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Abstract

The trusted computing bases (TCBs) of applications run-
ning on today’s commodity operating systems have become
extremely large. This paper presents an architecture that
allows to build applications with a much smaller TCB. It
is based on a kernelized architecture and on the reuse of
legacy software using trusted wrappers. We discuss the de-
sign principles, the architecture and some components, and
a number of usage examples.

1 Introduction

Desktop and hand-held computers are used for many
functions, often in parallel, some of which are security
sensitive. Online banking, virtual private networks, file-
system-level encryption, or digital rights management are
typical examples.

This type of computer use imposes two, often conflicting
requirements: The mixed-use scenario usually necessitates
the use of a full-featured, standard, general-purpose operat-
ing system (OS). On the other hand, security-sensitive ap-
plications must rely on, ortrust, their operating environ-
ment to uphold the application’s security guarantees.

Standard OSes have become so large that a complete se-
curity audit or a formal verification of security properties
is absolutely illusory. This fact is illustrated by a steady
stream of security-leak disclosures for all major operating
systems. It seems that, for the time being, we just have to
live with the bugs of standard OSes.

Therefore, while retaining standard OSes for their large
set of features and applications, these OSes should not be
part of a system’s trusted computing base (TCB). In other
words, security-sensitive applications should not have to
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rely on a standard OS (including the kernel) to assure their
security properties.

To address the conflicting requirements of complete
functionality and the protection of security-sensitive data,
researchers have devised system architectures that reduce
the system’s TCB by running kernels in untrusted mode
in a secure compartment on top of a small security kernel;
security-sensitive services run alongside the OS in isolated
compartments of their own. This architecture is widely re-
ferred to askernelized standard OSor kernelized system.

In this paper, we describe Nizza, a new kernelized-
system architecture. In the design of Nizza, we set out to
answer the question of how small the TCB can be made.

We have argued in previous work that the (hardware and
software) technologies needed to build small secure-system
platforms have become much more mature since earlier at-
tempts [8]. In Nizza, we put a number of these modern
technologies to use.

In Section 2, we derive three construction principles
from our requirements: isolation, trusted wrappers, and
legacy reuse. Section 3 presents a motivational example use
case for the Nizza architecture.

We validated our design by implementing a proof-of-
concept prototype system with a set of secure components
that can be combined flexibly according to application re-
quirements. In Section 4, we describe the general architec-
ture and four Nizza components in detail. In Section 5, we
present two Nizza example applications we have built and
evaluated.

Section 6 gives a survey of the technologies that enable
the construction of Nizza.

We discuss related work in Section 7 and conclude the
paper in Section 8.

2 Requirements and design principles

Nizza’s basic architecture is derived from its two main
requirements: a trusted system-software stack and compati-
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bility with legacy software. In this section, we present three
design principles we have derived from these requirements:
small TCB consisting of isolated components; trusted wrap-
pers; and reuse of legacy OSes.

Isolating security-sensitive code We observe that, for
most applications, security-sensitive parts account for only
a small fraction of the overall application complexity. As it
is generally acknowledged that susceptibility to errors and
attacks increases with complexity, we conclude that the vul-
nerability of the security-sensitive part can be decreased sig-
nificantly by isolating this part from the security-insensitive
part.

From these observations we derive the principle that
the TCB should be minimized: Only essential security-
sensitive functions should be part of the TCB. In other
words, the TCB comprises only components that cannot be
omitted without compromising the functionality and secu-
rity of the service.

It is illuminating to define precisely the meaning of the
word “trust” in TCB. It refers to the assertion that the TCB
meets certain security, functional, and timing requirements.
The security requirements fall into four main categories:
confidentiality, integrity, recoverability, and availability.

Confidentiality: Only authorized users (entities, princi-
pals, etc.) can access information (data, programs,
etc.).

Integrity: Either information is current, correct, and com-
plete, or it is possible to detect that these properties do
not hold.1

Recoverability: Information that has been damaged can be
recovered eventually.

Availability: Data is available when and where an autho-
rized user needs it.

Along with the diverse demands of applications, the size
and composition of the TCB varies. Thus, the TCB is ap-
plication specific: It comprises the components a given ap-
plication has to trust. Each trust relationship refers to one
or more of the aforementioned security categories.

Components should reside in separate protection do-
mains to prevent faults from propagating across component
boundaries.2 This isolation has to be complemented by

1There is some divergent terminology in the security community about
the definitions of the four security categories. Our definition of integrity
differs from that of some prominent authors, including Gasser’s [7]: These
authors define integrity to imply that data cannot be modified and destroyed
without authorization.

2Another approach to suppress uncontrolled error propagation is the
use of secure languages throughout the system. However, this approach
would impose severe implementation restrictions.

a mechanism for controlled cross-domain communication
(inter-process communication,or IPC).

As we mentioned previously, the number of errors corre-
lates with the code size. Therefore, we favor a large number
of small components over a few large ones.

Next, we describe a method to add functionality to an
application without enlarging its TCB.

Trusted wrappers For many applications, data confiden-
tiality and integrity (according to our integrity definition)
are vastly more important than availability; Gasser [7] con-
veys this observation as “I don’t care if it works, as long as
it is secure.” Here are two examples:

• Remote–file-system users are happy with not trusting
networks and disks as long as their data is backed up
regularly (or permanently in a redundant disk array)
and integrity and confidentiality are not at risk.

• Users of laptops and personal digital assistants (PDAs)
are more ready to take the risk of having their mobile
device stolen (rendering all data on it unavailable) if
data confidentiality and integrity are ensured.

In essence, for many applications it is acceptable to use un-
trusted components and to provide confidentiality and in-
tegrity in higher layers of a system.

The important insight here is that trust dependencies
arenot always transitive:For example, a component pro-
viding an encrypted file system can make use of an un-
trusted file-system component for the actual storage and
provide integrity and confidentiality3 itself using crypto-
graphic means.

We refer to components that achieve security objectives
for users of untrusted components astrusted wrappers.

In Nizza, we use trusted wrappers in secure applications
to reuse untrusted device drivers, network-protocol drivers,
or even whole legacy-OS instances. Section 4.5 presents
the design of a trusted file-system wrapper, and Section 5.2
provides an elaborate example, in which trusted wrappers
helped cutting down the TCB of a virtual-private-network
router by an order of magnitude.

Reuse of legacy OSesTo provide the full functionality of
a standard OS, Nizza provides containers to securely run
untrusted legacy OS components or even complete legacy
OSes with their applications.

Nizza facilitates cooperation among security-sensitive
and untrusted components: Legacy applications can use
split-out trusted components, and trusted software can reuse
legacy components through trusted wrappers.

3Confidentiality is preserved as long as no unauthorized communica-
tion channels exist.
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3 Example use case

To illustrate our approach for systems design, let us
present a practical problem and a solution based on the
mechanisms of Nizza.

People use commodity applications such as Mozilla
Thunderbird for daily email communication. To provide
a proof of the integrity of an email, a growing number of
users sign their emails with the signing key as a credential.
The confidentiality of the signing key is crucial for the user.

However, on today’s commodity operating systems, the
confidentiality of the signing key depends on the OS ker-
nel including device drivers, root processes, the graphical
user interface, the email program, the cryptography pro-
gram, and the other processes of the user. For the example
of Mozilla Thunderbird running on Linux, the crucial se-
cret of the user is exposed to system components consisting
of millions of lines of code. Still, people will not give up
the functionality and convenience of such an application for
security reasons. Using an alternative and more secure OS
and a custom application instead of commodity software is
not an option.

In current systems, security-sensitive and security-
insensitive code often reside in the same protection do-
main. The presented principles of Nizza enable the drastic
reduction of TCB size by moving security-sensitive func-
tions from the commodity software to distinct protection
domains, thereby eliminating untrusted code from the TCB.
In fact, only the cryptography software, but no other sys-
tem component, needs the signing key for proper operation.
The isolation mechanism described in Section 2 facilitates
the execution of the cryptography software inside a dedi-
cated protection domain with exclusive access to the sign-
ing key of the user. In this example, we refer to this protec-
tion domain ascrypto domain.Besides the crypto domain,
we deploy Nizza’s legacy container to execute a legacy OS
and off-the-shelf email software. Both programs are exe-
cuted on the same machine at the same time. When the user
wants to sign an email, the email software has no access
to the signing key. Instead, it hands over the email to the
crypto domain using Nizza’s secure communication mech-
anisms. In turn, the software in the crypto domain presents
the textual information to the user and asks the user for ap-
proval to sign the email. When approved, the cryptography
software signs the email and transfers the result back to the
commodity email software for further processing. There-
fore, the extremely complex commodity software can still
be used without putting the user’s credentials at risk.

Although this example provides an overview of how to
use Nizza’s mechanisms to improve security, it poses a
number of new challenges: Both the commodity software as
well as the software of the crypto domain must communi-
cate with the user via a GUI. How can both parties securely
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Figure 1. The Nizza architecture

interact with the user at the same time? How can we store
the signing key of the user inside the crypto domain in a se-
cure and persistent way? What engineering cost is required
to make the commodity email program communicate with
the crypto domain instead of performing cryptography by it-
self? How complex is the TCB of the crypto domain in this
scenario? We will answer these questions in the following
sections.

4 The Nizza architecture

In this section, we describe the design of the Nizza
secure-system architecture and the implementation of our
Nizza prototype.

In Subsection 4.1, we present the general Nizza design.
In Subsections 4.2 to 4.5, we elaborate on four compo-
nents in detail: the kernel, the standard OS, the trusted GUI
server, and a trusted file-system wrapper.

4.1 Overview

Figure 1 shows a sketch of the Nizza architecture. Nizza
is composed of four major parts: a small kernel; a small
secure-platform layer, consisting of trusted components
(such as a loader and a trusted GUI component); security-
sensitive applications; and an untrusted legacy standard OS
with its applications.

The basic requirements for the small kernel are that it
enforces component isolation in protection domains and
provides fast communication between these domains (re-
quired for trusted wrappers and other secure-platform com-
ponents). In Section 4.2 we report on our implementation’s
kernel.

Both the untrusted OS and the secure applications de-
pend on the small secure platform, which provides minimal
sufficient functionality for applications with high security
requirements and ensures isolation.
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The legacy operating system can be either an unmodi-
fied OS running in a virtual machine or a modified OS ker-
nel adapted (paravirtualized) to run in a separate address
space on top of the small kernel. We describe our legacy
OS, L4Linux, in Section 4.3.

In the following, we discuss three components of the
secure-platform layer: the loader, the trusted GUI, and the
secure-storage component.

Theloader is the component responsible for loading and
installing trusted components. It contains the machinery
needed to load and establish applications besides and inde-
pendent of the legacy OS. It has to make access-control
decisions based on the system’s policy. Additionally, it
needs to support authenticated booting, which is the foun-
dation for authentication chains. These unforgeable proofs
of identity are made available to other components such as
the trusted GUI.

A trusted GUImust establish the trusted path between
the user and applications. It presents and uniquely labels
(using authentication information) the screen output of mul-
tiple applications and protects user input from eavesdrop-
ping. We describe our trusted-GUI component in Section
4.4.

Thesecure-storagecomponent, if it is designed for just
confidentiality and integrity (but not availability), can rely
on trusted wrappers. The actual storage of large data can
be left to the legacy OS’s file system. Cryptography can
be used to protect data against information leaks and un-
noticed modifications. It cannot protect against destruction
of data, that is, against denial-of-service attacks. This may
be tolerable if almost all data is stored on a server anyway,
reducing the secure storage component to a mere cache for
the largest part of data. However, direct (nonwrapped) se-
cure storage is needed for the keys and for data added since
the last backup. We discuss a possible file-service design in
more detail in Section 4.5.

4.2 Fiasco microkernel

In our experimental Nizza implementation, we use the
Fiasco microkernel [10]. It meets the requirements of a
small kernel: Fiasco has been implemented in less than
15,000 lines of code. It is available on the x86 and ARM
platforms, and for debugging purposes a version running on
top of Linux is available as well.

Fiasco is an implementation of the L4 microkernel inter-
face, a minimal kernel interface providing just three abstrac-
tions: address spaces, threads, and IPC [15]. On top of these
mechanisms, operating systems can be constructed flexibly
as a set of user-level programs. For example, the kernel
interface allows memory management (including memory
sharing and user-level paging), device drivers, and sched-
ulers to be implemented on user level.

Nonetheless, Fiasco’s L4 interface has a number of re-
strictions that must be overcome for a complete Nizza im-
plementation: It currently lacks kernel-resource control and
IPC control. Thus, untrusted components cannot be con-
tained completely (see Section 6). Because of these short-
comings, we have started working on an improved version
of L4 (nicknamed L4.sec) in which access to all kernel re-
sources is controlled using kernel-protected capabilities.

4.3 L4Linux

The key component for backward compatibility with
existing commodity software is a container for executing
legacy software. Depending on the software to reuse, the
legacy software container of Nizza on Fiasco could be a lan-
guage environment such as a Java virtual machine, a plat-
form emulator such as Qemu, or a paravirtualized OS ker-
nel.

In our experiments, we use L4Linux—a paravirtualized
Linux kernel—as the container for executing legacy soft-
ware. L4Linux is a modified Linux kernel that uses the L4
microkernel interface instead of accessing the hardware di-
rectly. Therefore, L4Linux is executed without kernel privi-
leges and cannot corrupt other system components that exist
on the same machine. In [9], we showed this approach in-
duces acceptable performance degradation. Our approach
of modifying the Linux kernel’s source code comes at the
engineering cost of maintaining the changes of 7,000 lines
of code. On the other hand, this approach does not require
special hardware support or VMM primitives in the micro-
kernel while providing excellent performance. The L4Linux
kernel is binary compatible with an unmodified Linux ker-
nel and enables us to reuse existing Linux distributions and
application software without any changes.

Applications such as the email scenario of Section 3 re-
quire secure communication between legacy software com-
ponents and separate domains. L4Linux supports hybrid
Linux processes that can utilize both the Linux as well as
the L4 system call interfaces. Such hybrid processes use L4
IPC to serve as the interface between the untrusted legacy
container and trusted domains outside of L4Linux.

4.4 Trusted GUI

In Section 3 we raised the question of how to enable se-
cure user interaction with multiple applications. For the
email scenario, the user needs to interact with the com-
modity email programs running on the legacy OS as well
as with the crypto domain. For the commodity email pro-
gram, we need the legacy GUI. Unfortunately, we cannot
use the legacy GUI for the crypto domain as well because
we must protect this domain from malicious code that po-
tentially could gain control over the legacy GUI. There-
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fore, a separate trusted GUI component for establishing the
trusted path between the user and the applications is indis-
pensable.

EWM [22] and DOpE [5] follow the approach of imple-
menting a custom secure host window system with a low
complexity. The legacy GUI, including a complete com-
modity desktop environment, can be displayed in one sin-
gle host window. This approach leads to fairly simple im-
plementations of 5,000–12,000 lines of code. However, the
features implemented by these window systems are not suf-
ficient for the users who expect usage patterns of a wide va-
riety of different commodity GUIs. For example, on Unix,
people use and appreciate different X11 window managers
with extremely different look and feel. Designing and im-
plementing a GUI to fit all user’s needs is not possible. With
all the required features, this new GUI would become very
complex. This is a conflict with our primary design goal
of low complexity for this security-sensitive system com-
ponent.

With our trusted GUI component Nitpicker [18], we fol-
low the principle of exposing mechanisms but not imposing
policy. Nitpicker only provides mechanisms for enforcing
security and functionality that are crucial to implement a
GUI in the client. There is no policy of window decora-
tions, menus, and other GUI paradigms.

Nitpicker enables multiple client domains to share one
screen while maintaining isolation between domains. It pro-
vides a virtual frame buffer to each client domain. Nitpicker
segments the physical frame buffer into a set of regions,
where each region is assigned to a corresponding virtual
frame buffer. A client can configure regions that refer to
its virtual frame buffer, but the composition of all virtual
frame buffers on the physical frame buffer is only known to
Nitpicker.

Each region on the visible screen is assigned to exactly
one client. Nitpicker labels each region with the name of its
client—obtained from the trusted loader—and thus provides
information to uniquely identify each client on screen. This
allows the user to detect attacks by Trojan horses.

For the communication from the user to the client do-
mains, Nitpicker routes each input event to exactly one do-
main. The routing decision is derived from the current lay-
out of screen regions, the mouse position, and a user-defined
focused client. No client domain receives input events that
refer to other domains. Spyware is not possible by design.

The mechanisms provided by Nitpicker enable us to use
multiple legacy GUIs at the same time and integrate them
into one desktop environment. All features, the look-and-
feel, and commodity applications are preserved. Security-
sensitive applications can interact with the user at the same
time and only need to rely on Nitpicker. Our current im-
plementation of Nitpicker consists of merely 1,500 lines
of code. This is an order of magnitude less than the low-

complex window systems mentioned before. As a current
limitation, Nitpicker does not support hardware-accelerated
graphics. Secure hardware acceleration is subject of our fu-
ture work.

4.5 File-system design

A file system is a good example to demonstrate two im-
portant topics of the Nizza architecture, namely the reuse of
untrusted legacy software and the dependency of TCBs on
applications and their security requirements. In this subsec-
tion, we will present a back-of-the-envelope, as yet unim-
plemented design of a file system that can be configured ei-
ther to meet just confidentiality and integrity requirements
or to provide recoverability or availability as well. It lever-
ages ideas of earlier work on the utilization of untrusted
storage for trusted file systems (e. g., as in [13, 16]) for the
preservation of confidentiality and integrity.

A key component of the secure platform in all configura-
tions is buffer management for a flat file system. Upon read
or write operations on files, it first inspects whether the re-
spective blocks of a file are in a buffer. If so, it performs the
operation using only trusted components. All other storage,
that is, storage for files that are too large to reside in mem-
ory under control of the secure platform or that need to be
persistent, is implemented using untrusted components.

If such a file system has to meet only confidentiality
and integrity requirements (but neither recoverability nor
availability; here calledsimple configuration), large parts
of the storage reside in an untrusted file system that also
provides persistent storage. As proposed in [16], crypto-
graphic methods can be used to protect confidentiality, and
hash sums, to protect integrity.

This approach requires only a relatively small amount
of persistent secure storage in the secure platform for root
keys and hash codes. Access to these keys must be provided
only to trusted software that is authenticated by a trustwor-
thy boot process. If there would be only volatile protected
storage on the trusted side, replay attacks by replacing stor-
age content and encrypted keys would become possible.

The simple configuration meets neither recoverability
nor availability requirements. A successful attack that fully
penetrates the untrusted legacy operating systems holding
the large and persistent backup storage can cause data loss
and corruption.

To additionally support recoverability, components have
to be added to the file system to use trusted central servers
to store either recoverable versions of the file system’s state
or at least credentials to recover such state from untrusted
storage servers. The TCB then includes these additional
components and the location of the trusted central server.
The file system has to be augmented by a transaction-like
scheme to identify checkpoints that are to be made recov-
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Figure 2. The system components of the email
scenario. The confidentiality of the signing key
depends only on the highlighted system compo-
nents, but not on the highly complex legacy OS.

erable. The file system of the untrusted legacy system and
the network protocols do not become part of the TCB of the
file system. Thus, a successful penetrator of the legacy file
system can prevent access to the file system.

To support availability in the presence of attacks, all
components on which the file system operationally depends
need to become part of the TCB.4 In a system that needs
to provide service in a local setting only, for example, for a
patient monitor, the TCB increases by components manag-
ing the actual storage including disk drivers. It also needs to
contain most if not all components that control power man-
agement.

5 Example applications

5.1 Email signatures

Our initial use case addressed the signing of emails
(Fig. 2). This application moves security-sensitive func-
tions from a commodity email client (Mozilla Thunderbird)
to a separate PGP implementation.

Mozilla Thunderbird is a stand-alone email client that
supports email signing via the third-party plug-in Enigmail.
Enigmail uses the GnuPG program to read the user’s private
key and sign emails. It relies on Thunderbird to communi-
cate with the user and maintain passphrases. Effectively, the
proper function of Enigmail depends on the correctness of
the email client and the multitudes of plug-ins that can be
installed on the Thunderbird client to perform its security-
relevant functions correctly. Thunderbird alone contains

4We ignore fault tolerance issues here.

over 200,000 lines of code, rendering it virtually impossi-
ble to ensure correctness of the email client. As a side note,
Thunderbird also shares some of the libraries with the Fire-
fox browser (e. g., the HTML parser), thereby sharing their
vulnerabilities, too.

With Thunderbird, the user signs an email by select-
ing the signing option before sending. When the user re-
quests email transmission, the Enigmail plug-in is activated
and retrieves the passphrase for the user’s private sign-
ing key. Then Enigmail invokes the GnuPG program with
passphrase and content of the email as parameters. GnuPG
retrieves the key (e. g., from the hard disk), signs the email,
and returns the result. The security-relevant data are the
user’s private key, the passphrase, and the content of the
email.

To protect the confidentiality of the private key and
passphrase and to allow the user a trustworthy review of the
email contents, we move essential GnuPG functions, a con-
tent viewer and simple user dialog, to a separate protected
domain—the crypto domain.

The crypto-domain component must be capable of per-
forming three functions: First, display the content of the
email in an unambiguous fashion for user review. Second,
depending on the user’s preference, sign the email with the
user’s private key. Finally, return the signed email to the
email program. Note that plain-text content is available
to the untrusted component even before signing. There-
fore, the user must review the email in the trusted viewer.
The key-management functionality from GnuPG must be
included in the crypto domain because the signing algo-
rithm needs the private key. The crypto-domain component
displays the content of the email and waits for user input.
Depending on the authorization by the user, the email is
signed and returned to Thunderbird. Otherwise, it is dis-
carded.

It is sufficient to store the PGP keys on standard stor-
age devices. The confidentiality in case of data leakage is
assured as the keys are protected by a passphrase. Never-
theless, saving the keys with the secure storage component
increases the security and anchors the user’s trust in hard-
ware.

Section 3 raised the question of what engineering cost is
required to securely reuse commodity email programs. Our
solution only requires the user to configure Enigmail to use
a forwarding proxy instead of the GnuPG program. The
crypto domain and its TCB comprises about 105,000 lines
of code, including Fiasco (15,000 lines of code), trusted L4
services (35,000 lines of code), and L4GnuPG (55,000 lines
of code).
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Figure 3. VPN gateway application.

5.2 VPN gateway

The majority of current VPN implementations are based
on monolithic OSes. In monolithic OSes, the IPSec imple-
mentation is integrated in the kernel and closely interwoven
with other components of the kernel, such as the network
subsystem. Thus, bugs in the kernel code or a successful
penetration of the complex monolithic kernel can compro-
mise the security-relevant functions. The following exam-
ple emphasizes the severity of the situation: In Linux 2.4,
70 percent of the kernel code are device drivers with an error
probability 7 times higher than in other kernel modules [3].
This huge amount of code has unrestricted access to all data
structures and functions of the kernel. A minimal configura-
tion of the Linux 2.4 kernel comprises about 155,000 lines
of code [23].

We observed that the security-relevant functions of a
VPN implementation—data protection and policy enforce-
ment—are only a small fraction of the monolithic kernel
(less than 5 %). The Nizza architecture enables us to ex-
tract those IPSec-specific functions and execute them in a
separate protection domain—the IPSec domain. This tech-
nique dramatically reduces the vulnerability of this sensitive
functionality. The IPSec domain represents the actual con-
nection point between the private network and the untrusted
Internet.

Besides the IPSec domain, a VPN gateway requires net-
work device drivers, IP packet processing including defrag-
mentation, routing, and other basic networking functions
for operation. All software components of the VPN gate-
way, excluding the IPSec domain, must be assigned to ei-
ther the private or the Internet side.

Because both sides require general network functional-
ity, we use two instances of L4Linux running on one ma-
chine for providing these functions. Each of these L4Linux
instances is allowed to access one of the two physical net-
work interface connectors (NICs) exclusively. Therefore,
both instances are not able to communicate directly. The
only way of passing data from either side to the other is the
IPSec domain, which enforces the security policy and pro-
tects sensitive data. The scenario is depicted in Figure 3.

With the VPN software split into distinct components,
we can revisit the security measures for each component in-
dividually to verify that sensitive information remains pro-
tected from unauthorized inspection and manipulation. The
IPSec domain must be ultimately trusted regarding confi-
dentiality and integrity of the processed data. Our imple-
mentation comprises merely 5,000 lines of code plus the
used cryptography engine.

The L4Linux instance on the Internet side never observes
sensitive information because sensitive data is protected by
the IPSec domain before leaving the VPN. Therefore, we
can safely regard this L4Linux instance as untrusted with
respect to confidentiality and integrity of sensitive data. In
contrast to the L4Linux instance of the Internet side, the
L4Linux instance on the private side observes sensitive data.
Nevertheless, network packets cannot leak to the Internet
side because of the encapsulation. Thus, we do not need
to trust this L4Linux instance to meet our confidentiality
claims. With respect to integrity of the sensitive data, the
private L4Linux needs to be trustworthy just as every com-
ponent of the private network’s infrastructure. The private
L4Linux instance cannot be attacked from the untrusted net-
work because no unauthorized data from the untrusted net-
work passes the IPSec domain.

In summary, the basic architecture of our VPN gateway
reduces the TCB of the VPN gateway to the basic Nizza
components plus the IPSec domain. Our VPN gateway
comprises about 55,000 lines of code including the IPSec
domain (5,000 lines of code). The highly complex func-
tionality of a complete TCP/IP implementation is provided
by untrusted legacy components without compromising our
security objectives.

6 Enabling technologies

This section presents a survey of technologies that make
the Nizza secure-system architecture possible.

Isolation The foundation of a minimal TCB is a small
kernel, on which system components and applications run
in their own protection domains.

It is conceivable that a Nizza system could be based on a
virtual-machine monitor (VMM). However, contemporary
VMMs depend on large components to provide memory
management and hardware or device emulation for virtual
machines. Currently, these components need to be fully
trusted. It is an open research issue whether a small bare-
bone VMM (orhypervisor) can be built in which security-
sensitive services or applications do not have these manage-
ment components in their TCB.

The isolation property also requires effective control of
kernel objects and resources, such as memory and commu-
nication channels, for the following three reasons. First, it
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prevents denial-of-service attacks that lead to the consump-
tion of all available resources. Second, it prevents unautho-
rized communication of untrusted components. This prop-
erty is needed because otherwise containment of untrusted
subsystems is impossible to prove. Third, it closes hidden
and side channels that work by observing the resource con-
sumption of another component.

One type of resource normally managed by kernels are
user-visible names (or addresses) for kernel objects, such
as memory addresses and thread IDs. The nonobservability
requirement just mentioned can be addressed by localizing
all names, that is, by never exporting global names (such as
physical memory addresses) from the kernel.

Encapsulation relies on address spaces in microkernel-
based implementations or virtual machines in hypervisor-
based implementations. Both rely on a mapping of some
form of virtual addresses to physical addresses. However,
input–output (I/O) devices on current hardware (except
some mainframes) that are capable of DMA bus-mastering
use physical addresses to access memory. Thus, drivers us-
ing DMA or malicious firmware on devices can break en-
capsulation that is based on controlling the mapping of vir-
tual to physical addresses. There are essentially two ways
to enforce the mapping: DMA virtualization and I/O-TLBs.

DMA virtualization requires interception of critical op-
erations of drivers and enforcement of correct behavior by
emulation. This has some performance penalty and requires
manual inspection of all drivers involved [17,12].

I/O-TLBs are OS-controlled units between the memory
bus and the devices. They already exist in rudimentary form
in some systems such as AMD’s Opteron, but provide only
a single address space for I/O devices. Newer platforms
are supposed to add more flexibility by providing dedicated
TLBs on a per-device base.

Secure communication Strong isolation needs to be
complemented with efficient and secure mechanisms for
communication across protection domains (IPC) to en-
able controlled cooperation among system components ir-
respective of their trust relationship. Both low-latency and
high-bandwidth communication is necessary—the former
for remote-procedure-call-style invocations, the latter for
streaming data (e. g., to peripheral-device drivers).

The literature provides many examples for both types
of IPC (see for example [14, 20, 4]). From this body of
work and our own experience we conclude that, for high-
bandwidth IPC, the kernel should support sharing memory
among multiple protection domains.

Support for standard OSes The only viable and secure
way to provide complete compatibility with existing appli-
cations is to run the original OS, but in a sandbox that re-
moves the OS from the TCB of security-sensitive applica-

tions and system components. There are two approaches for
sandboxing an OS: full virtualization and paravirtualization.
The first approach allows running an unmodified OS in a
virtual-machine environment, whereas the second approach
requires modifications to the original OS’s source code be-
cause the paravirtualizing machine monitor does not export
the exact original machine model. However, the simplified
monitor interface is designed to reduce emulation cost.

The advantage of full virtualization is the possibility
to run commercial OSes such as Windows. However, a
VMM that does not inflate the system’s minimal TCB with
a large emulation framework has not been demonstrated yet.
Therefore, Nizza currently employs paravirtualization.

Upcoming hardware automatically detects instructions
that need to be emulated and traps into a hypervisor,
eliminating the cost and restrictions of software-based
workarounds. Virtualization support as offered in [11, 1]
may require a reassessment of the situation. In principle, it
seems possible to provide Nizza implementations that sup-
port unmodified legacy operating systems and still build ap-
plications based on very small TCB.

Authenticated booting and trusted platform modules
Trusted platform modules (TPM) following recommenda-
tions of the Trusted Computing Group (TCG) provide two
foundations needed for an implementation of Nizza: remote
attestation and sealed memory (protected storage) [24], both
based on authenticated booting. A TPM at startup time
computes a hash value of the booted operating system and
stores it reliably. The operating system may add other hash
codes of loaded software components thus building a chain
of authentication. This authentication chain can be retrieved
using a challenge-response protocol and used for attesta-
tion. Additionally, the operating system can store keys in-
side the TPM that are bound to the booted configuration.
This effectively enables the implementation of protected
storage were bulk data is held on standard devices and se-
cured (encrypted) with the keys under TPM control.

The TPM technology is essential for the Nizza architec-
ture. It allows remote attestation. For example, it allows a
client to check whether certain software is indeed used on
the server and vice versa.

The basic layers of Nizza consist of the services de-
scribed in Section 4.1, namely the small kernel, the loader,
and the trusted GUI. A user-interface spoofing attack by
manipulating a window manager to conceal that a malicious
program (instead of the assumed trusted component) is con-
trolling the display becomes impossible because it would
leave detectable traces in the attestation chain.

A key assumption for the use of such technology is that
the layers of software that form the authentication chain are
hard to penetrate by an attacker. For instance, if the Linux
kernel, the X Window System, Mozilla, and a Java virtual
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machine form the basis of a system, one has to assume that
in the order of 10 million lines of codes can be sufficiently
hardened, otherwise it is useless to include these compo-
nents as basic parts of the authentication chain. In contrast,
the TCB components of Nizza that constitute the chain are
in the order of hundred thousand lines of code with a much
better chance of protecting it from penetration.

7 Related work

The works closest to Nizza are Perseus [19] and Mi-
crosoft’s plans for NGSCB (previously known as Palla-
dium) [2]. Both system designs use a legacy operating
system on top of small kernels and run applications with
higher security requirements on top of these small ker-
nels (e. g.,Palladium-enabled applications). While Palla-
dium planned for a kernel with virtual machine abstractions,
Perseus has the same roots and is even based on some iden-
tical components as our current implementation of Nizza.
To our knowledge, neither project has pushed the princi-
ple ideas as far as our experiments with Nizza. The notion
of reuse of legacy through trusted wrappers, application-
specific trusted computing bases, and minimized graphical
user interfaces has not been extensively explored.

Terra [6] has been proposed as a virtual-machine–based
security architecture for trusted systems. Terra enhances
traditional VMM technology with features for attestation,
trusted user communication, and protection from adminis-
trators. Its authors describe the virtual-machine interface
as a “small, stable interface” and imply that it can be im-
plemented with 12,000 lines of code. However, drivers are
clearly not included in this figure, and Terra has to fully trust
them. Terra does not enable the reuse of untrusted compo-
nents and does not offer IPC; communication between vir-
tual machines is possible only using an emulated network.

Another closely related and very interesting system is
EROS [21]. Like Nizza, it is based on a microkernel and
has a small windowing system component. It uses an elab-
orate capability system to control interaction between com-
ponents. EROS supports persistent storage at a very low
level, which is considered a source of great difficulties by
the authors of EROS. So far, EROS does not consider ex-
tensive reuse of legacy a main engineering principle.

8 Conclusion

Trusted wrappers and the reuse of encapsulated legacy
operating systems promise that complex applications can
be built with very small application-specific trusted com-
puting bases. An attractive property of Nizza is its sup-
ports hardware architectures ranging from main frames all
the way to small embedded systems like cell-phone plat-

forms. We have successfully ported an early L4-based (in-
complete) version of a Nizza system to a small cell-phone
platform.

The enabling technologies, namely small-kernel technol-
ogy and novel hardware platforms, have matured tremen-
dously in the past years. Early experience indicates that
these promises are likely to be upheld. An experience paper
currently being prepared will substantiate this claim based
on elaborate analysis of several complex applications.
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