
Provable Protection of Confidential Data in
Microkernel-Based Systems

Diplom Informatiker
Marcus Rolf Völp

Summary of my Doctoral Thesis

submitted to the

Faculty for Computer Science
Technische Universität Dresden

in partial fulfillment of the requirements for the degree of:

Doktoringenieur (Dr. Ing.)

submitted: August 10, 2010
date of defence: January 31, 2011

Thesis Committee:
Prof. Dr. rer. nat. Hermann Härtig (Supervisor) Technische Universität Dresden

Prof. Dr. rer. nat. habil. Christel Baier Technische Universität Dresden

Prof. Dr.-Ing. Christian Hochberger Technische Universität Dresden

Prof. Dr.-Ing. habil. Klaus Kabitzsch Technische Universität Dresden

Prof. Dr. ir. Erik Poll Raboud Universiteit Nijmegen

Provable Protection of Confidential Data
in

Microkernel-Based Systems

Modern computer systems process increasing amounts of private, sensitive, and valuable information.
Yet, despite significant academic and industrial efforts, most of today’s operating systems (OSs) do not
protect confidential data against unauthorized disclosureover covert channels. Large trusted computing
bases and high covert-channel analysis costs are two factors contributing to this situation.

In my thesis “Provable Protection of Confidential Data in Microkernel-Based Systems” [V1̈0], I ap-
proach the visionary goal of a cost-efficient, provable, andperfect protection of confidential data against
leakage over covert communication channels. To achieve this goal, I combine the complementary
strength of microkernels and of security type systems. Thisdocument summarizes the major challenges
and results of my thesis.

1 Introduction

Microkernel-based systems significantly reduce the per-application trusted computing base, and hence,
the amount of code that must be relied upon to protect the confidentiality of the data they process. Open
microkernel-based systems are a particularly interestingclass of microkernel-based systems:

• they co-host real-time-critical [DL97] and security-sensitive [Här02] applications next to legacy
OSs and their applications; and

• they facilitate a construction principle to split complex security-sensitive and real-time-critical
applications into a critical core and into non-critical parts, which reuse the code and functionality
of not necessarily trustworthy legacy OSs [HPHS04].

Such a split is only possible because the multilevel components of the open system isolate parts with
different criticality in both a spacial and in a temporal manner. In a microkernel-based system, thesemul-
tilevel componentsare the microkernel and those necessarily trusted low-level operating-system servers,
which operate on behalf of differently classified clients and which cannot be re-instantiated for each such
client.

What justifies our trust in multilevel components to protectthe confidentiality of sensitive data? Ide-
ally, each such component comes with a formal proof, which confirms its isolation capabilities. However,
the costs of traditional formal and semi-formal methods to establish these results are significant, both in
terms of highly-skilled personnel and in terms of labor hours [Smi01, HKMY87]. This and the mi-
crokernel’s inability to constrain application-internalleakage are what brings security type systems into
play.

Sound security type systems [VSI96] and related language-based approaches to information-flow
security [SM03] are powerful source-level analyses to prove the absence ofsecurity policy violating
information flows and hence the protection of confidential data in application-level programs. However,
the peculiarities of low-level operating-system code prevents an immediate application of traditional
security type systems to prove data confidentiality in open microkernel-based systems.

The here summarized thesis addresses these challenges as follows:

1. a scheduler for the microkernel is developed and proven non-interference secure. It avoids leakage
over scheduling-related (i.e., external) covert timing channels;

2. a security type system for the low-level operating-system code of open microkernel-based systems
is developed and proven sound to avoid leakage over software-centric covert storage channels; and
finally

1

3. existing timing-leak transformations [Aga00] are used to eliminate the remaining internal timing
channels.

The remainder of this summary is structured as follows: Section 2 highlights the possibilities to leak
information through fixed-priority schedulers and presents a non-interference-secure budget-enforcing
fixed-priority scheduler, which avoids these illegal information flows in open microkernel-based sys-
tems. Section3.3 introduces the peculiarities of low-level operating-system code and how the proposed
analysis checks low-level operating-system code for information leakage over storage channels. Sec-
tion 4 summarizes the existing timing-leak transformations before it focuses on secure resource usage
in real-time systems. Section5 summarizes the case studies I have performed. Section6 concludes this
summary.

2 Avoiding Timing Leaks in Fixed-Priority Schedules

In fixed-priority schedulers, altering a thread’s execution or blocking behavior in a secret-dependent way
constitutes an information flow to lower or equally prioritized threads. If such a leaking thread blocks,
an unmodified fixed-priority scheduler will select a lower orequally prioritized thread to run; if it runs,
the selection will be deferred to a later point in time.

In addition to that, non-preemptively executing threads can defer the points in time when higher or
equally prioritized threads resume their execution after they are released or after they have been blocked.
Let us call these possibilities for information leakagedirect influencerespectivelyinfluence due to non-
preemptive execution.

2.1 An Information-Flow-Secure Budget-Enforcing Fixed-P riority Scheduler

To avoid information leakage due to direct influences, due tonon-preemptive execution, and the indirect
leakages, which occur when thread manipulate the timing of legitimate messages from the influenced
threads, I introduce two practically feasible modifications to a budget-enforcing fixed-priority scheduler:

• Countermeasure I:to treat possibly leaking blocked threads as if they were ready; and

• Countermeasure II:to defer the points in time when higher prioritized threads resume their execu-
tion after they are released or after they have blocked.

Because a budget-enforcing scheduler deactivates a job of athread after it has executed and blocked
longer than its combined execution and blocking budget, treating possibly leaking blocked jobs as ready
defers the execution of lower or equally prioritized threads to the point in time when such a job has
exhausted its budget or when its deadline has passed. Directinfluence and hence also an indirect influence
through message timing is avoided. To ensure that a blocked thread consumes its budget, the scheduler
runsbudget-consumer threadsinstead of the blocked thread. Budget consumers are selected according to
ascending secrecy levels to avoid leakage to the blocked thread and to previously chosen blocked budget
consumers. Following Hu [Hu92], I call the resulting scheduler thebudget-enforcing fixed-priority lattice
scheduler.

Both countermeasures are controlled by static (i.e., off-line computable) predicates, which determine
when and for which threads the respective countermeasure should be applied. These predicates are:

ptransitive(τh, t) := ∃ τl ∈ T. prio(τl) ≤ prio(τh) ∧ dom(τh) � dom(τl) (1)

for Countermeasure I, whereT is the set of threads,dom(τ) is the clearance of the threadτ andprio(τ)
is its priority. The predicate forCountermeasure IIis:

pdelay(τh, t) := ∃ τl ∈ T. prio(τl) ≤ prio(τh) ∧ dom(τl) � dom(τh) ∧ max delay l > 0 (2)

2

For the purpose of information-flow secure scheduling, I propose to transform intransitive information-
flow policies into transitive information-flow policies by restructuring servers at intransitive points and
by introducing additional secrecy levels for the additional threads of these servers.

The use of static predicates allows off-line admission tests to consider the above two countermeasures.
By characterizing the effect ofCountermeasure Ias a blocking term, a large class of existing admission
tests can be reused to determine whether all real-time threads will meet their deadlines. This blocking
term is theprohibition time:

bb
pr

l
=

∑

τh∈TH+

⌈

Πl

Πh

⌉

.bbh where TH+ := {τ ∈ T |prio(τl) ≤ prio(τ) ∧ ptransitive(τ)} (3)

wherePih is the period andbbh is the maximum blocking time of the higher prioritized thread τh.
The effect ofCountermeasure IIis negligible for the admission because the maximum time that a

threadτl can executed non-preemptively (i.e.,max delay l) is small compared to the budgets and block-
ing frequencies of higher prioritized threads.

From the prohibition timebbprl , it is easy to see thatτl can run whenever a higher prioritized thread
τh blocks for whichptransitive(τh) does not hold. This ability to reap benefit of thread blockingtimes
is the reason why the proposed fixed-priority scheduler can accept significantly more real-time threads
than time-partitioning schedulers [ARI, Kop98], the state-of-the-art information-flow-secure real-time
schedulers.

2.2 A Machine-Checked Non-Interference Proof

To prove the proposed budget-enforcing fixed-priority scheduler information-flow secure, I have con-
structed an abstract formal model of this scheduler and proved it to be non-interference secure.

Non-interference [GM82] is the prevailing formalization for the complete absence of security policy
violating information flows. Given an arbitrary observer and two arbitrary initial states, which differ only
in the states of threads that are higher classified than this observer, a scheduler is non-interference secure
if the resulting schedules are indistinguishable for this observer.

The key insight, which has lead to the non-interference result for the proposed scheduler, is that the
predicatesame high state over pairs of states is an invariant of the proposed scheduler. Informally, this
predicate states the following two points:

1. The states of observable threads are identical in the two states of the pair; and

2. Threads, which are higher prioritized than an observablethread agree on the jobs they execute, on
their remaining budgets, on the time that remains to their deadline, and on their thread state in the
sense that they are either inactive in both states of the pairor active in both of these states.

The main result follows from observing that states for whichsame high state holds are indistinguish-
able for the corresponding observer.

The formal model of the scheduler and the proof of non-interference have been formalized in the
theorem prover PVS [ORS92]. The PVS sources and the machine-checked proof of the scheduler are
publicly available [Völ10].

3 A Sound Security Type System
for Low-Level Operating-System Code

The low-level operating-system code of microkernels and ofthe multilevel servers of open microkernel-
based systems have a number of peculiarities, which make an information-flow analysis challenging:

• the peculiar ways in which multilevel servers interact withtheir clients and with the kernel;

• the side effects from interactions with the underlying hardware;

3

• the peculiar programming patterns, which combine C++, C andassembler in a way that is not
always conform to the standard of these programming languages; and

• the lack of knowledge about the system’s information-flow policy at the time when the kernel and
the multilevel servers are analyzed.

To not risk overlooking the information flows these peculiarities involve, a sound information-flow anal-
ysis for low-level operating-system code must address all of these challenges.

In my thesis, I address the above challenges by first translating the to-be-checked operating-system
code into an intermediate programming language —Toy— and by then checking the resultingToypro-
gram together with interleaved executing side effects. These side effects are alsoToy programs and
which characterize the interaction with the underlying hardware and with separately checked compo-
nents. A protection-parametric analysis with a universal lattice for shared-memory programs allows
low-level operating-system code to be checked without precise knowledge about the usage scenario or
its information-flow policy. In the following, I shall summarize this approach.

3.1 The Non-Deterministic Intermediate Programming Langu age Toy

Toy is a simple non-deterministic imperative programming language, which I have designed specifically
for the purpose of analyzing low-level operating-system code and the side effects from the underlying
hardware.

Toy inherits all interpreted data types and the semantics of most arithmetic operations from C++,
although the formal semantics ofToy leaves most of the details of these types and operations abstract. In
addition,Toyknows about bits, bytes, and words and about an address data type, which allows any bit in
memory and in the processor registers to be addressed individually and in a unique fashion. Hence,Toy
is based on a bit-granular memory model.

BecauseToy facilitates a non-deterministic binary choice operator and parallel composition, the non-
deterministic evaluation order of the value computations and side effects of C++ expressions can directly
be expressed inToy. The excessive use of non-allocated temporaries combined with non-deterministic
choice allows for the consideration of compiler optimizations such as out-of-thin air values and stack-
and register-allocation strategies.

The key property ofToy, which makes it suitable for an information-flow analysis oflow-level
operating-system code, is the clear separation of control-flow non-determinism and input non-
determinism. In the formal PVS-based semantics ofToy, the latter is captured with the help of an
almost arbitrary input oracle. There is only one constrainton any two input oracles used in the non-
interference proof to produce the inputs for two runs of the program from observer indistinguishable
initial states: the two oracles have to agree on the values they provide as updates for write-shared
variables whose learned secret (see below) is dominated by the observer secrecy level.

3.2 Shared Memory, Locks, and Learned Secrets

Concurrently executing threads interact with the to-be-checked operating-system code through shared
memory and other shared kernel or server object without necessarily being analyzed themselves. To not
risk overlooking illegal information flows, we have to characterize the worst-case behavior of concur-
rently executing threads with regards to information leakage. In particular, we must verify that these
threads cannot relay secrets through the to-be-checked operating-system code.

To verify the absence of leakage due to concurrently executing threads, I suggest in my thesis to
keep track of the secrets these concurrently executing threads may learn from the to-be-checked program
before and while this program executes. These secrets are the confidential data, which concurrently
executing threads can access before the to-be-checked program starts executing, plus the secrets the
to-be-checked program stores in externally visible regions of shared memory or in likewise accessible
shared objects. While the to-be-checked program executes,concurrently executing threads may return

4

an arbitrary encoding of the so far learned secrets with the intent to relay them with the help of the
to-be-checked program.

To keep track of secrets concurrently executing threads learn from the to-be-checked program, I intro-
duced a second set of dynamic secrecy levels — thelearned secrets— and a corresponding typing rule
for concurrently executing threads, which updates these learned secrets.

Notice, not all read-shared memory regions are visible at all points in time. Locks and certain pre-
cautions such as the disabling of interrupts in uniprocessor systems make these regions temporarily in-
accessible, provided all concurrently executing threads adhere to the locking discipline of these regions.
Hence, the proposed analysis can tolerate the temporary storage of confidential data in lock-protected
shared-memory regions, provided that this imminent breachof confidentiality is repaired before the
region becomes visible again. This tolerance was a crucial ability to prove correctness of Osvik’s coun-
termeasure against AES cache side-channel attacks.

3.3 A Sound Control-Flow-Sensitive Security Type System fo r Toy

The typing judgements of the security type system forToyhave the form

[lip,Mc] ⊢ M i, Li−1, i {c} M i+k, Li+k−1, i+ k (4)

wherelip is the secrecy level of the context in which theToystatementc is executed,Mc is the clearance
of the physical addresses the to-be-checked program accesses during its execution andM i, M i+k, Li−1,
andLi+k−1 are the typing environments respectively the learned secrets before and after the evaluation
of c. The typing rules for the expressions and statements ofToyare fairly standard with the exception of
the following three points:

• after each atomic step of the to-be-checked program, the typing rules check whether those read-
shared variables contain no secrets that are not protected by a lock. This is to detect leakages by
the to-be-checked program in shared-memory variables thatare later overwritten;

• after each atomic step, every typing rule invokes the updaterules, which characterize the worst-
case behavior of concurrently executing threads; and,

• every typing rule maintains and updates the secrets concurrently executing threads may learn.

A distinct feature of the proposed security type system is that it is only for the deterministic core of
Toy. The special nature of the low-level operating-system codeof microkernel-based systems is that the
individual system calls typically terminate quickly. It istherefore feasible to check all possible ways
in which the control-flow non-determinism in the resultingToyprogram can be resolved, one at a time.
Although the standard rules for non-deterministic choice [Sab01] would be sound, a separate analysis is
much more precise.

The main soundness result follows from the fact that the typing rules check for dominated secrecy
levels after each atomic step and that all statements preserve l-similarity over dynamic types. That is,
given a typing environmentM i and two statessi andti, thensi andti arel-similar with respect to anl-
classified observer if they differ only at higher thanl classified addresses (i.e.,∀a.M i(a) ≤ l ⇒ si(a) =
ti(a)). The result that all statements are good in the sense that they preservel-similarity over dynamic
types, follows straight forwardly by structural induction.

3.4 From Type Checking to a Protection-Parametric Informat ion-Flow Analysis

Although the above sketched security type system is sound, the results from applying it to the entire
microkernel or to multi-level servers are not very interesting. In these results, the information flows
of a multitude of operations and permission settings are blurred into one statement on the contained
information flows. And, as yet, the results are for one specific information-flow policy.

5

To avoid the above complications, I propose in my thesis a universal lattice for shared-memory programs
and a protection-parametric analysis of the individual operations of system calls or server invocations.

In my thesis, I extend Hunt and Sands’ [HS06] idea to check programs with a universal lattice to shared
memory programs. A secrecy level of the universal lattice isthe set of all program-variable identifiers
from which information may have flown into the such typed result. However, shared-memory variables
can assume multiple secrecy levels over time. Hence, I had toextend the universal lattice by Hunt with
version numbers for shared-memory variables. After checking the program with the universal lattice,
the revealed information flows must be validated against theinformation-flow policy once this policy is
known. For that, the variable identifiers are replaced by thesecrecy levels of the information-flow policy
and the least upper bound of all these levels is taken as the type of a result. The program is secure for the
given policy provided the clearances of observers dominateall these secrecy levels.

To obtain results for the individual operations of a system call, I propose to fix certain crucial parame-
ters as additional semantic information and to perform the respective analysis based on these parameters.
Unknown objects, such as the invoked capability, are thereby replaced by placeholder objects. The such
identified information flows constitute a leakage of confidential information if, in the concrete scenario,
the leaked-over placeholder object instantiates to a shared kernel or server object and if the communica-
tion partners are both authorized to perform the respectiveoperations.

4 Timing-Leak Transformations and Secure Resource Usage

Timing-leak transformations [Aga00] replace in a timing-insensitive information-flow-secureprogram
operations, which exhibit a secrecy-dependent timing behavior, with semantically equivalent operations,
which do not exhibit such a behavior. Although the thesis does not contribute in the area of timing-leak
transformations. Such a transformation is required to eliminate the internal timing leaks that remain in
successfully-checked multilevel components. Several approaches are mentioned including cross copy-
ing [Aga00], transactional branching [BRW06], and unification [KM07]. However, most promising for
low-level operating-system code seems to be a transformation sketched by Warnier [BRW06], which re-
lies on Engblom’s [EES+03] worst-case execution-time (WCET) analysis: to defer externally-observable
events to a safe upper bound of their worst case occurrence time.

In a sense, the proposed scheduler and the contention-leak avoidance of the below resource access
protocol are instances of this transformation:

• the scheduler defers the scheduling of lower or equally prioritized threads to the worst-case point
in time up to which a possibly leaking thread could influence these threads; and

• contention is made undetectable by requiring the resource acquiring thread to always provide the
worst-case time it would need to obtain the requested resource.

The above two observations motivated the following investigation, which has lead to a secure real-
time resource access protocol for uniprocessor systems called thedonation-ceiling protocol. First, I
summarize why one of the two forms of timeslice donation [SWH05] — downward donation — is
secure when combined with the proposed budget-enforcing fixed-priority scheduler. Then, I recapitulate
the donation-ceiling protocol, an alternative description of the basic priority-ceiling protocol [SRL90].

4.1 Timeslice Donation

A downward-donating thread forwards as part of its inter-process communication (IPC) both, its current
priority and its time to the donatee. This donatee is either the receiver of the IPC call, which executes the
donator’s request or a request of another thread, or a threadto which this receiver is directly or indirectly
donating.

6

To see why from an information-flow perspective it is safe to use downward donation in a system with
the proposed budget-enforcing fixed-priority scheduler, we have to realize that synchronous reliable IPC
enables bidirectional information flows between the communication partners anyway and that, unlike
with upward donation, no other thread is affected by downward donation.

Downward donation reveals to the donatee the point in time when a threads starts a donating call and
the amount of time it donates. Conversely, the donatee leaksto the donator how much donated time it
consumes. Because downward donation forwards both the donator’s time and priority, the donatee runs
only on this donated time when the donator could consume thistime. Therefore, if the donator must
not leak information to lower or equally prioritized threads,Countermeasure Iof the proposed scheduler
prevents their execution until the budget of the donator is consumed. Whether this budget is consumed
by the donator, by a donatee or by a budget-consumer thread isthereby irrelevant from the perspective
of those lower or equally prioritized threads that must not receive information from the donator.

4.2 Donation-Ceiling Protocol

The donation-ceiling protocol mimics the basic priority-ceiling protocol [SRL90] by accumulating the
resource acquiring threads at so calledceiling threads. The protocol uses such a ceiling thread for each
distinct priority-ceiling level of the resources of the system.

In order to acquire a resource, a thread must request this resource with a downward donating call from
the ceiling thread with the lowest associated ceiling priority that is still higher than its own priority. This
ceiling thread in turn handles the request itself if the resource has a priority ceiling that is equal to or
lower than the priority-ceiling level for which it was created. Otherwise it forwards the request to the
ceiling thread that is responsible for the next higher priority-ceiling level. Thereby, downward donation
ensures that the resource holder always runs at the time and priority of the highest prioritized thread that
requests a resource with the same priority ceiling.

The equivalence of the donation-ceiling protocol and of thebasic priority-ceiling protocol follows
from a comparison of the rules of the respective protocols.

Because downward donation does not affect unrelated threadwhen used in combination with the
proposed budget-enforcing fixed-priority scheduler, no information can be leaked to threads that do not
acquire resources. Information leakage due to resource contention is avoided by deferring any execution,
which follows a resource access, to the point in time that resembles the worst-case resource access time.
For the basic priority-ceiling protocol and hence also for the donation-ceiling protocol this worst-case
resource access time is twice the worst-case time that a thread holds the resource [SRL90].

5 Case Studies and Osvik’s Countermeasure Against
AES Cache Side-Channel Attacks

Although the development of an efficient type-checking toolhas been out of the scope of my thesis, I have
exemplified the applicability of the proposed analysis in three case studies: a page-table walk, L4-IPC
and a presumably secure buffer-cache server. In addition, Ihave taken advantage of the description of
hardware side effects as interleaved-executingToysubprograms to prove Osvik’s countermeasure against
AES cache side-channel attacks [OST05] correct. That is, Osvik’s countermeasure protects the key, the
plaintext and intermediate encryption results against leakage over the processor caches. To my best
knowledge, this is the first security-type-system-based proof of such a countermeasure.

5.1 Page-Table Walk

The first case study exemplifies the information-flow analysis of low-level operating-system code with
hardware side effects. Virtual-memory accesses involve such a side effects if the virtual-to-physical
address translation is not cached in the translation lookaside buffers of the CPU. It traverses the page

7

tables, performs various access-right checks, and updatesthe accessed and dirty bits in the used page-
table entries.

Given an implementation of this hardware side effect as aToysubprogram, the security type system for
Toycan check the virtual memory access for security policy violating information flows by checking both
theToyprogram, which results from translating the respective C++memory access, and the interleaved
executing hardware side effect.

The analysis of a size-aligned virtual-memory read correctly revealed that information about the con-
text in which this access is executed is leaked to the accessed bits of the used page-table entries and that
the result of the address translation reveals information about the code-segment privilege level, about the
permission bits and about page- and page-table pointers in the used page-table entries.

5.2 L4-IPC

The second case study exemplifies the protection-parametric analysis of a system call of one of the L4-
family microkernels: Nova’s IPC send operation [Ste09].

The analysis correctly revealed the covert storage channels of this operation. To avoid blurring the
result with other system calls and other operations, the parameters were chosen to select an authorized
data-word-only IPC send operation with send timeout zero. The analysis required 6 placeholder objects:
a TCB and UTCB for the sender and for the receiver, an IPC gate,which refers to the receiver, and a
capability, which refers to the IPC gate.

The application of the universal lattice for shared-memoryprograms allows the results of this analysis
to be reused for arbitrary settings. In such a setting, the variable identifiers for the input parameters
of the system call, which are leaked to the message registersand output parameters of the receiver, are
replaced by the secrecy levels of the information they hold to see whether the information flows violate
the system’s security policy.

5.3 Buffer-Cache Server

The third case study combines all results of this thesis in ananalysis of a presumably secure buffer-cache
server. A buffer cache stores recently accessed file blocks in per-client memory pools while facilitating
a safe sharing of buffers between differently classified clients.

The invocation of the multi-threaded buffer cache server, the invocation of the underlying secure file
system, and the response of this server make use of the protection-parametric analysis of system calls
of the microkernel respectively of the file-system functionality. The accesses to the data structures for
maintaining cached file blocks, which are typically highly optimized and therefore difficult to free from
covert channels, are synchronized with the help of secure resource access protocols, which in turn depend
on the proposed scheduler to avoid external timing channels. And finally, an application of the universal
lattice for shared-memory programs allows the results of the analysis of the buffer-cache server to be
reused in various scenarios, including in analyses of clients of this server.

Although the analysis correctly identified the buffer-cache server as timing-insensitive non-
interference secure, a flaw in the L4 capability revocation mechanism prevents a safe sharing of
buffers between differently-classified clients. In the current interface of L4, the amount of capabilities,
which have to be traversed when a capability is revoked, cannot be bounded from above. Therefore,
the timing leaks, which origin from varying this amount, cannot be transformed out. The thesis gives
directions for avoiding these leaks, however, a thorough discussion of information-flow secure capability
revocation mechanisms is left for future work.

5.4 Osvik’s AES Countermeasure

To speed up the encryption, many performance-oriented implementations compute the arithmetic opera-
tions of AES with the help of in-memory lookup tables. By measuring the memory access times of previ-
ously loaded preparation data, adversaries can deduce the encryption key from the cache conflict misses

8

the key-dependent table lookups cause on the preparation data. Osvik, Shamir, and Tromer [OST05]
propose several countermeasures against these cache side-channel attacks. One accesses the lookup ta-
bles with cacheline stride after each encryption round. This way, an adversary will find the entire table
accessed.

To prove this countermeasure correct with the help of the security type system forToy, the hardware
side effect of the cache has to be implemented as an interleaved executingToysubprogram and checked
together with the implementation of AES. To do so, I introduce an artificial hardware register, which
contains one bit per cacheline. A set bit indicates that the caching of the preparation data is unaltered.
A cleared bit indicates that a memory access of the checked AES implementation has possibly replaced
preparation data. To characterize the cache replacement strategy, every memory access of the checked
AES code is therefore complemented with a hardware side effect, which sets the corresponding bit in
the artificial cache register. An analysis of this complemented code correctly reveals a possible leakage
of the high-classified key by raising the secrecy level of the cache bitsto high after each encryption
round. Would an adversary be able to read the cache bits in between the encryption round and the coun-
termeasure, it could reveal the key bits. However, because Iassume the round and the countermeasure
to execute non-preemptively, the shared cache bits are protected by a suitable lock. The countermeasure
accesses the lookup table with secrecy-independent indices. As a consequence, the secrecy levels of
the cache bits drop tolow . The imminent breach of confidentiality is prevented, whichproves Osvik’s
countermeasure correct.

6 Conclusions

In this document, I have summarized the challenges and contributions of my doctoral thesis: “Provable
Protection of Confidential Data in Microkernel-Based Systems”. The major contributions of this thesis
are:

• an analysis of scheduling-related timing channels in fixed-priority schedulers;

• a provably non-interference-secure budget-enforcing fixed-priority scheduler;

• a non-interference-secure real-time resource-access protocol;

• a protection-parametric analysis method of shared memory programs;

• a sound security type system for low-level operating-system code of microkernel-based systems;
and

• the first security-type-system-based proof of a countermeasure against cache side-channel attacks.

Future work is left in many areas, in particular, in efficienttype-checking tools for low-level operating-
system code, language extensions for protection parametric analyses, construction guidelines for non-
interference-secure multilevel servers, and the elimination of the identified leaks in L4’s capability revo-
cation mechanism and in the current implementation of downward donation.

9

References

[Aga00] J. Agat. Transforming out Timing Leaks. InACM Principles of Programming Languages,
Boston, Massachusetts, Jan 2000.

[ARI] ARINC. ARINC 653-1 Standard.

[BRW06] G. Barthe, T. Rezk, and M. Warnier. Preventing Timing Leaks Through Transactional
Branching Instructions.Electronic Notes in Theoretical Computer Science, 153(2):33 –
55, 2006. Proceedings of the Third Workshop on QuantitativeAspects of Programming
Languages (QAPL 2005).

[DL97] Z. Deng and J. Liu. Scheduling real-time applications in an open environment. InProceed-
ings of the IEEE Real-Time Systems Symposium, pages 308–319, December 1997.

[EES+03] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson, and H. Hansson. Worst-case execution-
time analysis for embedded real-time systems.International Journal on Software Tools for
Technology Transfer (STTT), pages 437 – 455, 2003.

[GM82] J. A. Goguen and J. Meseguer. Security Policies and Security Models. InIEEE Symposium
on Security and Privacy, pages 11–20, Oakland, California, USA, 1982.

[Här02] Hermann Härtig. Security Architectures Revisited. In Proceedings of the Tenth ACM
SIGOPS European Workshop, Saint-Emilion, France, September 2002.

[HKMY87] T. J. Haigh, R. A. Kemmerer, J. McHugh, and W. D. Young. An Experience Using Two
Covert Channel Analysis Techniques on a Real System Design.IEEE Transactions on
Software Engineering, 13(2):157–168, 1987.

[HPHS04] Michael Hohmuth, Michael Peter, Hermann Härtig,and Jonathan S. Shapiro. Reducing
TCB size by using untrusted components — small kernels versus virtual-machine moni-
tors. InProceedings of the Eleventh ACM SIGOPS European Workshop, Leuven, Belgium,
September 2004.

[HS06] S. Hunt and D. Sands. On Flow-Sensitive Security Types. In Principles of Programming
Languages (POPL’06), Charleston, South Carolina, USA, January 2006. ACM.

[Hu92] W. Hu. Lattice Scheduling and Covert Channels. InIEEE Symposium on Security and
Privacy, Washington, DC, USA, 1992.

[KM07] Boris Köpf and Heiko Mantel. Transformational typing and unification for automatically
correcting insecure programs.International Journal on Information Security, 6(2-3):107–
131, 2007.

[Kop98] H. Kopetz. The time-triggered architecture. InISORC, 1998.

[ORS92] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A Prototype Verification System. In
Deepak Kapur, editor,11th International Conference on Automated Deduction (CADE),
volume 607 ofLecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, June
1992. Springer-Verlag.

[OST05] D. Osvik, A. Shamir, and E. Tromer. Cache attacks andcountermeasures: the case of AES.
In Cryptology ePrint Archive, Report 2005/271, 2005.

[Sab01] Andrei Sabelfeld.Semantic Models for the Security of Sequential and Concurrent Pro-
grams. PhD thesis, Chalmers University of Technology and Göteborg University, Göteborg,
Sweden, May 2001.

10

[SM03] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on
Selected Areas in Communications, 21, January 2003.

[Smi01] Richard E. Smith. Cost Profile of a Highly Assured, Secure Operating System.ACM
Transactions on Information and System Security, 4(1):72–101, 2001.

[SRL90] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols: An Approach to
Real-Time Synchronisation.IEEE Transaction on Computers, 39, 1990.

[Ste09] Udo Steinberg.NOVA Microhypervisor Interface Specification. Technische Universität
Dresden, Dresden, Germany, December 2009. available at http://hypervisor.org.

[SWH05] U. Steinberg, J. Wolter, and H. Härtig. Fast Component Interaction for Real-Time Systems.
In 17th Euromicro Conference on Real-Time Systems, Palma de Mallorca, Spain, July 2005.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow
analysis.Journal of Computer Security, 4:167–187, December 1996.

[Völ10a] Marcus Völp. PhD thesis - PVS sources. availableat
http://os.inf.tu-dresden.de/˜voelp/sources/thesis/index.html, 2010.

[Völ10b] Marcus Völp. Provable Protection of Confidential Data in Microkernel-Based Systems.
PhD thesis, Technische Universität Dresden, Dresden, Germany, August 2010.

11

	Introduction
	Avoiding Timing Leaks in Fixed-Priority Schedules
	An Information-Flow-Secure Budget-Enforcing Fixed-Priority Scheduler
	A Machine-Checked Non-Interference Proof

	A Sound Security Type System for Low-Level Operating-System Code
	The Non-Deterministic Intermediate Programming Language Toy
	Shared Memory, Locks, and Learned Secrets
	A Sound Control-Flow-Sensitive Security Type System for Toy
	From Type Checking to a Protection-Parametric Information-Flow Analysis

	Timing-Leak Transformations and Secure Resource Usage
	Timeslice Donation
	Donation-Ceiling Protocol

	Case Studies and Osvik's Countermeasure Against AES Cache Side-Channel Attacks
	Page-Table Walk
	L4-IPC
	Buffer-Cache Server
	Osvik's AES Countermeasure

	Conclusions

