMP kernel. Two additional sections
are included: scheduling cache colors and memory accesses, that
refer to papers and further research topics mentioned in the thesis.

9.1 Covert Channels

In the days of Internet, hundreds of applications are downloaded
and executed, i.e. to mobile devices, from a more or less trusted
source. The communication network itself, that spans the Internet
is a huge playground for attackers. In order to secure the private
systems several security applications and hardware were built, i.e.
firewalls, crypto hardware and so on.
To sum up, there is a need for a monolithic operating system as
well as for aµ-kernel to support some mechanism to protect and
secure the system against attacks or involuntary accesses from out-
side. Unix establishes a user / group security policy using pass-
words to authenticate. But that kind of security policies is not what
we will discuss next.
Assume an application is downloaded i.e. a game that frequently
has to synchronize with some server on the Internet and therefore
has to be allowed to access the net. Another application runs in
background that manages your bank account data, that is offline
available. Since the management software was not provided by
your bank, i.e. a shareware program, you do not want it to pub-
lish your bank data over the Internet.
In this scenario one application, the game, needs to access the In-
ternet while the other is not allowed to. Operating system security

35

— Draft of April 22, 2002 —

and user level software like firewalls ensure that the network stack
is accessible for the game only and protection like the address space
plus some additional IPC controller encapsulates the game from the
management software.
Though there is no mean provided by the operating system to com-
municate, the two applications may exchange data. Of course both
applications need to access their own data on the disk for example.
This shared resource can be used to transmit the bank account infor-
mation to the game and out through the Internet. Since only private
files can be accessed, there is no way to communicate directly, but
by accessing the disk in a certain pattern, generates different re-
sponse times for others. When the filesystem is servicing a job of
the management software, the concurrent access of the game is de-
layed. The game can now poll frequently the disk and measure its
service time by reading the clock or generating a clock thread that
increases a counter. This communication line is an example of a
covert channel.
This example hopefully showed two things: a) there are many pos-
sible ways to construct covert channels. Not all are such obviously,
and b) there is no really efficient way to get rid of this channel, be-
cause delaying the filesystem request for a changing period, which
would introduce noise to the channel, drastically reduces the re-
sponse time guarantees a filesystem can give.
Covert channel are an open problem and will be taken into account
for futureµ-kernel design but not in this thesis. However we will
revisit the design, especially cross-processor IPC detection when
covert channels are examined.

9.2 Local Small Spaces

Figure 10: Small spaces

Small Spaces are a software simulation of a tagged TLB on the
Intel x86 architecture. A tagged translation lookaside buffer caches
the translations of virtual to physical addresses like an untagged
TLB does. In addition to the virtual address, a task number is
stored and compared when accessing data from the caches. Un-
tagged TLBs have to be flushed on a task switch, because the same
virtual address may point to different physical addresses. Tagged
TLBs do not have this problem, because the address space number
is part of the cached translation and is considered in the compare.
This means though having the same virtual address, the translations
differ when the address space numbers differ.
Small spaces simulate tagged TLBs. The first part of the user
address space is mapped to and shared among all tasks, like the

kernel is with the difference, that the kernel pages are not user ac-
cessible. The segments of the Intel architecture are used to protect
these pages. Segmentation introduces another level of indirection
in the address translation. Before getting the virtual address, the
segment base address is added and the corresponding address is
compared against the segment limit. Segment border faults raise
an exception, that can be handled by the kernel. This can be used
to transparently create a small space and relocate is behind the big
address space (after 3GB). When the segment limit is violated, the
µ-kernel switches to the corresponding large address space.
When switching to a small space, the segment descriptors are
changed to point to a part above 3GB, where the pages of the
task are mapped to. Switching to another small space resets the
segment descriptors again to cover that space’s data pages. Only
when switching back to another large space, the page directory
is reloaded and the TLB has to be flushed. Since the segment
mechanism automatically adds the segment offset to the virtual ad-
dresses, small spaces are transparent for the user. When accessing
data beyond the segment limit, the exception indicating a segment
violation is caught by the kernel which switches to the large space
of that task and executes the faulting instruction again. Page faults
are translated as if they happen in the large space and transmitted
to the faulting thread’s pager. The decision, which task to run in a
small space, can be set by a user level scheduling server through
theµ-kernel callthread schedule.

The untagged TLBs of the Pentium processors exist locally,
which leads to the idea of simulating a local tagged TLB. Local
small spaces work like small spaces in the L4 uniprocessor kernel,
with the difference, that the mapping, tasks to small space can dif-
fer. So on processor 1 task A can be in the 2nd small space, while
on processor 2, the same task can be in small space 1 or even in a
large space.
Assuming a per processor, per task page table seems to limit the
implementation problem, because the processor tables holding the
segment descriptors (the Gate Descriptor Table GDT) is processor
local. Potential problems may occur if page faults are raised con-
currently once in a small and at the same time in a large space, but
this is a similar problem as if concurrent page faults are raised in the
same large space. In such a case, theµ-kernel will deliver two page
faults, because the page is accessed by two different threads and a
user level pager should reply with mapping a page or resuming the
thread by replying with a zero IPC. Note the same scenario may
occur on a uniprocessor if the pager is not in receive state. Thread
t1 touches the page, a PF-IPC is set up, threadt2 is scheduled, be-
cause the pager is not waiting for the IPC yet, a second PF-IPC is
set up, the pager enters receive state and finds two PF-IPCs for the
same page from two different threads. A second problem is how to
specify which thread will run in which small space. Currently the
threadschedulesystemcall is used to determine the task’s small
space. Either this call is defined to work locally only, or a destina-
tion processor or a list has to be defined to specify the small space
processor pair.
Care has to be taken when an IPC is set up between two small
spaces, that crosses processor boundaries. The problem is that
though a direct small to small IPC can be set up for one proces-
sor, this might not be the case on the other processor, i.e. because
the small space on the sending processor A might be large on the
receiver’s processor B. To solve this problem, theµ-kernel has to
check what transfer mode is possible on the processor where the
transfer happens. In the worst case, a temporary mapping of the
missing space’s portion has to be established like for large to large
long IPC.
Future work has to show if the benefits of local instead of global
small spaces pays compared to the additional management over-
head.

36

— Draft of April 22, 2002 —

9.3 Hiding the shootdown problem

When a page is unmapped, the translation of that page’s virtual
address is no longer valid. However since the TLB caches the least
recently used translations, the translation might remain in the TLB
and therefore has to be invalidated.
The Intel Pentium SMP has a TLB per processor and in the same
time, does not support cross-processor invalidation of TLB entries.
Since the unmapped page, that probably was mapped to several
different address spaces before being unmapped, might have a valid
translation in each processor’s TLB.
To sum up, we have to invalidate the TLBs of each processor in
the system. At least each where the translations might be cached
in. Since there are no cross-processor TLB invalidation operations,
we have to trigger this operation processor locally i.e. with an Inter
Processor Interrupt and invalidate the TLB entries in the handler
routine.
Theµ-kernel performs the unmap operation in behalf of the pager
thread, that initiated the operation. Which means, that this par-
ticular thread is accounted for the time needed to perform the
unmapping, which is not bound, since once a page is owned by a
task, it can be mapped in theory infinitely often into other tasks. In
reality, since mapping needs some time, the number of mappings is
limited by the interval between mapping the page and unmapping
it again which might be arbitrarily long.
When shooting down the TLBs in the system, i.e. invalidating the
changed translations, the time can’t be accounted to the unmapping
thread, since because ofdesign decision 1timeslices are processor
local. So minimizing the interruptions on the shoot down proces-
sors is the target of optimization.

1. When knowing, that a translation is for sure not cached on
a specific processor, this processor can be excluded. But de-
tecting where a translation is cached is not such an easy task,
because the Pentium’s TLB contents can’t be read by soft-
ware.
As a first approximation, the current address space numbers
of each processor can be published and compared to the set
of spaces, where the page is going to be invalidated. Since
the TLB is flushed on a switch to the next hardware address
space, the invalidation triggering IPI can be avoided if the cur-
rent space is not one of those in the set. However, additional
action is required for small spaces, because when switching
to a small space, the TLB is not invalidated. So the condi-
tion changes to: If the large or one of the small spaces is in-
cluded in the set of address spaces, where the page has to be
unmapped in, the TLB has to be invalidated.

2. Since the TLB is going to be flushed anyway, when switching
to the next hardware address space, the shootdown operation
can be delayed to that point and skipped. But since multiple
switches between small spaces can occur before switching to
a large space, the unmap operation can be delayed arbitrarily
long.

• Implementation decision 5:For the time being, a TLB flush-
ing IPI is sent to all processors on an unmap operation.

Future work has to evaluate both possibilities.
The following two sections are based on the idea to support real-
time applications on symmetric multi processors, i.e. applications
that need a guaranteed amount of execution time to fulfill their task
correctly. To guarantee these demands, the duration of certain op-
erations like memory accesses need to be known.

9.4 Scheduling Memory accesses

In a uniprocessor system only one processor accesses the memory
bus (provided no DMA units are present in the system). So the
duration of a memory operation is bound by the bank busy time of
the chips plus some bus arbitration overhead. In a multiprocessor
environment, including uniprocessor systems with multiple DMA
units, the memory bus is shared among several CPUs, which makes
the duration of memory accesses dependent from the bus load, too.
In other words, the processors in the system may down perform
themselves and the others due to concurrent memory accesses.
Work done by Frank Bellosa [3] tries to throttle down the other
CPUs to guarantee memory bandwidth to a single processor. More
theoretical work by Kevin Elphinstone, Jochen Liedtke and myself
[1] describes a way to schedule the memory accesses of the different
processors, so to split the available bandwidth among all processors
in almost arbitrary amounts. In contrast to Frank’s paper, gaps are
included in the model, i.e. times where the bus idles, because no
processor uses it.
Future work has to prove the correctness of the model described
in the paper and to evaluate the practicability of this preliminary
approach.

9.5 Scheduling Cache Colors

Caches are used to fasten memory accesses to data that is within
the cache. Cache coloring is a technique to pin portions of mem-
ory into the cache, so it is not replaced and written back to main
memory when other data is read that clashes with the cached lines.
By pinning certain memory areas in the cache, the time needed for
memory operations performed to that area are now for sure cache
hits.
Previous work in this area focused on uniprocessor machines. We
are not aware of any work that considered cache coloring on SMPs.

10 Conclusion

This thesis showed how to design aµ-kernel like L4 for SMPs with
local L2 caches. For those machines or when assuming the SMP
kernel that implements threads that might migrate between nodes
not sharing its L2 caches, we showed that local fine grain schedul-
ing decisions have to be made. We presented what effects this have
on cross processor IPC and showed in detail how to implement
cross processor operations in general and IPC in particular.
The implementation part shows how to implement a L4µ-kernel
on an Intel Pentium SMP machine. In detail we focused on the
most complex problem of how to implement IPC. Though there are
several problems remaining which are partly identified by this the-
sis we are promising to construct and implement a fully suited L4
µ-kernel for SMPs. Until now, the API has to be changed only
slightly, however experience with other SMP architectures and fur-
ther optimizations for the Intel Pentium respectively a detailed look
at the P4 have to prove the concepts presented in this paper.

A Example Spinlock Implementation

Following an example spinlock implementation for Pentium pro-
cessors:

37

— Draft of April 22, 2002 —

spinlock(lock)

lock bts [lock],1
js spin

critical section:
Do work here

ret

spin:
cmp [lock],0
jne spin

lock bts [lock],1
js spin

jmp critical section:

First we atomically check and set the lock. If we got it, i.e. the
lock was not set before the critical section is save to be entered. If
not we spin for the lock, just reading and only if clear we try to
lock it again. Through this, only when there is a chance to acquire
the lock, i.e. the simple read returns a free lock, the lock is tried to
set again. This is done because the MESI protocol of the Pentium
processors snoops a write, even when the data of a shared line is
not modified. Without, each time a processor spins, i.e. each loop
iteration, the line would be transferred to modified state on the pro-
cessor that performed the spin and invalidated on each other.
Additionally to that the loop is optimized such, that for the normal
situation, i.e. when the lock is free and the critical section can be
entered immediately, the jump is predicted not to be taken (Pentium
predicts forward jumps not to be taken if no history exist).

B Glossary

References

[1] Kevin Elphinstone, Marcus V̈olp, Jochen Liedtke
Preliminary Thoughts on Memory Bus Scheduling
in the proceedings of theEuropean SIGOPs Workshop 2000

[2] Intel Architecture Developer Manual IA 32 Vol. 1 - 3
http://www.intel.com

[3] Frank Bellosa
Process Cruise Control
throttling memory access in a soft realtime environment
Poster Session SOSP 1997

[4] Saw Mill Linux
http://research.ibm.com/SawMill

[5] K42
http://research.ibm.com/K42

Additional papers about L4 can be found at
http://i30www.ira.uka.de.

38

