
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

BETRIEBSSYSTEME UND
SICHERHEIT

Dateisysteme
https://tud.de/inf/os/studium/vorlesungen/bs

HORST SCHIRMEIER

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 2

Inhalt
● Wiederholung
● Dateien
● Freispeicherverwaltung
● Verzeichnisse
● Dateisysteme
● Virtuelle Dateisysteme
● Pufferspeicher
● Dateisysteme mit Fehlererholung
● Zusammenfassung

Silberschatz, Kap. ...
10: File System
11: Implementing File Systems

Tanenbaum, Kap. ...
6: Dateisysteme

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 3

Inhalt
● Wiederholung
● Dateien
● Freispeicherverwaltung
● Verzeichnisse
● Dateisysteme
● Virtuelle Dateisysteme
● Pufferspeicher
● Dateisysteme mit Fehlererholung
● Zusammenfassung

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 4

Wiederholung
● In den bisherigen Vorlesungen

– CPU, Hauptspeicher
● In der letzten Vorlesung

– E/A-Geräte, insbesondere auch Zugriff auf blockorientierte Geräte
● Heute: Dateisysteme Prozessor

(CPU, Central
Processing Unit)

Hauptspeicher
(Memory)

E/A-Schnittstellen
(Interfaces)

E/A-Geräte
(I/O Devices)

Hintergrundspeicher
(Secondary Storage)

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 5

Logische Sicht

Physikalische Sicht

Hintergrundspeicher

Festplatte mit
6 Oberflächen

Rotationsachse

Sektor

Spuren

...

Schreib-/Leseköpfe

/

usr home

hsc tsmejkal rthunigbin local

bs.pdf Datei

Verzeichnis
Dateisysteme erlauben die
dauerhafte Speicherung
großer Datenmengen.

Das Betriebssystem stellt
den Anwendungen die
logische Sicht zur
Verfügung und muss
diese effizient realisieren.

Abbildung

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 6

Inhalt
● Wiederholung
● Dateien
● Freispeicherverwaltung
● Verzeichnisse
● Dateisysteme
● Virtuelle Dateisysteme
● Pufferspeicher
● Dateisysteme mit Fehlererholung
● Zusammenfassung

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 7

Speicherung von Dateien
● Dateien benötigen oft mehr als einen Block auf der Festplatte

– Welche Blöcke werden für die Speicherung einer Datei verwendet?

Datei

Variable Länge

Block 0 Block 1 Block 0 Block 0Block 2 Block 3 Block 4 Block 5 Block 0 Block 0Block 6 Block 7

Feste Länge

Platte

?

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 8

Kontinuierliche Speicherung
● Datei wird in Blöcken mit aufsteigenden Blocknummern

gespeichert
– Nummer des ersten Blocks und Anzahl der Folgeblöcke muss gespeichert

werden, z.B. Start: Block 4; Länge: 3.

● Vorteile:
– Zugriff auf alle Blöcke mit minimaler Positionierzeit des Schwenkarms
– Schneller direkter Zugriff auf bestimmter Dateiposition
– Einsatz z.B. bei nicht modifizierbaren Dateisystemen

wie auf CDs/DVDs

Block 0 Block 1 Block 0 Block 0Block 2 Block 3 Block 4 Block 5 Block 0 Block 0Block 6 Block 7

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 9

Kontinuierliche Speicherung: Probleme
● Finden des freien Platzes auf der Festplatte

(Menge aufeinanderfolgender und freier Plattenblöcke)

● Fragmentierungsproblem
(Verschnitt: nicht nutzbare Plattenblöcke; siehe Speicherverwaltung)

● Größe bei neuen Dateien oft nicht im Voraus bekannt
– Erweitern ist problematisch
– Umkopieren, falls kein freier angrenzender Block mehr verfügbar

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 10

Verkettete Speicherung
● Blöcke einer Datei sind verkettet

– z.B. Commodore Systeme (CBM 64 etc.)
● Blockgröße 256 Bytes
● die ersten zwei Bytes bezeichnen Spur/Sektor des nächsten Blocks
● wenn Spurnummer gleich Null: letzter Block
● 254 Bytes Nutzdaten

● Datei kann vergrößert und verkleinert werden

Block 3 Block 8 Block 1 Block 9

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 11

Verkettete Speicherung: Probleme
● Speicher für Verzeigerung geht von Nutzdaten im Block ab

– Ungünstig im Zusammenhang mit Paging:
Seite würde immer aus Teilen von zwei Plattenblöcken bestehen

● Fehleranfälligkeit: Datei ist nicht restaurierbar, falls einmal
Verzeigerung fehlerhaft

● Schlechter direkter Zugriff auf bestimmte Dateiposition
● Häufiges Positionieren des Schreib-, Lesekopfs bei

verstreuten Datenblöcken

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 12

Verkettete Speicherung: FAT
● Verkettung wird in separaten Plattenblöcken gespeichert

– FAT-Ansatz (FAT: File Allocation Table), z.B. MS-DOS, Windows 95

● Vorteile:
– kompletter Inhalt des Datenblocks ist nutzbar
– mehrfache Speicherung der FAT möglich:

Einschränkung der Fehleranfälligkeit

Block 3 Block 8 Block 1 Block 9

Blöcke der Datei: 3, 8, 1, 9FAT-Block

9 8 1 -
0 5 10

Erster
Dateiblock

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 13

Verkettete Speicherung: Probleme (2)
● Zusätzliches Laden mindestens eines Blocks

(Caching der FAT zur Effizienzsteigerung nötig)

● Laden unbenötigter Informationen: FAT enthält
Verkettungen für alle Dateien

● Aufwändige Suche nach dem zugehörigen Datenblock bei
bekannter Position in der Datei

● Häufiges Positionieren des Schreib-, Lesekopfs bei
verstreuten Datenblöcken

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 14

Diskussion: Chunks/Extents/Clusters
● Variation:

– Unterteilen einer Datei in kontinuierlich gespeicherte Folgen von
Blöcken (Chunk, Extent oder Cluster genannt)

– Reduziert die Zahl der Positionierungsvorgänge
– Blocksuche wird linear in Abhängigkeit von der Chunk-Größe

beschleunigt
● Probleme:

– Zusätzliche Verwaltungsinformationen
– Verschnitt

● Feste Größe: innerhalb einer Folge (interner Verschnitt)
● Variable Größe: außerhalb der Folgen (externer Verschnitt)

➔ Wird eingesetzt, bringt aber keinen fundamentalen Fortschritt.

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 15

Indiziertes Speichern
● Spezieller Plattenblock („Indexblock“) enthält Blocknummern

der Datenblöcke einer Datei:

● Problem: Feste Anzahl von Blöcken im Indexblock
– Verschnitt bei kleinen Dateien
– Erweiterung nötig für große Dateien

Block 3 Block 8 Block 1 Block 9

Blöcke der Datei: 3, 8, 1, 9Indexblock

3 8 1 9
0 5 10

Erster
Dateiblock

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 16

Inode

Indiziertes Speichern: UNIX-Inode
direkt 0

direkt 1

direkt 9

einfach indirekt

zweifach indirekt

dreifach indirekt

...

Datenblöcke

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 17

Indiziertes Speichern: Diskussion
● Einsatz von mehreren Stufen der Indizierung

– Inode benötigt sowieso einen Block auf der Platte
(Verschnitt unproblematisch bei kleinen Dateien)

– durch mehrere Stufen der Indizierung auch große Dateien
adressierbar

● Nachteil:
– mehrere Blöcke müssen geladen werden (nur bei langen

Dateien)

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 18

Baumsequentielle Speicherung
● Wird bei Datenbanken zum effizienten Auffinden eines Datensatzes mit

Hilfe eines Schlüssels eingesetzt
– Schlüsselraum darf dünn besetzt sein.

● Kann auch verwendet werden, um Datei-Chunks mit bestimmtem Datei-
Offset aufzufinden, z.B. NTFS, ReiserFS, Btrfs, IBMs JFS2-Dateisystem (B+-
Baum)

Indexblöcke

Chunks
mit Blöcken

9 21

6 9 17 20 26 28

Block ≤ 9 9 < Block ≤ 21 21 < Block

5-6
Bl. 5

Bl. 6

7-9
Bl. 7

Bl. 8

- 15-17
Bl. 15

Bl. 16

18-20
Bl. 18

Bl. 19

21
Bl. 21

25-26
Bl. 25

Bl. 26

27-28
Bl. 27

Bl. 28

-

Bl. 9 Bl. 17 Bl. 20

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 19

Inhalt
● Wiederholung
● Dateien
● Freispeicherverwaltung
● Verzeichnisse
● Dateisysteme
● Virtuelle Dateisysteme
● Pufferspeicher
● Dateisysteme mit Fehlererholung
● Zusammenfassung

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 20

Freispeicherverwaltung
Ähnlich wie Verwaltung von freiem Hauptspeicher

● Bitvektoren zeigen für jeden Block Belegung an
● Verkettete Listen repräsentieren freie Blöcke

– Verkettung kann in den freien Blöcken vorgenommen werden
– Optimierung: aufeinanderfolgende Blöcke werden nicht einzeln aufgenommen,

sondern als Stück verwaltet
– Optimierung: ein freier Block enthält viele Blocknummern weiterer freier Blöcke

und evtl. die Blocknummer eines weiteren Blocks mit den Nummern freier Blöcke

freie Blöcke

freie Blöcke mit Verweisen

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 21

Freispeicherverwaltung (2)
● Baumsequentielle Speicherung freier Blockfolgen

– Erlaubt schnelle Suche nach freier Blockfolge bestimmter Größe
– Anwendung z.B. im SGI XFS

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 22

Inhalt
● Wiederholung
● Dateien
● Freispeicherverwaltung
● Verzeichnisse
● Dateisysteme
● Virtuelle Dateisysteme
● Pufferspeicher
● Dateisysteme mit Fehlererholung
● Zusammenfassung

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 23

Verzeichnis als Liste
● Einträge gleicher Länge hintereinander in einer Liste, z.B.

– FAT File systems

● für VFAT werden mehrere Einträge zusammen verwendet, um den langen
Namen aufzunehmen

– UNIX System V.3

● Probleme:
– Suche nach bestimmten Eintrag muss linear erfolgen
– Bei Sortierung der Liste: Schnelles Suchen, Aufwand beim Einfügen

Inode-
Nummer

Dateiname
(max. 14 Zeichen)

Name (8 Z.)
Erweiterung (3 Z.)

Attribute

Länge
Erster Datenblock

Letzte Änderung
Erstellungs-
datum

letzter
Zugriff

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 24

Einsatz von Hash-Funktionen
● Funktion bildet Dateinamen auf einen Index in die

Katalogliste ab
– schnellerer Zugriff auf den Eintrag möglich (kein lineares Suchen)

● Einfaches (aber schlechtes) Beispiel:
(∑ Zeichen) mod N

● Probleme:
– Kollisionen

(mehrere Dateinamen werden auf denselben Eintrag abgebildet)

– Anpassung der Listengröße, wenn Liste voll

Dateiname

Hash-Funktion

Index
Verzeichnis-
einträge

0

N-1

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 25

Variabel lange Listenelemente
● Beispiel 4.2 BSD, System V Rel. 4, u.a.

● Probleme:
– Verwaltung von freien Einträgen in der Liste
– Speicherverschnitt (Kompaktifizieren, etc.)

NameLänge des
Namens

Offset zum nächsten gültigen Eintrag

Inode-
Nummer

…

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 26

Inhalt
● Wiederholung
● Dateien
● Freispeicherverwaltung
● Verzeichnisse
● Dateisysteme
● Virtuelle Dateisysteme
● Pufferspeicher
● Dateisysteme mit Fehlererholung
● Zusammenfassung

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 27

UNIX System V File System
● Blockorganisation

– Boot Block enthält Informationen zum Laden des Betriebssystems
– Super Block enthält Verwaltungsinformation für ein Dateisystem

● Anzahl der Blöcke, Anzahl der Inodes
● Anzahl und Liste freier Blöcke und freier Inodes
● Attribute (z.B. Modified flag)

... ...

0 1 2 isize

Boot Block
Super Block

Inodes Datenblöcke
(Dateien, Verzeichnisse, Indexblöcke)

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 28

BSD 4.2 (Berkeley Fast File System)
● Blockorganisation

– Kopie des Super Blocks in jeder Zylindergruppe
– Eine Datei wird möglichst innerhalb einer Zylindergruppe gespeichert
– Verzeichnisse werden verteilt, Dateien eines V. bleiben zusammen

● Vorteil: kürzere Positionierungszeiten

erste Zylindergruppe zweite Zylindergruppe

Boot Block
Super Block

Cylinder Group Block
Inodes Datenblöcke

Zylindergruppe:
Menge aufeinanderfolgender
Zylinder (häufig 16)

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 29

Linux Ext2/3/4 File System
● Blockorganisation

– Ähnliches Layout wie BSD Fast File System
– Blockgruppen unabhängig von Zylindern

erste Blockgruppe zweite Blockgruppe

Boot Block

Super Block

Block Group Descriptor Table

Inodes Datenblöcke

Blockgruppe:
Menge aufeinander
folgender Blöcke

Bitmaps (freie Inodes u. Blöcke)

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 30

Inhalt
● Wiederholung
● Dateien
● Freispeicherverwaltung
● Verzeichnisse
● Dateisysteme
● Virtuelle Dateisysteme
● Pufferspeicher
● Dateisysteme mit Fehlererholung
● Zusammenfassung

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 31

Virtuelle Dateisysteme: Beispiel UNIX
● Systemübergreifender Namensraum für Dateien

Systeminfos

Virtuelle Dateisystemverwaltung

Ethernet-
controller

ext4 XFS NFS

/home/srv/

firefox
[4356]

httpd
[9642]

gcc
[937]

Anwendungs-
prozesse

Betriebssystem-
kern

Hardware

Prozessverwaltung
/proc

...

/sys

Pseudo-Dateisysteme
können beliebige
Dateien „simulieren“ …

… und Dateien über ein
Netzwerk verfügbar machen.

Alle Dateisysteme
müssen dieselbe
Schnittstelle
implementieren.

open("/srv/www/index.html", O_RDONLY)

open("/www/index.html",O_RDONLY)

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 32

Virtuelle Dateisysteme: (De-)Montieren
System Call:

int mount(const char *source, const char
*target, const char *filesystemtype, unsigned

long mountflags, const void *data);
● hängt ein Dateisystem in einen beliebigen

Ordner im globalen Verzeichnisbaum ein,
System Call:

int umount(const char *target);
● löst die Einbindung wieder.

Beide Systemdienste erfordern
Administratorrechte.

Bei Booten des Systems werden
alle Dateisysteme eingebunden,
die in /etc/fstab aufgelistet sind.

/

home procsrv

hsc 34 12

/

www svn

index.html

mount("/dev/sda1", "/srv", "xfs" ...)

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 33

Inhalt
● Wiederholung
● Dateien
● Freispeicherverwaltung
● Verzeichnisse
● Dateisysteme
● Virtuelle Dateisysteme
● Pufferspeicher
● Dateisysteme mit Fehlererholung
● Zusammenfassung

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 34

UNIX Block Buffer Cache
● Pufferspeicher für Plattenblöcke im Hauptspeicher

– Verwaltung mit Algorithmen ähnlich wie bei Kachelverwaltung
– Read ahead: beim sequentiellen Lesen wird auch der Transfer von

Folgeblöcken angestoßen
– Lazy write: Block wird nicht sofort auf Platte geschrieben

(erlaubt Optimierung der Schreibzugriffe und blockiert den Schreiber nicht)

– Verwaltung freier Blöcke in einer Freiliste:
● Kandidaten für Freiliste werden nach LRU-Verfahren bestimmt
● Bereits freie, aber noch nicht anderweitig benutzte Blöcke können

reaktiviert werden (Reclaim)

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 35

UNIX Block Buffer Cache (2)
● Schreiben erfolgt, wenn …

– keine freien Puffer mehr vorhanden sind,
– regelmäßig vom System (fsflush-Prozess, update-Prozess),
– beim Systemaufruf sync(),
– und nach jedem Schreibaufruf im Modus O_SYNC (siehe open(2)).

● Adressierung:
– Adressierung eines Blocks erfolgt über ein Tupel:

(Gerätenummer, Blocknummer)
– Über die Adresse wird ein Hash-Wert gebildet, der eine der möglichen

Pufferlisten auswählt.

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 36

UNIX Block Buffer Cache: Aufbau

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 37

UNIX Block Buffer Cache: Aufbau (2)

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 38

Inhalt
● Wiederholung
● Dateien
● Freispeicherverwaltung
● Verzeichnisse
● Dateisysteme
● Virtuelle Dateisysteme
● Pufferspeicher
● Dateisysteme mit Fehlererholung
● Zusammenfassung

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 39

Dateisysteme mit Fehlererholung
● Mögliche Fehler:

– Stromausfall (ahnungsloser Benutzer schaltet einfach Rechner aus)
– Systemabsturz

● Auswirkungen auf das Dateisystem: inkonsistente Metadaten
– z.B. Katalogeintrag fehlt zur Datei oder umgekehrt
– z.B. Block ist benutzt, aber nicht als belegt markiert

● Reparaturprogramme
– Programme wie chkdsk, scandisk oder fsck können inkonsistente

Metadaten reparieren.
● Probleme:

– Datenverluste bei Reparatur möglich
– lange Laufzeiten der Reparaturprogramme bei großen Datenträgern

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 40

Journaled File Systems
● Zusätzlich zum Schreiben der Daten und Meta-Daten (z.B.

Inodes) wird ein Protokoll der Änderungen geführt
– Alle Änderungen treten als Teil von Transaktionen auf.
– Beispiele für Transaktionen:

● Erzeugen, Löschen, Erweitern, Verkürzen von Dateien
● Dateiattribute verändern
● Datei umbenennen

– Protokollieren aller Änderungen am Dateisystem zusätzlich in einer
Protokolldatei (Log File oder Journal)

– Beim Bootvorgang wird die Protokolldatei mit den aktuellen
Änderungen abgeglichen und dadurch Inkonsistenzen vermieden.

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 41

Journaled File Systems: Protokoll
● Für jeden Einzelvorgang einer Transaktion wird zunächst ein

Protokolleintrag erzeugt und …
● danach die Änderung am Dateisystem vorgenommen.
● Dabei gilt:

– Der Protokolleintrag wird immer vor der eigentlichen Änderung auf
Platte geschrieben.

– Wurde etwas auf Platte geändert, steht auch der Protokolleintrag
dazu auf der Platte.

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 42

Journaled File Systems: Erholung
● Beim Bootvorgang wird überprüft, ob die protokollierten

Änderungen vorhanden sind:
– Transaktion kann wiederholt bzw. abgeschlossen werden, falls alle

Protokolleinträge vorhanden. → Redo
– Angefangene, aber nicht beendete Transaktionen werden rückgängig

gemacht. → Undo

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 43

Journaled File Systems: Ergebnis
● Vorteile:

– eine Transaktion ist entweder vollständig durchgeführt oder gar
nicht

– Benutzer kann ebenfalls Transaktionen über mehrere Dateizugriffe
definieren, wenn diese ebenfalls im Log erfasst werden.

– keine inkonsistenten Metadaten möglich
– Hochfahren eines abgestürzten Systems benötigt nur den relativ

kurzen Durchgang durch das Log-File.
● Alternative chkdsk benötigt viel Zeit bei großen Platten

● Nachteile:
– ineffizienter, da zusätzliches Log-File geschrieben wird

● daher normalerweise nur „Metadata Journaling“, kein „Full Journaling“
● Beispiele: NTFS, EXT3/4, XFS, …

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 44

Inhalt
● Wiederholung
● Dateien
● Freispeicherverwaltung
● Verzeichnisse
● Dateisysteme
● Virtuelle Dateisysteme
● Pufferspeicher
● Dateisysteme mit Fehlererholung
● Zusammenfassung

20.01.2026 Betriebssysteme und Sicherheit: 12 – Dateisysteme 45

Zusammenfassung: Dateisysteme
● … sind eine Betriebssystemabstraktion

– Speicherung logisch zusammenhängender Informationen als Datei
– Meist hierarchische Verzeichnisstruktur, um Dateien zu ordnen

● … werden durch die Hardware beeinflusst
– Minimierung der Positionierungszeiten bei Platten
– Gleichmäßige „Abnutzung“ bei Flash-Speicher

● … werden durch das Anwendungsprofil beeinflusst
– Blockgröße

● zu klein Verwaltungsstrukturen können zu → Performance-Verlust führen
● zu groß Verschnitt führt zu Plattenplatzverschwendung→

– Aufbau von Verzeichnissen
● keine Hash-Funktion langwierige Suche→
● mit Hash-Funktion mehr Aufwand bei der Verwaltung→

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

