
Moslab – Chair of Operating Systems
Keyboard Device Driver & Integration

Martin Küttler

We are here

Pong Server

Paddle Client 1 Paddle Client 2

Keyboard Driver Console

Memory Management

Moe

Sigma0

Fiasco Kernel

1 / 14

Today’s goal

Pong Server

Paddle Client 1 Paddle Client 2

Keyboard Driver Console

Memory Management

Moe

Sigma0

Fiasco Kernel

2 / 14

PS/2 Keyboard Controler

Source: http://wiki.osdev.org/"8042"_PS/2_Controller
3 / 14

Driving the keyboard

▶ Subscribe to interrupt 0x1.
▶ On interrupt:

▶ Read scan code from I/O port 0x60 (inb 0x60)
▶ Translate scan code into key code and action

▶ Wrap a server interface around it, and you’re done.

4 / 14

Getting access to the IO port

Add to x86-legacy.devs (inside outer function)

PS2 = Hw.Device(function ()
Property.hid = "PNP0303";
Resource.iop1 = Res.io (0x60 , 0x60); -- PS/2 device 1
Resource.iop2 = Res.io (0x64 , 0x64); -- PS/2 device 2
Resource.irq1 = Res.irq(1, 0x000000);
Resource.irq2 = Res.irq (12, 0x000000);

end);

5 / 14

Getting access to the IO port

The following is already in x86-fb.io (and probably shouldn’t be called gui, feel
free to rename).

Io.add_vbus("gui", Io.Vi.System_bus
{

ps2 = wrap(hw:match("PNP0[3F]??"));
})

Then give IO a server cap (called gui) to a gate, and give the client cap to your
keyboard server (called vbus).

6 / 14

How to handle irqs and ioports in C

▶ For irqs look at pkg/examples/sys/isr (it’s C, you can figure out the C++
interface)

▶ Request io port from vbus: l 4 io_reques t_ioport (0 x60 , 1)
▶ Read value from io port (after you received an interrupt):

l 4u t i l_ in8 (0 x60)

7 / 14

Assignment, part 1

▶ Build a working keyboard server.
▶ You already have working pong clients in src/l4/pkg/pong/examples.
▶ Modify the pong clients to be controllable by keyboard, with different controls.

8 / 14

Graphical console multiplexing

▶ Now there are two programs that can draw: pong and the console, so we need
to multiplex graphics.

▶ One of them should render into physical framebuffer, while the other renders
into plain memory.

▶ You will need a dataspace server that serves both clients.
▶ For switching, that server will unmap both dataspaces and remapped them in

reverse order.

9 / 14

Graphical console multiplexing

Physical FB

Dataspace Server

Client 1 Client 2

10 / 14

Graphical console multiplexing

Physical FB

Dataspace Server

Client 1 Client 2

11 / 14

Graphical console multiplexing

▶ Your server will need to
▶ hand out two capabilities to frame buffers (i.e. to gates, that you respond on)
▶ implement the frame buffer interface as defined in

src/l4/pkg/l4re-core/l4re/include/video/goos,
▶ implement dataspaces as defined in src/l4/pkg/l4re-core/l4re/include/dataspace

▶ Have a look at src/l4/pkg/l4re-core/l4re/util/include/dataspace_svr for a
nearly complete dataspace implementation.

12 / 14

Switching Console Clients

1. User indicates a client switch.

2. Unmap physical FB from client.

3. Make client’s FB point to a virtual copy.

4. Unmap new client’s virtual FB.

5. Copy new client’s virtual data into physical FB.

6. Make new client’s FB point to physical FB.

There is a race condition here:
▶ Between steps 2 and 3 the client might draw, raise a page fault, and get the

physical pages mapped back.
▶ You will need to handle that in your implementation.

13 / 14

Switching Console Clients

1. User indicates a client switch.

2. Unmap physical FB from client.

3. Make client’s FB point to a virtual copy.

4. Unmap new client’s virtual FB.

5. Copy new client’s virtual data into physical FB.

6. Make new client’s FB point to physical FB.

There is a race condition here:
▶ Between steps 2 and 3 the client might draw, raise a page fault, and get the

physical pages mapped back.
▶ You will need to handle that in your implementation.

13 / 14

Assignment, part 2

▶ Implement console switching, so that the user can play pong and switch to the
console at any time.

▶ On real hardware you can’t read pong’s output: Edit send_ipc () in
pkg/pong/include/logging.h to send all output to your log server.

▶ Send in the whole thing until March 31, including some information on how
to use it.

14 / 14

