
Moslab – Chair of Operating Systems
Sessions and Dynamic Memory

Martin Küttler

Last assignment

▶ Sending multiple messages for large texts is ok.

▶ If you allocate memory, remember to deallocate the memory and capabilities.
▶ You should update your Control file (libc_be_mem, stdlib, ...)
▶ Please report problems (errors/missing informations in slides, missing/bad

documentation) to me.
▶ Any questions?

1 / 19

Last assignment

▶ Sending multiple messages for large texts is ok.
▶ If you allocate memory, remember to deallocate the memory and capabilities.

▶ You should update your Control file (libc_be_mem, stdlib, ...)
▶ Please report problems (errors/missing informations in slides, missing/bad

documentation) to me.
▶ Any questions?

1 / 19

Last assignment

▶ Sending multiple messages for large texts is ok.
▶ If you allocate memory, remember to deallocate the memory and capabilities.
▶ You should update your Control file (libc_be_mem, stdlib, ...)

▶ Please report problems (errors/missing informations in slides, missing/bad
documentation) to me.

▶ Any questions?

1 / 19

Last assignment

▶ Sending multiple messages for large texts is ok.
▶ If you allocate memory, remember to deallocate the memory and capabilities.
▶ You should update your Control file (libc_be_mem, stdlib, ...)
▶ Please report problems (errors/missing informations in slides, missing/bad

documentation) to me.

▶ Any questions?

1 / 19

Last assignment

▶ Sending multiple messages for large texts is ok.
▶ If you allocate memory, remember to deallocate the memory and capabilities.
▶ You should update your Control file (libc_be_mem, stdlib, ...)
▶ Please report problems (errors/missing informations in slides, missing/bad

documentation) to me.
▶ Any questions?

1 / 19

We are here

Pong Server

Paddle Client 1 Paddle Client 2

Moe

Sigma0

Fiasco Kernel

2 / 19

Today’s goal

Pong Server

Paddle Client 1 Paddle Client 2

Keyboard Driver Console

Memory Management

Moe

Sigma0

Fiasco Kernel

3 / 19

Sessions

▶ Scenario:
▶ Multiple clients per server
▶ Server stores per-client data, needs to distinguish between clients

▶ Poor man’s solution:
▶ Assign dynamic ID, which clients sends with each call
▶ Problem: IDs can be faked

▶ Better (actual) solution: Sessions
▶ One IPC gate per client
▶ Clients can be distinguished by the gate label
▶ Preferably clients should not even know about sessions

4 / 19

Sessions

▶ Scenario:
▶ Multiple clients per server
▶ Server stores per-client data, needs to distinguish between clients

▶ Poor man’s solution:
▶ Assign dynamic ID, which clients sends with each call
▶ Problem: IDs can be faked

▶ Better (actual) solution: Sessions
▶ One IPC gate per client
▶ Clients can be distinguished by the gate label
▶ Preferably clients should not even know about sessions

4 / 19

Sessions

▶ Scenario:
▶ Multiple clients per server
▶ Server stores per-client data, needs to distinguish between clients

▶ Poor man’s solution:
▶ Assign dynamic ID, which clients sends with each call
▶ Problem: IDs can be faked

▶ Better (actual) solution: Sessions
▶ One IPC gate per client
▶ Clients can be distinguished by the gate label
▶ Preferably clients should not even know about sessions

4 / 19

Sessions in L4Re

Ned

create gate

5 / 19

Sessions in L4Re

Ned

Server

start server

5 / 19

Sessions in L4Re

Ned

Server

call Factory::create()

5 / 19

Sessions in L4Re

Ned

Server
create

5 / 19

Sessions in L4Re

Ned

Server Client

start client

5 / 19

Sessions in L4Re

Ned

Server Client
invoke

5 / 19

Lua Example: Simple

local L4 = require("L4");

local ld = L4.default_loader;
local log = ld:new_channel ();

ld:start({ caps = { log_server = log:svr() },
log = { "server", "blue" } },

"rom/logging");

ld:start({ caps = { log_server = log },
log = { "client", "green" } },

"rom/logging_client");

6 / 19

Lua Example: Sessions

local L4 = require("L4");

local ld = L4.default_loader;
local log = ld:new_channel ();

ld:start({ caps = { log_server = log:svr() },
log = { "server", "blue" } },

"rom/logging");

ld:start({ caps = { log_server = log:create(0, "args") },
log = { "client", "green" } },

"rom/logging_client");

7 / 19

Sessions Implementation

▶ Clients don’t change at all (that’s what we wanted, remember?)
▶ Servers need to handle the create call.

▶ Before we look at that, . . .

A short tour of the L4Re IPC server framework

8 / 19

Sessions Implementation

▶ Clients don’t change at all (that’s what we wanted, remember?)
▶ Servers need to handle the create call.
▶ Before we look at that, . . .

A short tour of the L4Re IPC server framework

8 / 19

Sessions Implementation

▶ Clients don’t change at all (that’s what we wanted, remember?)
▶ Servers need to handle the create call.
▶ Before we look at that, . . .

A short tour of the L4Re IPC server framework

8 / 19

A short tour of the L4Re IPC server framework

▶ L4 : : Server implements the basic server loop:

void loop() {
while (1) {

m = recv_message ();
ret = dispatch(m, utcb);
reply(m, ret);

}
}

▶ For each IPC gate there is a L4 : : Ep i face , which
▶ keeps the capability to the IPC gate,
▶ handles messages from this gate (implements d i spatch ())

▶ How does the server know which Epiface it should call?

9 / 19

A short tour of the L4Re IPC server framework

▶ L4 : : Server implements the basic server loop:

void loop() {
while (1) {

m = recv_message ();
ret = dispatch(m, utcb);
reply(m, ret);

}
}

▶ For each IPC gate there is a L4 : : Ep i face , which
▶ keeps the capability to the IPC gate,
▶ handles messages from this gate (implements d i spatch ())

▶ How does the server know which Epiface it should call?

9 / 19

A short tour of the L4Re IPC server framework

▶ L4 : : Server implements the basic server loop:

void loop() {
while (1) {

m = recv_message ();
ret = dispatch(m, utcb);
reply(m, ret);

}
}

▶ For each IPC gate there is a L4 : : Ep i face , which
▶ keeps the capability to the IPC gate,
▶ handles messages from this gate (implements d i spatch ())

▶ How does the server know which Epiface it should call?

9 / 19

IPC tour: Epiface registry

▶ L4 : : Ep i faces are stored in a per-server registry.
▶ The registry can find Epi faces by an ID (label of IPC gate)
▶ L4 : : Bas i c_reg i s t ry : ID is pointer to object
▶ L4Re : : U t i l : : Object_reg i s t ry provides a convenient interface:

L4::Cap <void > register_obj(L4:: Epiface *o,
char const *service);

L4::Cap <void > register_obj(L4:: Epiface *o);

bool unregister_obj(L4:: Epiface *o);

10 / 19

IPC tour: Registry server

L4Re : : U t i l : : Reg i s t ry_server is a L4 : : Server that maintaines a
L4Re : : U t i l : : Object_reg i s t ry

static L4Re::Util:: Registry_server <> server;

class MyServer : public L4::Epiface_t <MyServer , MyInterface >
{ ... };

// When you need a new session object
server.registry()->register_obj(new MyServer ());

11 / 19

Session Implementation – Factory Server
class SessionServer : L4::Epiface_t <SessionServer , L4::Factory >
{
public:

int op_create(L4:: Factory ::Rights , L4::Ipc::Cap <void >& res ,
l4_mword_t type , L4::Ipc::Varg_list <> args) {

if (type != 0) return -L4_ENODEV;

L4::Ipc::Varg tag = args.next ();
if (!tag.is_of <char const *>()) return -L4_EINVAL;

auto helloserver = new HelloServer
(tag.value <char const *>());

server.registry()->register_obj(helloserver);
res = L4::Ipc:: make_cap_rw(helloserver ->obj_cap ());
return L4_EOK;

}
};

12 / 19

Sessions

▶ With that you can add support for multiple clients in the hello server.

▶ Assignment 1.5:
▶ Make your hello server a logging server that supports multiple clients
▶ Client messages should be prefixed with an id string, that is passed to the server

in the create call.

▶ Problem: Now you need dynamic memory, but mal loc and f r e e are missing.

13 / 19

Sessions

▶ With that you can add support for multiple clients in the hello server.
▶ Assignment 1.5:

▶ Make your hello server a logging server that supports multiple clients
▶ Client messages should be prefixed with an id string, that is passed to the server

in the create call.

▶ Problem: Now you need dynamic memory, but mal loc and f r e e are missing.

13 / 19

Sessions

▶ With that you can add support for multiple clients in the hello server.
▶ Assignment 1.5:

▶ Make your hello server a logging server that supports multiple clients
▶ Client messages should be prefixed with an id string, that is passed to the server

in the create call.

▶ Problem: Now you need dynamic memory, but mal loc and f r e e are missing.

13 / 19

Memory Allocation

▶ Memory allocation is (currently not) implemented in a backend of L4Re’s C
library (in s r c / l 4 /pkg/ l4 r e −core / l ibc_backends /)

▶ You can get new pages from Moe:
▶ Allocate a dataspace capability
▶ Get a dataspace from Moe:

L4Re : : Env : : env()−>mem_alloc()−> a l l o c (s i z e , ds) ;
▶ Attach dataspace to local address space:

L4Re : : Env : : env()−>rm()−>attach(&addr , s i z e , f l a g s , ds) ;

▶ To free unused pages:

L4Re : : Env : : env()−>rm()−>detach (addr , nu l l p t r) ;
L4Re : : Env : : env()−>mem_alloc()−> f r e e (ds) ;

14 / 19

Incorrect malloc()

void *malloc(unsigned size) {
L4::Cap <L4Re::Dataspace > ds

= L4Re::Util:: cap_alloc.alloc <L4Re::Dataspace >();

if (!ds.is_valid ()) return 0;

long err = L4Re::Env::env()->mem_alloc()->alloc(size , ds);
if (err) return 0;

void *addr = 0;
err = L4Re::Env::env()->rm()->attach (&addr , size ,

L4Re::Rm:: Search_addr , ds);
if (err) return 0;

return addr;
}

15 / 19

Memory Management – Lists

▶ Idea:
▶ Keep list of (address, size) pairs
▶ In mal loc , search for an appropreate entry

▶ Problem: You’d need dynamic memory for that list.
▶ Typical Solution: Inlining

▶ Put size and next-pointer directly into your memory
▶ Do not hand out the memory where size is stored – it’s needed for free.
▶ That’s what most libC-implementations do.

16 / 19

Memory Management – bitmaps

▶ Manage memory as pool of fixed-sized chunks.
▶ Use bitmap to store available chunks.

17 / 19

Memory Management – problems

▶ You will need some initial memory. You can use L4Re’s memory allocator for
that.

▶ As soon as you have multiple threads (you will), you need proper locking.
▶ There are more options for the implementation. Come up with something

yourself, or have a look in some book / the internet.

18 / 19

Assignment 2

▶ Implement a session-capable hello server (that’s going to be our logging server)
▶ For that you’ll need to implement mal loc , f r e e and r e a l l o c .
▶ From there on, you should be able to use C++’s STL.

19 / 19

