
Moslab – Chair of Operating Systems
Graphical Console

Martin Küttler

Last assignment

▶ Any questions?
▶ Any bug reports, whishes, etc.?

1 / 12

We are here

Pong Server

Paddle Client 1 Paddle Client 2

Memory Management

Moe

Sigma0

Fiasco Kernel

2 / 12

Today’s goal

Pong Server

Paddle Client 1 Paddle Client 2

Keyboard Driver Console

Memory Management

Moe

Sigma0

Fiasco Kernel

3 / 12

Graphics (VESA)

▶ Using VBE/XGA BIOS extension
▶ Put computer into XGA mode:

▶ Requires evil real-mode code
▶ L4 FBDRV: command line option -m <mode>
▶ mode: 0x100 - 0x11F, see e.g. Wikipedia on VBE

▶ Get access to hardware frame buffer
▶ Render graphics into frame buffer

4 / 12

VESA on L4Re

▶ IO server manages all I/O resources
▶ fb-drv server provides a frame buffer interface.

VESA

sigma0

io

fb-drv

FB client

5 / 12

IO configuration

PS/2 USB mouse USB KB Framebuffer

IO server

Keyboard Client 1 Keyboard Client 2 Console

IO Configuration files:
▶ Hardware description file (src/l4/pkg/io/io/config/x86-legacy.devs)
▶ vbus configuration file (x86-fb.io)

6 / 12

Lua example
local L4 = require("L4");
local ld = L4.default_loader;
local vbus = ld:new_channel ();
local fbdrv = ld:new_channel ();

ld:start({cap = {fbdrv = vbus:svr(), icu = L4.Env.icu ,
sigma0 = L4.cast(L4.Proto.Factory , L4.Env.sigma0)

:create(L4.Proto.Sigma0)},
log = {"IO", "yellow" }},

"rom/io␣rom/x86 -legacy.devs␣rom/x86 -fb.io");

ld:start({caps = {vbus = vbus , fb=fbdrv:svr() },
log = {"fbdrv", "red"}},

"rom/fb-drv␣-m␣0x117");

ld:start({caps = {fb = fbdrv}},
"rom/your_fb_client")

7 / 12

L4Re Framebuffer Interface

Headers are at
▶ s r c / l 4 /pkg/ l4 r e −core / l 4 r e / inc lude / video / goos, and
▶ s r c / l 4 /pkg/ l4 r e −code/ l 4 r e / u t i l / inc lude / video /goos_fb

Iterface to Goos_fb
▶ Goos_fb (char const ∗name) – Create FB using capability name

(channel to fb-drv)
▶ Goos_fb : : view_info () – FB information
▶ Goos_fb : : a t tach_buf fe r () – Get FB data space
▶ Goos_fb : : r e f r e s h () – refresh, not necessary for physical FB.

8 / 12

Example: Drawing Pixels

auto base = fb.attach_buffer ();

L4Re::Util::Video::View::Info info;
int r = fb.view_info (&info);
if (r != 0) error (...);

auto addr = base + y * (info.pixel_info.bytes_per_pixel ()
* info.width)

+ x * info.pixel_info.bytes_per_pixel ();

// details about color encoding in info.pixel_info
static_cast <unsigned>(addr) = value;

9 / 12

Rendering Text

Use C library: l ibg fxb i tmap
▶ Initialize: gfxbitmap_font_init () ;
▶ Render text:

gfxbitmap_font_text
(void *fb_base , l4re_video_view_info_t *fbinfo ,
gfxbitmap_font_t font , char const *text ,
unsigned len , unsigned x, unsigned y,
gfxbitmap_color_pix_t foreground ,
gfxbitmap_color_pix_t background);

▶ fb_base – base address of FB
▶ f b i n f o – L4Re::Framebuffer::Info struct, cast
▶ Colors are unsigned in t
▶ Useful constants: GFXBITMAP_DEFAULT_FONT,

GFXBITMAP_USE_STRLEN

10 / 12

Drawing graphics

▶ There is a libpng, contact me if you need/want it.
▶ Consult your favorite Computer Graphics reference for drawing algorithms.
▶ None of these is necessary for this assignment, as Pong can already draw itself.

11 / 12

Assignment: Graphical text console

▶ Make your echo server render text into the physical framebuffer (direct access
for now)

▶ Scroll down when the screen is full, as in a terminal.
▶ When we are going to have input, you might want to scroll up, so keep history.

12 / 12

