
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

BETRIEBSSYSTEME UND
SICHERHEIT

Multiprozessorsysteme
https://tud.de/inf/os/studium/vorlesungen/bs

HORST SCHIRMEIER

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 2

Inhalt
● Wiederholung

● Hardwaregrundlagen

● Anforderungen

● Synchronisation

● CPU-Zuteilung

● Zusammenfassung
Silberschatz, Kap. ...
--- ☹

Tanenbaum, Kap. ...
8: Multiprozessorsysteme

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 3

Inhalt
● Wiederholung

● Hardwaregrundlagen

● Anforderungen

● Synchronisation

● CPU-Zuteilung

● Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 4

Wiederholung
● Betriebssysteme ...

– verwalten Ressourcen und ...
– stellen den Anwendungen Abstraktionen zur Verfügung.

● Prozesse abstrahieren von der Ressource CPU

A B C D

Nebenläufige
Prozesse

Zeit

D
C
B
A

Prozess

Multiplexing der CPU

Konzeptionelle Sicht
● 4 unabhängige sequentielle

Kontrollflüsse

Realzeit-Sicht (Gantt-Diagramm)
● Zu jedem Zeitpunkt nur ein

Prozess aktiv (Uni-Prozessor-HW)

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 5

Inhalt
● Wiederholung

● Hardwaregrundlagen

● Anforderungen

● Synchronisation

● CPU-Zuteilung

● Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 6

Klassen paralleler Rechnersysteme*

C C C

Bus

M

CPU

Gemeinsamer
Speicher

Multiprozessor-
system

Multicomputer-
system

Verbindungs-
netzwerk

C C C

C C C

M M M

M M M

Lokaler
Speicher

Verteiltes System

C C C

C C C

M M M

M M M

Internet

Komplettes System

* Die Betrachtung beschränkt sich auf die sog. MIMD-Architekturen.

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 7

Klassen paralleler Rechnersysteme (2)
● Gegenüberstellung

(nach Tanenbaum, „Modern Operating Systems“)

Im Folgenden wird es nur noch
um Multiprozessorsysteme gehen.

Item Multiprocessor Multicomputer Distributed System

Node configuration CPU Complete computer

Node peripherals All shared Full set per node
Location Same rack Same room Possibly worldwide

Shared RAM Traditional network
Operating systems One, shared Multiple, same Possibly all different
File systems One, shared One, shared Each node has own
Administration One organization One organization Many organizations

CPU, RAM,
net interface
Shared, except
maybe disc

Internode
communication

Dedicated
interconnect

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 8

Diskussion: Skalierbarkeit
● Definition: Eine parallele Rechnerarchitektur gilt als skalierbar, wenn die

effektiv verfügbare Rechenleistung sich proportional zur Anzahl der
eingebauten CPUs verhält.

● Ein gemeinsamer Bus für Speicherzugriffe und der gemeinsame
Speicher-Controller werden bei Systemen mit vielen CPUs zum
Flaschenhals.
– Selbst das Holen von unabhängigen Instruktionen oder Daten

kann zu Konkurrenzsituationen führen!
➔ Bus-basierte Multiprozessorsysteme skalieren schlecht

– Trotz Einsatz von Caches typischerweise ≤ 64 CPUs
– Parallele Systeme mit mehr CPUs sind Multicomputer mit dediziertem

Verbindungsnetzwerk und verteiltem Speicher
● HPE Cray „El Capitan“, USA (LLNL), 11.039.616 CPU-Kerne, 1742 PetaFLOPS
● „Barnard“, ZIH/TU Dresden, 65.520 CPU-Kerne, 3047 TeraFLOPS siehe

top500.org

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 9

NUMA-Architekturen
(Non-Uniform Memory Architecture)

CPU 1CPU 1

Chipset
PCI-Bridge

Haupt-
speicher
Haupt-
speicher

PCIe-
Graphik
PCIe-
Graphik

Hyper-
Transport

CPU 2CPU 2 Haupt-
speicher
Haupt-
speicher

CPU 4CPU 4

CPU 3CPU 3

Haupt-
speicher
Haupt-
speicher

Haupt-
speicher
Haupt-
speicher

Hyper-
Transport

Beispielsystem mit AMD HyperTransportDie CPUs (u.U. mit
mehreren Cores)
kommunizieren
untereinander via
HyperTransport.

Globaler Adressraum:
An andere CPUs
angebundener
Hauptspeicher kann
adressiert werden, die
Latenz ist jedoch
höher.

Ansatz skaliert besser,
da parallele
Speicherzugriffe
möglich sind.

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 10

Multiprozessorsysteme im Detail
● Definition: Ein Multiprozessorsystem ist ein Rechnersystem, in dem

zwei oder mehr CPUs vollen Zugriff auf einen gemeinsamen Speicher
haben.

● Die CPUs eines Mehrprozessorsystems können auch auf einem Chip
integriert sein → Multicore-CPU

● CPUs weisen typischerweise Caches auf
● Rechnersysteme bestehen nicht nur aus CPU + Speicher

– E/A-Controller!

● Offene Fragen
– Wie erreicht man Cache-Kohärenz?
– Werden Maschinen-Instruktionen weiterhin atomar ausgeführt?
– Wer verarbeitet Unterbrechungen?

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 11

Diskussion: Konsistenz vs. Kohärenz
● „Konsistenz“ bedeutet „in sich stimmig“ nach innen→

– Hängt von der Konsistenzbedingung ab
● Beispiel: Jedes Element einer einfach verketteten Liste wird genau einmal

referenziert – das erste vom Listenkopf, der Rest von anderen
Listenelementen.

– Ein Cache wäre inkonsistent, wenn zum Beispiel dieselben
Speicherinhalte mehrfach im Cache wären.

● „Kohärenz“ bedeutet „Zusammenhalt“ nach außen→
– Cache-Kohärenz ist eine Beziehung zwischen den verschiedenen

Caches in einem Multiprozessorsystem.

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 12

Das MESI-Protokoll (1)
● gängiges Cache-Kohärenzprotokoll, implementiert

notwendige Abstimmung zwischen Caches in
Multiprozessorsystemen

● Jede Cache-Zeile wird um 2 Zustandsbits erweitert:
Modified: Daten nur in diesem Cache, lokale Änderung,
 Hauptspeicherkopie ungültig

Exclusive: Daten nur in diesem Cache, keine lokale Änderung,
Hauptspeicherkopie gültig

Shared: Daten in mehreren Caches, keine lokalen Änderungen,
Hauptspeicherkopie gültig

Invalid: Der Inhalt der Cache-Zeile ist ungültig.

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 13

Das MESI-Protokoll (2)
● Zustandsübergänge

● Schnüffellogik (snooping logic) liefert Informationen über
Speicherzugriffe durch andere CPUs

M

S

E

I

Legende:
lokaler Lesezugriff
lokaler Schreibzugriff
Lesezugriff durch andere CPU
Schreibzugriff durch andere CPU

Moderne CPUs nutzen auf der
NUMA-Architektur Erweiterungen
davon wie MOESI und MESIF.

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 14

Atomare Speicherzugriffe(?)
● Die Bus-Arbitration sorgt dafür, dass Speicherzugriffe

sequentialisiert werden.
● Aber: Sonst (d.h. bzgl. Unterbrechungen) atomare

Maschinenbefehle müssen in Multiprozessorsystemen nicht
unbedingt atomar sein!
– x86: inc führt zu zwei Speicherzugriffen

● Hilfe: Sperren des Busses
– Spezielle Befehle mit Lese-/Modifikations-/Schreibzyklus:

TAS, CAS, …
– x86: lock-Präfix

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 15

MP-Unterbrechungsbehandlung (1)
● Ein klassischer Interrupt-Controller priorisiert die

Unterbrechungsanforderungen und leitet eine Anforderung
an eine CPU weiter.

● Multiprozessor-Interruptsysteme müssen flexibler sein
– Keine CPU sollte durch die Last durch Unterbrechungsbehandlung

dauerhaft benachteiligt werden.
● Nachteil für Prozesse auf dieser CPU
● Keine Parallelverarbeitung von Unterbrechungen

– Besser ist gleichmäßige Verteilung der Unterbrechungen auf CPUs
● Statisch (feste Zuordnung von Unterbrechungsquelle zu CPU)
● Dynamisch (z.B. in Abhängigkeit der aktuellen Rechenlast der CPUs)

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 16

Die Intel-APIC-Architektur
● Ein APIC-Interrupt-System besteht aus lokalen APICs auf jeder

CPU und einem I/O-APIC
Pentium
(primär)

lokaler
APIC

I/O-APIC

8259A

Unterbrechungsanforderungen

Pentium
(sekundär)

lokaler
APIC

APIC-Bus

Ein Pentium Dual-
prozessorsystem
mit verteiltem APIC-
Interrupt-System

LINT0

LINT1

LINT0

LINT1

lokale
Unterbrechungen

lokale
Unterbrechungen

Der I/O-APIC kann bzgl.
der Weiterleitung der
Unterbrechungsanfor-
derungen flexibel pro-
grammiert werden.

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 17

MP-Unterbrechungsbehandlung (2)
... weitere Besonderheiten:

● Interprozessor-Unterbrechungen (IPI)
– Prozessoren im Multiprozessorsystem können sich damit gegenseitig

unterbrechen, z.B. aus Schlafzustand wecken.
● Maschinenbefehle zum Sperren und Erlauben von

Unterbrechungen (z.B. cli und sti) wirken pro CPU
– Problem für die Synchronisation konkurrierender Kontrollflüsse im

Betriebssystem, z.B. für die Implementierung von Semaphore!

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 18

Inhalt
● Wiederholung

● Hardwaregrundlagen

● Anforderungen

● Synchronisation

● CPU-Zuteilung

● Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 19

Anforderungen: Skalierbarkeit
● … der Systemsoftware ist keine Selbstverständlichkeit:

Quelle: Ray Bryant and Bill Hartner, „SMP Scalability Comparisons of Linux® Kernels 2.2.14 and 2.3.99“

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 20

Weitere Anforderungen
● Ausnutzung aller CPUs

– Eine CPU darf nicht leerlaufen, wenn laufbereite Prozesse existieren
● Beachtung spezieller Hardwareeigenschaften

– Wechsel von Prozessen zu einer anderen CPU vermeiden
● Cache ist „angewärmt“

– Adressraum von Prozessen bei NUMA-Systemen lokal halten
● E/A-Last fair verteilen

– Ggf. Prozessprioritäten beachten

● Korrektheit
– Vermeidung von Race Conditions zwischen Prozessen auf

unterschiedlichen CPUs Synchronisation!→

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 21

Inhalt
● Wiederholung

● Hardwaregrundlagen

● Anforderungen

● Synchronisation

● CPU-Zuteilung

● Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 22

Multiprozessorsynchronisation
● Auf Prozessebene durch passives Warten

– Anwendung klassischer Abstraktionen wie Semaphore oder Mutex
● Auf Betriebssystemebene schwieriger; Beispiel:

– wait und signal müssen per Definition unteilbar ausgeführt werden
● Im Uniprozessorfall führen nur Unterbrechungen zu Race Conditions.

Diese können leicht (für kurze Zeit) unterdrückt werden.
● Im Multiprozessorfall reicht das Unterdrücken von Unterbrechungen

nicht aus! Die anderen CPUs laufen unbeeinflusst weiter.

➔ Multiprozessorsynchronisation auf Kern-Ebene
muss mit aktivem Warten (spin locking) realisiert werden

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 23

mov ax,1
acquire:xchg ax,lock

cmp ax,0
jne acquire

acquire TAS lock
BNE acquire

Spin Locking: Primitiven
lock- und unlock-Primitiven müssen mit unteilbaren
Lese-/Modifikations-/Schreibinstruktionen implementiert werden:

● Motorola 68K: TAS (Test-and-Set)
– Setzt Bit 7 des Zieloperanden

und liefert den vorherigen
Zustand in Condition Code Bits

● Intel x86: XCHG (Exchange)
– Tauscht den Inhalt eines

Registers mit dem einer Variablen
im Speicher

● PowerPC: LL/SC (Load Linked/Store Conditional)
● ...

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 24

Spin Locking: Effizienz
● Um Cache-Thrashing zu vermeiden, sollten

lokale Sperrvariablen benutzt werden
– (hohe Buslast durch viele konkurrierende Schreibzugriffe → MESI)

Quelle: Tanenbaum, „Modern Operating Systems“

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 25

Spin Locking: Granularität (1)
● Um Linux multiprozessortauglich zu machen,

wurde der „Big Kernel Lock“ (BKL) eingeführt.
– Extrem grobgranulares Sperren: Nur ein Prozessor durfte den Linux-

Kern betreten. Alle anderen mussten aktiv warten.
– Linux 2.0- und 2.2-Systeme skalierten daher sehr schlecht.

● Faustregel: bis zu 4 CPUs
● Heute verwenden Linux-Systeme stattdessen viele „kleinere

Sperren“ für Datenstrukturen innerhalb des Kerns.
– Feingranulares Sperren
– Mehrere Prozessoren können unterschiedliche Teile des Systems

parallel ausführen.
– Linux 2.4-, 2.6-, … -Systeme skalieren erheblich besser

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 26

Spin Locking: Granularität (2)
Die ideale Sperrgranularität zu finden ist nicht einfach:

● Zu grobgranular:
– Prozessoren müssen unnötig warten
– Zyklen werden verschwendet

● Zu feingranular:
– Auf dem Ausführungspfad eines Prozesses durch den Kern müssen

evtl. viele Sperren reserviert und freigegeben werden.
● Extra Aufwand – selbst wenn keine Konkurrenzsituation auftritt

– Code wird unübersichtlich. Aufrufe von Sperrprimitiven müssen an
diversen Stellen eingestreut werden.

– Verwendung mehrerer Sperren birgt Gefahr von Deadlocks.

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 27

Spin Locking: Granularität (3)
Wie sieht es heute
in Linux aus?

● feingranulares Sperren
mit allen Vor- und
Nachteilen

● es hilft nur eine andere
Software-Architektur
– käme Wegwerfen gleich

Quelle [1]

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 28

Inhalt
● Wiederholung

● Hardwaregrundlagen

● Anforderungen

● Synchronisation

● CPU-Zuteilung

● Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 29

CPU-Zuteilung im Multiprozessor
CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Prozess Prozess Prozess

Prozess Prozess Prozess

Prozess

Prozess Prozess

Prozess Prozess Prozess

oder ...

gemeinsame READY-Liste

eine READY-Liste pro CPU

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 30

CPU-Zuteilung im Multiprozessor

● Automatischer Lastausgleich
– Keine CPU läuft leer

● Keine Bindung von Prozessen an bestimmte CPU
● Zugriffe auf die READY-Liste müssen synchronisiert werden

– Hoher Sperraufwand
– Konfliktwahrscheinlichkeit wächst mit CPU-Anzahl!

CPU

CPU

CPU

CPU

Prozess Prozess Prozess

gemeinsame READY-Liste

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 31

CPU-Zuteilung im Multiprozessor

● Prozesse bleiben bei einer CPU
– Bessere Ausnutzung der Caches

● Weniger Synchronisationsaufwand
● CPU kann leerlaufen

– Lösung: Lastausgleich bei Bedarf
● Wenn eine Warteschlange leer ist
● Durch einen Load Balancer-Prozess

Moderne PC Betriebs-
systeme setzen heute
getrennte READY-
Listen ein.

CPU

CPU

CPU

CPU

Prozess Prozess Prozess

Prozess

Prozess Prozess

Prozess Prozess Prozess

eine READY-Liste pro CPU

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 32

Scheduling paralleler Programme
... erfordert spezielle Strategien.

● Beispiel: Lock/Step-Betrieb
(typisch für viele parallelen Algorithmen)

1. Parallelen Berechnungsschritt durchführen
2. Barrierensynchronisation
3. wieder zu 1.

● Kooperierende Prozesse/Fäden sollten gleichzeitig laufen
– Ansonsten müssen unter Umständen viele Prozesse auf einen einzelnen warten

Barriere

Barriere

T0 T1 T2 T3

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 33

Diskussion: Space Sharing
● Time Sharing

– Bei Uniprozessoren kann nur die Rechenzeit einer CPU auf Prozesse
verteilt werden.

● Space Sharing
– Bei Multiprozessoren können auch Gruppen von Prozessoren

vielfädigen Programmen zugeordnet werden:

Quelle: Tanenbaum,
„Modern Operating Systems“

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 34

Gang-Scheduling
● CPU-Zuteilungsverfahren, das Time Sharing und

Space Sharing kombiniert
– Zusammengehörige Prozesse/Fäden werden als Einheit betrachtet.

● Die „Gang“
– Alle Gang-Mitglieder arbeiten im Time Sharing simultan.
– Alle CPUs führen Prozesswechsel synchron aus.

Quelle: Tanenbaum,
„Modern Operating Systems“

Es gibt verschiedene
Algorithmen/Strategien
wie BaG, AFCFS, usw., die
entsprechende Pläne
erzeugen.

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 35

Inhalt
● Wiederholung

● Hardwaregrundlagen

● Anforderungen

● Synchronisation

● CPU-Zuteilung

● Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 36

Zusammenfassung
● Multiprozessorsysteme, Mehrrechnersysteme und

Verteilte Systeme ermöglichen mehr Leistung durch
Parallelverarbeitung …
– für parallele Programme (HPC: Number Crunching, Server, …)
– im Mehrbenutzerbetrieb

● Betriebssysteme für Multiprozessoren erfordern …
– Prozessorsynchronisation beim Zugriff auf Systemstrukturen
– Spezielle Scheduling-Verfahren

● Eine vs. mehrere Bereitlisten mit Lastausgleich
● Gang-Scheduling

● PC-Betriebssysteme müssen heute Multiprozessoren
unterstützen, da Multicore-CPUs die Norm sind.

27.01.2026 Betriebssysteme und Sicherheit: 13 – Multiprozessorsysteme 37

Literatur
[1] Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and

Olaf Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the
Linux Kernel. In Proceedings of the Fourteenth EuroSys Conference
2019 (EuroSys ’19). Association for Computing Machinery, New York,
NY, USA, Article 11, 1–15.
DOI: https://doi.org/10.1145/3302424.3303948

https://doi.org/10.1145/3302424.3303948

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

