Provable Protection of Confidential Data in
Microkernel-Based Systems

Diplom Informatiker
Marcus Rolf Volp

Summary of my Doctoral Thesis

submitted to the
Faculty for Computer Science
Technische Universit Dresden

in partial fulfillment of the requirements for the degree of:
Doktoringenieur (Dr. Ing.)

submitted: August 10, 2010
date of defence: January 31, 2011

Thesis Committee:
Prof. Dr. rer. nat. Hermann Hartig (Supervisor) Technesthmiversitat Dresden

Prof. Dr. rer. nat. habil. Christel Baier Technische Unsigt Dresden
Prof. Dr.-Ing. Christian Hochberger Technische Univétdiiresden
Prof. Dr.-Ing. habil. Klaus Kabitzsch Technische UnivéisDresden

Prof. Dr. ir. Erik Poll Raboud Universiteit Nijmegen

Provable Protection of Confidential Data
in
Microkernel-Based Systems

Modern computer systems process increasing amounts @t@yigensitive, and valuable information.
Yet, despite significant academic and industrial effortestof today’s operating systems (OSs) do not
protect confidential data against unauthorized disclosuee covert channels. Large trusted computing
bases and high covert-channel analysis costs are two $amtotributing to this situation.

In my thesis Provable Protection of Confidential Data in Microkernel4al Systerii§V10], | ap-
proach the visionary goal of a cost-efficient, provable, padect protection of confidential data against
leakage over covert communication channels. To achiewegbal, | combine the complementary
strength of microkernels and of security type systems. dib@ment summarizes the major challenges
and results of my thesis.

1 Introduction

Microkernel-based systems significantly reduce the ppli@giion trusted computing base, and hence,
the amount of code that must be relied upon to protect thedemtiality of the data they process. Open
microkernel-based systems are a particularly interestiags of microkernel-based systems:

e they co-host real-time-criticalJL97] and security-sensitiveHar0Z applications next to legacy
OSs and their applications; and

e they facilitate a construction principle to split complexcarity-sensitive and real-time-critical
applications into a critical core and into non-critical {samhich reuse the code and functionality
of not necessarily trustworthy legacy O$§{HS04.

Such a split is only possible because the multilevel compisnef the open system isolate parts with
different criticality in both a spacial and in a temporal man In a microkernel-based system, thesd-
tilevel componentare the microkernel and those necessarily trusted low-tmerating-system servers,
which operate on behalf of differently classified clientd arhich cannot be re-instantiated for each such
client.

What justifies our trust in multilevel components to protiet confidentiality of sensitive data? Ide-
ally, each such component comes with a formal proof, whictiions its isolation capabilities. However,
the costs of traditional formal and semi-formal methodsstalelish these results are significant, both in
terms of highly-skilled personnel and in terms of labor o[Bmi0l, HKMY87]. This and the mi-
crokernel’s inability to constrain application-interrabkage are what brings security type systems into
play.

Sound security type system¥$196] and related language-based approaches to informatian-flo
security BMO0J are powerful source-level analyses to prove the absensea@frity policy violating
information flows and hence the protection of confidentiahdia application-level programs. However,
the peculiarities of low-level operating-system code pri#g an immediate application of traditional
security type systems to prove data confidentiality in op@rakernel-based systems.

The here summarized thesis addresses these challengdiswas:fo

1. ascheduler for the microkernel is developed and provermerference secure. It avoids leakage
over scheduling-related (i.e., external) covert timingrafels;

2. asecurity type system for the low-level operating-systede of open microkernel-based systems
is developed and proven sound to avoid leakage over softwearic covert storage channels; and
finally

3. existing timing-leak transformationg\ja0(are used to eliminate the remaining internal timing
channels.

The remainder of this summary is structured as follows: i8e@ highlights the possibilities to leak
information through fixed-priority schedulers and presemion-interference-secure budget-enforcing
fixed-priority scheduler, which avoids these illegal imfmtion flows in open microkernel-based sys-
tems. SectiorB.3introduces the peculiarities of low-level operating-systcode and how the proposed
analysis checks low-level operating-system code for mfdion leakage over storage channels. Sec-
tion 4 summarizes the existing timing-leak transformations feefofocuses on secure resource usage
in real-time systems. Sectidhsummarizes the case studies | have performed. Segtomcludes this
summary.

2 Avoiding Timing Leaks in Fixed-Priority Schedules

In fixed-priority schedulers, altering a thread’s exeautio blocking behavior in a secret-dependent way
constitutes an information flow to lower or equally priaréd threads. If such a leaking thread blocks,
an unmodified fixed-priority scheduler will select a loweregually prioritized thread to run; if it runs,
the selection will be deferred to a later point in time.

In addition to that, non-preemptively executing threads defer the points in time when higher or
equally prioritized threads resume their execution afiey tare released or after they have been blocked.
Let us call these possibilities for information leakatieect influencerespectivelyinfluence due to non-
preemptive execution

2.1 An Information-Flow-Secure Budget-Enforcing Fixed-P riority Scheduler

To avoid information leakage due to direct influences, dusio-preemptive execution, and the indirect
leakages, which occur when thread manipulate the timinggifimate messages from the influenced
threads, | introduce two practically feasible modificai@a a budget-enforcing fixed-priority scheduler:

e Countermeasure o treat possibly leaking blocked threads as if they werdygand

e Countermeasure lito defer the points in time when higher prioritized threaglsume their execu-
tion after they are released or after they have blocked.

Because a budget-enforcing scheduler deactivates a joklttokad after it has executed and blocked
longer than its combined execution and blocking budgedtitrg possibly leaking blocked jobs as ready
defers the execution of lower or equally prioritized thredd the point in time when such a job has
exhausted its budget or when its deadline has passed. Difleence and hence also an indirect influence
through message timing is avoided. To ensure that a blo¢tkedd consumes its budget, the scheduler
runsbudget-consumer threadsstead of the blocked thread. Budget consumers are seglacterding to
ascending secrecy levels to avoid leakage to the blockeddrand to previously chosen blocked budget
consumers. Following HIHu97, I call the resulting scheduler thmidget-enforcing fixed-priority lattice
scheduler

Both countermeasures are controlled by static (i.e.,ioff-tomputable) predicates, which determine
when and for which threads the respective countermeasuotddshe applied. These predicates are:

Diransitive(Th, t) := 317 € T. prio(m;) < prio(ty) N dom(7p) ﬁ dom(T;) (1)

for Countermeasure, whereT is the set of threadsjom () is the clearance of the threacandprio(r)
is its priority. The predicate fo€ountermeasure lis:

Pdelay(Th,t) :== 37 € T. prio(m) < prio(t,) A dom(m) £ dom(r,) A maz_delay, >0 (2)

For the purpose of information-flow secure scheduling, ppee to transform intransitive information-
flow policies into transitive information-flow policies bgstructuring servers at intransitive points and
by introducing additional secrecy levels for the additicdhaeads of these servers.

The use of static predicates allows off-line admissiorstestonsider the above two countermeasures.
By characterizing the effect @ountermeasure &s a blocking term, a large class of existing admission
tests can be reused to determine whether all real-timedbred meet their deadlines. This blocking
term is theprohibition time

by = EZT: “TI_;ZL—‘ .bby, where Ty+ := {7 € T|prio(n) < prio(T) A Diransitive(T)} 3)
Thed g+

wherePiy, is the period andb,, is the maximum blocking time of the higher prioritized thiea.

The effect ofCountermeasure lis negligible for the admission because the maximum time dha
threadr; can executed non-preemptively (i.evaz_delay;) is small compared to the budgets and block-
ing frequencies of higher prioritized threads.

From the prohibition time!”, it is easy to see that can run whenever a higher prioritized thread
71, blocks for whichpyansitive (7r,) does not hold. This ability to reap benefit of thread blockiinges
is the reason why the proposed fixed-priority scheduler capgt significantly more real-time threads
than time-partitioning scheduleré&\Rl, Kop99, the state-of-the-art information-flow-secure realdim
schedulers.

2.2 A Machine-Checked Non-Interference Proof

To prove the proposed budget-enforcing fixed-priority seher information-flow secure, | have con-
structed an abstract formal model of this scheduler andgak@vto be non-interference secure.
Non-interference GM82] is the prevailing formalization for the complete absentsexurity policy
violating information flows. Given an arbitrary observeddwo arbitrary initial states, which differ only
in the states of threads that are higher classified than lisisrger, a scheduler is non-interference secure
if the resulting schedules are indistinguishable for thisesver.
The key insight, which has lead to the non-interferencelrésuthe proposed scheduler, is that the
predicatesame_high_state over pairs of states is an invariant of the proposed schedafermally, this
predicate states the following two points:

1. The states of observable threads are identical in the tatessof the pair; and

2. Threads, which are higher prioritized than an observidisad agree on the jobs they execute, on
their remaining budgets, on the time that remains to theidlilee, and on their thread state in the
sense that they are either inactive in both states of theopaictive in both of these states.

The main result follows from observing that states for whiame_high_state holds are indistinguish-
able for the corresponding observer.

The formal model of the scheduler and the proof of non-ieterice have been formalized in the
theorem prover PVSJRS93]. The PVS sources and the machine-checked proof of the sldreare
publicly available Y/6110].

3 A Sound Security Type System
for Low-Level Operating-System Code

The low-level operating-system code of microkernels anthefimultilevel servers of open microkernel-
based systems have a number of peculiarities, which mak#&@miation-flow analysis challenging:

e the peculiar ways in which multilevel servers interact wviftgir clients and with the kernel;

e the side effects from interactions with the underlying kaark;

e the peculiar programming patterns, which combine C++, C asgémbler in a way that is not
always conform to the standard of these programming laregjamnd

e the lack of knowledge about the system'’s information-flowigqyoat the time when the kernel and
the multilevel servers are analyzed.

To not risk overlooking the information flows these peciities involve, a sound information-flow anal-
ysis for low-level operating-system code must addressfdliase challenges.

In my thesis, | address the above challenges by first tramglétie to-be-checked operating-system
code into an intermediate programming languag@ey— and by then checking the resultiigy pro-
gram together with interleaved executing side effects. s€h&de effects are alstoy programs and
which characterize the interaction with the underlyingdwaare and with separately checked compo-
nents. A protection-parametric analysis with a univera#tide for shared-memory programs allows
low-level operating-system code to be checked withoutipeeknowledge about the usage scenario or
its information-flow policy. In the following, | shall summiae this approach.

3.1 The Non-Deterministic Intermediate Programming Langu age Toy

Toyis a simple non-deterministic imperative programming leagge, which | have designed specifically
for the purpose of analyzing low-level operating-systerdecand the side effects from the underlying
hardware.

Toy inherits all interpreted data types and the semantics oft mahmetic operations from C++,
although the formal semantics dbyleaves most of the details of these types and operationsaabsn
addition, Toyknows about bits, bytes, and words and about an addressygataathich allows any bit in
memory and in the processor registers to be addressedduodlly and in a unique fashion. Hendey
is based on a bit-granular memory model.

BecauseToyfacilitates a non-deterministic binary choice operatait parallel composition, the non-
deterministic evaluation order of the value computatiomd side effects of C++ expressions can directly
be expressed imoy. The excessive use of non-allocated temporaries combirtbdman-deterministic
choice allows for the consideration of compiler optiminat such as out-of-thin air values and stack-
and register-allocation strategies.

The key property offoy, which makes it suitable for an information-flow analysis lofv-level
operating-system code, is the clear separation of cofibwl-non-determinism and input non-
determinism. In the formal PVS-based semanticsST@y, the latter is captured with the help of an
almost arbitrary input oracle. There is only one constraimtany two input oracles used in the non-
interference proof to produce the inputs for two runs of thegpam from observer indistinguishable
initial states: the two oracles have to agree on the valueg pinovide as updates for write-shared
variables whose learned secret (see below) is dominatelaehytiserver secrecy level.

3.2 Shared Memory, Locks, and Learned Secrets

Concurrently executing threads interact with the to-bee&ed operating-system code through shared
memory and other shared kernel or server object withoutssaciy being analyzed themselves. To not
risk overlooking illegal information flows, we have to cheterize the worst-case behavior of concur-
rently executing threads with regards to information legkaln particular, we must verify that these
threads cannot relay secrets through the to-be-checkeadtomesystem code.

To verify the absence of leakage due to concurrently exegutireads, | suggest in my thesis to
keep track of the secrets these concurrently executingdramay learn from the to-be-checked program
before and while this program executes. These secrets areotifidential data, which concurrently
executing threads can access before the to-be-checkedapragarts executing, plus the secrets the
to-be-checked program stores in externally visible regiohshared memory or in likewise accessible
shared objects. While the to-be-checked program exect@surrently executing threads may return

4

an arbitrary encoding of the so far learned secrets with ritent to relay them with the help of the
to-be-checked program.

To keep track of secrets concurrently executing threads feam the to-be-checked program, | intro-
duced a second set of dynamic secrecy levels —ghimed secrets— and a corresponding typing rule
for concurrently executing threads, which updates themméal secrets.

Notice, not all read-shared memory regions are visible Igiahts in time. Locks and certain pre-
cautions such as the disabling of interrupts in uniproaesgstems make these regions temporarily in-
accessible, provided all concurrently executing threalifeee to the locking discipline of these regions.
Hence, the proposed analysis can tolerate the temporaggstof confidential data in lock-protected
shared-memory regions, provided that this imminent brezfcbonfidentiality is repaired before the
region becomes visible again. This tolerance was a crubifyato prove correctness of Osvik's coun-
termeasure against AES cache side-channel attacks.

3.3 A Sound Control-Flow-Sensitive Security Type System fo r Toy
The typing judgements of the security type systemTiwyhave the form

[livac] - Mi, Li—l7 Z{C} MH'k’ Li-i—k—l’ i+ k (4)

wherel;, is the secrecy level of the context in which fiey statement: is executed)\/, is the clearance
of the physical addresses the to-be-checked program ascessng its execution and?, Mi+F, Li—1,
andL**t*~1 are the typing environments respectively the learned tebedore and after the evaluation
of ¢. The typing rules for the expressions and statement®ypéare fairly standard with the exception of
the following three points:

e after each atomic step of the to-be-checked program, thiegyples check whether those read-
shared variables contain no secrets that are not protegtaddzk. This is to detect leakages by
the to-be-checked program in shared-memory variablestiedater overwritten;

e after each atomic step, every typing rule invokes the updaés, which characterize the worst-
case behavior of concurrently executing threads; and,

e every typing rule maintains and updates the secrets camtiyrexecuting threads may learn.

A distinct feature of the proposed security type system @ this only for the deterministic core of
Toy. The special nature of the low-level operating-system addaicrokernel-based systems is that the
individual system calls typically terminate quickly. It flserefore feasible to check all possible ways
in which the control-flow non-determinism in the resultifgy program can be resolved, one at a time.
Although the standard rules for non-deterministic chosa0] would be sound, a separate analysis is
much more precise.

The main soundness result follows from the fact that thentypules check for dominated secrecy
levels after each atomic step and that all statements peessimilarity over dynamic types. That is,
given a typing environment/? and two states’ andt?, thens’ andt’ arel-similar with respect to ak
classified observer if they differ only at higher thiaclassified addresses (i.8g.M(a) < | = s'(a) =
t'(a)). The result that all statements are good in the sense tbatpiteserve-similarity over dynamic
types, follows straight forwardly by structural induction

3.4 From Type Checking to a Protection-Parametric Informat ion-Flow Analysis

Although the above sketched security type system is solnedresults from applying it to the entire

microkernel or to multi-level servers are not very inteirggt In these results, the information flows
of a multitude of operations and permission settings arerdauinto one statement on the contained
information flows. And, as yet, the results are for one speuiformation-flow policy.

To avoid the above complications, | propose in my thesis eaunsal lattice for shared-memory programs
and a protection-parametric analysis of the individualrapens of system calls or server invocations.

In my thesis, | extend Hunt and Sands'$0€ idea to check programs with a universal lattice to shared
memory programs. A secrecy level of the universal latticiésset of all program-variable identifiers
from which information may have flown into the such typed heddowever, shared-memory variables
can assume multiple secrecy levels over time. Hence, | hagtemd the universal lattice by Hunt with
version numbers for shared-memory variables. After chmeckine program with the universal lattice,
the revealed information flows must be validated againsirtfeemation-flow policy once this policy is
known. For that, the variable identifiers are replaced bystwecy levels of the information-flow policy
and the least upper bound of all these levels is taken aspleeofya result. The program is secure for the
given policy provided the clearances of observers domialhthese secrecy levels.

To obtain results for the individual operations of a systeh tpropose to fix certain crucial parame-
ters as additional semantic information and to perform dspective analysis based on these parameters.
Unknown objects, such as the invoked capability, are thereplaced by placeholder objects. The such
identified information flows constitute a leakage of confitg@nnformation if, in the concrete scenario,
the leaked-over placeholder object instantiates to a diamel or server object and if the communica-
tion partners are both authorized to perform the respeofpegations.

4 Timing-Leak Transformations and Secure Resource Usage

Timing-leak transformationsAjga0(Q replace in a timing-insensitive information-flow-secyegram
operations, which exhibit a secrecy-dependent timingWiehavith semantically equivalent operations,
which do not exhibit such a behavior. Although the thesissduat contribute in the area of timing-leak
transformations. Such a transformation is required toiakte the internal timing leaks that remain in
successfully-checked multilevel components. Severalagghes are mentioned including cross copy-
ing [Aga0(, transactional branchind3RWO0€], and unification KM07]. However, most promising for
low-level operating-system code seems to be a transfasmaketched by WarnieBRWO0§, which re-
lies on Engblom’siEES" 03] worst-case execution-time (WCET) analysis: to deferety-observable
events to a safe upper bound of their worst case occurremee ti

In a sense, the proposed scheduler and the contentioneédaace of the below resource access
protocol are instances of this transformation:

e the scheduler defers the scheduling of lower or equallyritided threads to the worst-case point
in time up to which a possibly leaking thread could influerteese threads; and

e contention is made undetectable by requiring the resowrgeirding thread to always provide the
worst-case time it would need to obtain the requested resour

The above two observations motivated the following ingggton, which has lead to a secure real-
time resource access protocol for uniprocessor systenteddhle donation-ceiling protocol First, |
summarize why one of the two forms of timeslice donati®\H0 — downward donation — is
secure when combined with the proposed budget-enforciegl-fixiority scheduler. Then, | recapitulate
the donation-ceiling protocol, an alternative descriptad the basic priority-ceiling protoco5RL9(.

4.1 Timeslice Donation

A downward-donating thread forwards as part of its intarepss communication (IPC) both, its current
priority and its time to the donatee. This donatee is eitheréceiver of the IPC call, which executes the
donator’s request or a request of another thread, or a thoeaklich this receiver is directly or indirectly
donating.

To see why from an information-flow perspective it is safe $@ downward donation in a system with
the proposed budget-enforcing fixed-priority schedulerhave to realize that synchronous reliable IPC
enables bidirectional information flows between the comigation partners anyway and that, unlike
with upward donation, no other thread is affected by dowvelmation.

Downward donation reveals to the donatee the point in timenndnthreads starts a donating call and
the amount of time it donates. Conversely, the donatee lealtee donator how much donated time it
consumes. Because downward donation forwards both theat@néme and priority, the donatee runs
only on this donated time when the donator could consumetithis. Therefore, if the donator must
not leak information to lower or equally prioritized thresa@ountermeasure of the proposed scheduler
prevents their execution until the budget of the donatobissamed. Whether this budget is consumed
by the donator, by a donatee or by a budget-consumer threhdriby irrelevant from the perspective
of those lower or equally prioritized threads that must eceive information from the donator.

4.2 Donation-Ceiling Protocol

The donation-ceiling protocol mimics the basic priorig#ing protocol ERL9(J by accumulating the
resource acquiring threads at so calbiling threads The protocol uses such a ceiling thread for each
distinct priority-ceiling level of the resources of the ®rms.

In order to acquire a resource, a thread must request tluianeswith a downward donating call from
the ceiling thread with the lowest associated ceiling jsidhat is still higher than its own priority. This
ceiling thread in turn handles the request itself if the vese has a priority ceiling that is equal to or
lower than the priority-ceiling level for which it was credt Otherwise it forwards the request to the
ceiling thread that is responsible for the next higher fitgiezeiling level. Thereby, downward donation
ensures that the resource holder always runs at the timeremitypof the highest prioritized thread that
requests a resource with the same priority ceiling.

The equivalence of the donation-ceiling protocol and of ltasic priority-ceiling protocol follows
from a comparison of the rules of the respective protocols.

Because downward donation does not affect unrelated thedeh used in combination with the
proposed budget-enforcing fixed-priority scheduler, rforimation can be leaked to threads that do not
acquire resources. Information leakage due to resourderion is avoided by deferring any execution,
which follows a resource access, to the point in time thagndsdes the worst-case resource access time.
For the basic priority-ceiling protocol and hence also fog tonation-ceiling protocol this worst-case
resource access time is twice the worst-case time that adtnelds the resourc&RLO(.

5 Case Studies and Osvik’'s Countermeasure Against
AES Cache Side-Channel Attacks

Although the development of an efficient type-checking tws been out of the scope of my thesis, | have
exemplified the applicability of the proposed analysis ire¢hcase studies: a page-table walk, L4-IPC
and a presumably secure buffer-cache server. In additibaye taken advantage of the description of
hardware side effects as interleaved-execuliogsubprograms to prove Osvik's countermeasure against
AES cache side-channel attack3§T04 correct. That is, Osvik’s countermeasure protects the tkey
plaintext and intermediate encryption results againdtdga over the processor caches. To my best
knowledge, this is the first security-type-system-basewbfoof such a countermeasure.

5.1 Page-Table Walk

The first case study exemplifies the information-flow analydilow-level operating-system code with
hardware side effects. Virtual-memory accesses involwh suside effects if the virtual-to-physical
address translation is not cached in the translation lod&dsuffers of the CPU. It traverses the page

7

tables, performs various access-right checks, and upttaesmccessed and dirty bits in the used page-
table entries.

Given an implementation of this hardware side effect &yesubprogram, the security type system for
Toycan check the virtual memory access for security policyating information flows by checking both
the Toy program, which results from translating the respective @¥emory access, and the interleaved
executing hardware side effect.

The analysis of a size-aligned virtual-memory read colygetealed that information about the con-
text in which this access is executed is leaked to the actdmstseof the used page-table entries and that
the result of the address translation reveals informatimutthe code-segment privilege level, about the
permission bits and about page- and page-table pointeng inged page-table entries.

5.2 L4-IPC

The second case study exemplifies the protection-paraneetdlysis of a system call of one of the L4-
family microkernels: Nova'’s IPC send operatidst¢09.

The analysis correctly revealed the covert storage charofahis operation. To avoid blurring the
result with other system calls and other operations, tharpaters were chosen to select an authorized
data-word-only IPC send operation with send timeout zeh® dnalysis required 6 placeholder objects:
a TCB and UTCB for the sender and for the receiver, an IPC gaiagh refers to the receiver, and a
capability, which refers to the IPC gate.

The application of the universal lattice for shared-menmggrams allows the results of this analysis
to be reused for arbitrary settings. In such a setting, thabi@ identifiers for the input parameters
of the system call, which are leaked to the message regeter®utput parameters of the receiver, are
replaced by the secrecy levels of the information they holsete whether the information flows violate
the system'’s security policy.

5.3 Buffer-Cache Server

The third case study combines all results of this thesis iaratysis of a presumably secure buffer-cache
server. A buffer cache stores recently accessed file blackgerclient memory pools while facilitating
a safe sharing of buffers between differently classifieent§.

The invocation of the multi-threaded buffer cache serves,ivocation of the underlying secure file
system, and the response of this server make use of the fiwatparametric analysis of system calls
of the microkernel respectively of the file-system funcélity. The accesses to the data structures for
maintaining cached file blocks, which are typically highftimized and therefore difficult to free from
covert channels, are synchronized with the help of secsmuiree access protocols, which in turn depend
on the proposed scheduler to avoid external timing chanAeld finally, an application of the universal
lattice for shared-memory programs allows the results efahalysis of the buffer-cache server to be
reused in various scenarios, including in analyses of idiefthis server.

Although the analysis correctly identified the buffer-cackerver as timing-insensitive non-
interference secure, a flaw in the L4 capability revocatioachanism prevents a safe sharing of
buffers between differently-classified clients. In thereut interface of L4, the amount of capabilities,
which have to be traversed when a capability is revoked, aabe bounded from above. Therefore,
the timing leaks, which origin from varying this amount, nahbe transformed out. The thesis gives
directions for avoiding these leaks, however, a thoroughudision of information-flow secure capability
revocation mechanisms is left for future work.

5.4 Osvik's AES Countermeasure

To speed up the encryption, many performance-orientedeimg@htations compute the arithmetic opera-
tions of AES with the help of in-memory lookup tables. By m&asy the memory access times of previ-
ously loaded preparation data, adversaries can deducedhgéon key from the cache conflict misses

8

the key-dependent table lookups cause on the preparattan @svik, Shamir, and TromeOET0]
propose several countermeasures against these cachehaitieel attacks. One accesses the lookup ta-
bles with cacheline stride after each encryption rounds Way, an adversary will find the entire table
accessed.

To prove this countermeasure correct with the help of thartgdype system foiToy, the hardware
side effect of the cache has to be implemented as an intedeaxecutingiloy subprogram and checked
together with the implementation of AES. To do so, | introglan artificial hardware register, which
contains one bit per cacheline. A set bit indicates that #uhing of the preparation data is unaltered.
A cleared bit indicates that a memory access of the checke®likplementation has possibly replaced
preparation data. To characterize the cache replacenrategst, every memory access of the checked
AES code is therefore complemented with a hardware sideteffeénich sets the corresponding bit in
the artificial cache register. An analysis of this completeércode correctly reveals a possible leakage
of the high-classified key by raising the secrecy level of the cachetbitsigh after each encryption
round. Would an adversary be able to read the cache bitswekatthe encryption round and the coun-
termeasure, it could reveal the key bits. However, becaassume the round and the countermeasure
to execute non-preemptively, the shared cache bits areqteat by a suitable lock. The countermeasure
accesses the lookup table with secrecy-independent sdide a consequence, the secrecy levels of
the cache bits drop tbw. The imminent breach of confidentiality is prevented, wipcbves Osvik’s
countermeasure correct.

6 Conclusions

In this document, | have summarized the challenges andibatioms of my doctoral thesis: “Provable
Protection of Confidential Data in Microkernel-Based Sysé The major contributions of this thesis
are:

an analysis of scheduling-related timing channels in figedrity schedulers;

a provably non-interference-secure budget-enforcinglfixeority scheduler;

a non-interference-secure real-time resource-accesscpip

a protection-parametric analysis method of shared mentograms;

a sound security type system for low-level operating-systede of microkernel-based systems;
and

o the first security-type-system-based proof of a countesunmesagainst cache side-channel attacks.

Future work is leftin many areas, in particular, in efficigype-checking tools for low-level operating-
system code, language extensions for protection parameetelyses, construction guidelines for non-
interference-secure multilevel servers, and the elimonatf the identified leaks in L4's capability revo-
cation mechanism and in the current implementation of deavdwionation.

References

[Aga00]

[ARI]
[BRWO6]

[DL97]

[EEST03]

[GM82]

[Har02]

[HKMY87]

[HPHS04]

[HSO06]

[Hu92]

[KMO7]

[Kop98]
[ORS92]

[OSTO5]

[Sab01]

10

J. Agat. Transforming out Timing Leaks. ACM Principles of Programming Languages
Boston, Massachusetts, Jan 2000.

ARINC. ARINC 653-1 Standard

G. Barthe, T. Rezk, and M. Warnier. Preventing Tigineaks Through Transactional
Branching Instructions.Electronic Notes in Theoretical Computer Scient83(2):33 —
55, 2006. Proceedings of the Third Workshop on Quantitadigspects of Programming
Languages (QAPL 2005).

Z.Deng and J. Liu. Scheduling real-time applicasan an open environment. Proceed-
ings of the IEEE Real-Time Systems Sympospages 308—319, December 1997.

J. Engblom, A. Ermedahl, M. Sjodin, J. Gustafsson, and&hsson. Worst-case execution-
time analysis for embedded real-time systemgernational Journal on Software Tools for
Technology Transfer (STT,Tpages 437 — 455, 2003.

J. A. Goguen and J. Meseguer. Security Policies amdi8g Models. INNEEE Symposium
on Security and Privagypages 11-20, Oakland, California, USA, 1982.

Hermann Hartig. Security Architectures Rewsdit In Proceedings of the Tenth ACM
SIGOPS European Workshdpaint-Emilion, France, September 2002.

T. J. Haigh, R. A. Kemmerer, J. McHugh, and W. D. YaunAn Experience Using Two
Covert Channel Analysis Technigues on a Real System DedigEE Transactions on
Software Engineeringl3(2):157-168, 1987.

Michael Hohmuth, Michael Peter, Hermann Hardgd Jonathan S. Shapiro. Reducing
TCB size by using untrusted components — small kernels gevstual-machine moni-
tors. InProceedings of the Eleventh ACM SIGOPS European Worksleywven, Belgium,
September 2004.

S. Hunt and D. Sands. On Flow-Sensitive Security Sygda Principles of Programming
Languages (POPL’'06)Charleston, South Carolina, USA, January 2006. ACM.

W. Hu. Lattice Scheduling and Covert Channels. IEEE Symposium on Security and
Privacy, Washington, DC, USA, 1992.

Boris Kopf and Heiko Mantel. Transformational ty and unification for automatically
correcting insecure programiternational Journal on Information Securjt$(2-3):107—
131, 2007.

H. Kopetz. The time-triggered architecture.lI8ORG 1998.

S. Owre, J. M. Rushby, , and N. Shankar. PVS: A Prptotyerification System. In
Deepak Kapur, editorl1th International Conference on Automated Deduction (EAD
volume 607 ofLecture Notes in Artificial Intelligen¢gpages 748-752, Saratoga, NY, June
1992. Springer-Verlag.

D. Osvik, A. Shamir, and E. Tromer. Cache attacksanohtermeasures: the case of AES.
In Cryptology ePrint Archive, Report 2005/272005.

Andrei Sabelfeld.Semantic Models for the Security of Sequential and Conctieeo-
grams PhD thesis, Chalmers University of Technology and Gaighmmiversity, Goteborg,
Sweden, May 2001.

[SMO3]

[Smi01]

[SRLIO]

[Ste09]

[SWHO5]

[VSI96]

[V6I10a]

[V6I10b]

A. Sabelfeld and A. Myers. Language-based infororafiow security. IEEE Journal on
Selected Areas in Communicatio24, January 2003.

Richard E. Smith. Cost Profile of a Highly Assuredc@e Operating SystemACM
Transactions on Information and System Secud():72—-101, 2001.

L. Sha, R. Rajkumar, and J.P. Lehoczky. Prioritydritance Protocols: An Approach to
Real-Time SynchronisatiodEEE Transaction on Computer39, 1990.

Udo Steinberg.NOVA Microhypervisor Interface SpecificatiorTechnische Universitat
Dresden, Dresden, Germany, December 2009. availablepat/mypervisor.org.

U. Steinberg, J. Wolter, and H. Hartig. Fast Congaurinteraction for Real-Time Systems.
In 17th Euromicro Conference on Real-Time Systdétaina de Mallorca, Spain, July 2005.

Dennis Volpano, Geoffrey Smith, and Cynthia Irvirke sound type system for secure flow
analysis.Journal of Computer Securityh:167-187, December 1996.

Marcus Volp. PhD thesis - PVS sources. availatile
http://os.inf.tu-dresden.de/"voelp/sources/thesiek.html, 2010.

Marcus Volp. Provable Protection of Confidential Data in Microkernel€al Systems
PhD thesis, Technische Universitat Dresden, Dresderm@msy, August 2010.

11

	Introduction
	Avoiding Timing Leaks in Fixed-Priority Schedules
	An Information-Flow-Secure Budget-Enforcing Fixed-Priority Scheduler
	A Machine-Checked Non-Interference Proof

	A Sound Security Type System for Low-Level Operating-System Code
	The Non-Deterministic Intermediate Programming Language Toy
	Shared Memory, Locks, and Learned Secrets
	A Sound Control-Flow-Sensitive Security Type System for Toy
	From Type Checking to a Protection-Parametric Information-Flow Analysis

	Timing-Leak Transformations and Secure Resource Usage
	Timeslice Donation
	Donation-Ceiling Protocol

	Case Studies and Osvik's Countermeasure Against AES Cache Side-Channel Attacks
	Page-Table Walk
	L4-IPC
	Buffer-Cache Server
	Osvik's AES Countermeasure

	Conclusions

