TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik Institut fur Systemarchitektur, Professur fur Betriebssysteme

BETRIEBSSYSTEME UND
SICHERHEIT

Multiprozessorsysteme

https://tud.de/inf/os/studium/vorlesungen/bs

HORST SCHIRMEIER

TECHNISCHE
UNIVERSITAT

DRESDEN
Inhalt

* Wiederholung

* Hardwaregrundlagen
* Anforderungen

* Synchronisation

* CPU-Zuteilung

—

° 2usammenfassung | /Silberschatz Kap. ...

—®

Tanenbaum, Kap. ...
8: Multiprozessorsysteme

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

TECHNISCHE
UNIVERSITAT

DRESDEN
Inhalt

* Wiederholung

* Hardwaregrundlagen
* Anforderungen

* Synchronisation

* CPU-Zuteilung

* Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

UNIVERSITAT
DRESDEN
Wiederholung

* Betriebssysteme ...

- verwalten Ressourcen und ...
- stellen den Anwendungen Abstraktionen zur Verfugung.

* Prozesse abstrahieren von der Ressource CPU

Nebenlaufige Multiplexing der CPU
Proy%‘e‘\sse Prozess
» 1 | C — —
Al By | c|]|D Bl _ T .
v — —
\l A >
v Zeit

Konzeptionelle Sicht Realzeit-Sicht (Gantt-Diagramm)

* 4 unabhangige sequentielle * Zujedem Zeitpunkt nur ein
Kontrollflisse Prozess aktiv (Uni-Prozessor-HW)

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

TECHNISCHE
UNIVERSITAT

DRESDEN
Inhalt

* Wiederholung

* Hardwaregrundlagen

* Anforderungen
* Synchronisation
* CPU-Zuteilung

* Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

UNIVERSITAT
DRESDEN
Klassen paralleler Rechnersysteme®*

Multiprozessor- Multicomputer- Verteiltes System
System System Komplettes System

, MEMEM MEM
CPU C C B
» A 4
S - \ Lokaler

Verbmdungs Speicher Y
netzwerk j Intemet

N %
1 W
o
Gemeinsamer I ' I I
Speicher MgMQgM

* Die Betrachtung beschrankt sich auf die sog. MIMD-Architekturen.

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

UNIVERSITAT
DRESDEN
Klassen paralleler Rechnersysteme (2)

* Gegenuberstellung
(nach Tanenbaum, ,Modern Operating Systems")

Item Multiprocessor Multicomputer Distributed System
CPU, RAM,

Node configuration |CPU net interface Complete computer
Shared, except

Node peripherals |All shared maybe disc Full set per node

Location Same rack Same room Possibly worldwide

Internode Dedicated

communication Shared RAM interconnect Traditional network

Operating systems |One, shared Multiple, same Possibly all different

File systems One, shared One, shared Each node has own

Administration One organization |One organization |Many organizations

| Im Folgenden wird es nur noch

um Multiprozessorsysteme gehen.

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Diskussion: Skalierbarkeit

* Definition: Eine parallele Rechnerarchitektur gilt als skalierbar, wenn die
effektiv verfigbare Rechenleistung sich proportional zur Anzahl der
eingebauten CPUs verhalt.

* Ein gemeinsamer Bus fur Speicherzugriffe und der gemeinsame
Speicher-Controller werden bei Systemen mit vielen CPUs zum
Flaschenhals.

- Selbst das Holen von unabhangigen Instruktionen oder Daten
kann zu Konkurrenzsituationen fuhren!

2 Bus-basierte Multiprozessorsysteme skalieren schlecht

- Trotz Einsatz von Caches typischerweise < 64 CPUs

- Parallele Systeme mit mehr CPUs sind Multicomputer mit dediziertem
Verbindungsnetzwerk und verteiltem Speicher
* HPE Cray ,El Capitan”, USA (LLNL), 11.039.616 CPU-Kerne, 1742 PetaFLOPS
« ,Barnard”, ZIH/TU Dresden, 65.520 CPU-Kerne, 3047 TeraFLOPS siehe

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme Lopa00:.ore

ONIVERSITAT
DRESDEN
NUMA-Architekturen

(Non-Uniform Memory Architecture)

Die CPUs (u.U. mit Beispielsystem mit AMD HyperTransport
mehreren Cores)

kommunizieren Haupt- Haupt-
untereinander via) ama CPU3 B 2 CPU2 B g)
speicher speicher
HyperTransport.
Hyper-
Globaler Adressraum: Transport

An andere CPUs
angebundener U CPU 4 ™SS cPU 1 B
Hauptspeicher kann speicher speicher

adressiert werden, die

Latenz ist jedoch Hyper-

hoher. Transport
- PCle- Chipset

Ansatz skaliert besser, Graphik -— PCl-Bridge

da parallele

Speicherzugriffe I

moglich sind.

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Multiprozessorsysteme im Detail

Definition: Ein Multiprozessorsystem ist ein Rechnersystem, in dem
zwei oder mehr CPUs vollen Zugriff auf einen gemeinsamen Speicher
haben.

Die CPUs eines Mehrprozessorsystems konnen auch auf einem Chip
integriert sein —» Multicore-CPU

CPUs weisen typischerweise Caches auf

Rechnersysteme bestehen nicht nur aus CPU + Speicher
- E/A-Controller!

Offene Fragen
- Wie erreicht man Cache-Koharenz?
- Werden Maschinen-Instruktionen weiterhin atomar ausgefuhrt?
- Wer verarbeitet Unterbrechungen?

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 10

ONVERSITAT
DRESDEN
Diskussion: Konsistenz vs. Koharenz

* ,Konsistenz" bedeutet ,in sich stimmig” —= nach innen

- Hangt von der Konsistenzbedingung ab

* Beispiel: Jedes Element einer einfach verketteten Liste wird genau einmal
referenziert - das erste vom Listenkopf, der Rest von anderen
Listenelementen.

- Ein Cache ware inkonsistent, wenn zum Beispiel dieselben
Speicherinhalte mehrfach im Cache waren.

 _Koharenz" bedeutet ,Zusammenhalt’ = nach aulden

— (Cache-Koharenz ist eine Beziehung zwischen den verschiedenen
Caches in einem Multiprozessorsystem.

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 11

ONIVERSITAT
DRESDEN
Das MESI-Protokoll (1)

* gangiges Cache-Koharenzprotokoll, implementiert
notwendige Abstimmung zwischen Caches in
Multiprozessorsystemen

* Jede Cache-Zeile wird um 2 Zustandsbits erweitert:

Modified: Daten nur in diesem Cache, lokale Anderung,
Hauptspeicherkopie ungultig

Exclusive: Daten nur in diesem Cache, keine lokale Anderung,
Hauptspeicherkopie gultig

Shared: Daten in mehreren Caches, keine lokalen Anderungen,
Hauptspeicherkopie gultig

Invalid: Der Inhalt der Cache-Zeile ist ungultig.

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 12

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Das MESI-Protokoll (2)

* ZustandsuUbergange

Ce)

(s

Legende:
lokaler Schreibzugriff

Schreibzugriff durch andere CPU

Moderne CPUs nutzen auf der
NUMA-Architektur Erweiterungen
davon wie MOESI und MESIF.

* Schnuffellogik (snooping logic) liefert Informationen tber

Speicherzugriffe durch andere CPUs

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

13

UNIVERSITAT
DRESDEN
Atomare Speicherzugriffe(?)

* Die Bus-Arbitration sorgt dafur, dass Speicherzugriffe
sequentialisiert werden.

* Aber: Sonst (d.h. bzgl. Unterbrechungen) atomare
Maschinenbefehle mussen in Multiprozessorsystemen nicht
unbedingt atomar sein!

- x86: inc fuhrt zu zwei Speicherzugriffen

* Hilfe: Sperren des Busses

- Spezielle Befehle mit Lese-/Modifikations-/Schreibzyklus:
TAS, CAS, ...

- x86: lock-Prafix

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 14

MP-Unterbrechungsbehandlung (1)

* Ein klassischer Interrupt-Controller priorisiert die
Unterbrechungsanforderungen und leitet eine Anforderung
an eine CPU weiter.

* Multiprozessor-Interruptsysteme mussen flexibler sein

- Keine CPU sollte durch die Last durch Unterbrechungsbehandlung
dauerhaft benachteiligt werden.
* Nachteil fur Prozesse auf dieser CPU
* Keine Parallelverarbeitung von Unterbrechungen
- Besser ist gleichmal3ige Verteilung der Unterbrechungen auf CPUs
 Statisch (feste Zuordnung von Unterbrechungsquelle zu CPU)

* Dynamisch (z.B. in Abhangigkeit der aktuellen Rechenlast der CPUs)

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

15

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Die Intel-APIC-Architektur

* Ein APIC-Interrupt-System besteht aus lokalen APICs auf jeder
CPU und einem I/O-APIC

Pentium
(primar)

LINTOw |okaler
LINT1 APIC

lokale

Unterbrechungen

Der 1/0-APIC kann bzgl.
der Weiterleitung der
Unterbrechungsanfor-
derungen flexibel pro-
grammiert werden.

APIC-Bus

1/0-APIC

}

A

Pentium
(sekundar)

8259A

+

Unterbrechungsanforderungen

lokaler LINTO
APIC LINT1

lokale
Unterbrechungen

Ein Pentium Dual-
prozessorsystem
mit verteiltem APIC-
Interrupt-System

16

MP-Unterbrechungsbehandlung (2)

... weitere Besonderheiten:

* Interprozessor-Unterbrechungen (IPl)

- Prozessoren im Multiprozessorsystem konnen sich damit gegenseitig
unterbrechen, z.B. aus Schlafzustand wecken.

* Maschinenbefehle zum Sperren und Erlauben von
Unterbrechungen (z.B. ¢11i und sti) wirken pro CPU

- Problem fur die Synchronisation konkurrierender Kontrollflisse im
Betriebssystem, z.B. fur die Implementierung von Semaphore!

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 17

TECHNISCHE
UNIVERSITAT

DRESDEN
Inhalt

* Wiederholung

* Hardwaregrundlagen

* Anforderungen

* Synchronisation
* CPU-Zuteilung

* Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

18

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Anforderungen: Skalierbarkeit

* ...der Systemsoftware ist keine Selbstverstandlichkeit:

2.5

1.5

Scalability versus UP

0.5

FSCache: File System Random Read Cache Test
Scalability vs. Number of CPUs
128 KB File - Various Buffer Sizes - 1 MB L2 Cache

2399 SMP
4096 byte buffer

e

2399 SMP
512 byte buffer

&
2214 SMP
4096 byte buffer

— e

UP 1P 2P 4P
Processor Configuration

4 CPU Netfinity 7000 M10
400Mhz Pl

1GE RAM

acceptance criteria : 95%
confidence. interval width <
5% of mean.

6/3/2000

Quelle: Ray Bryant and Bill Hartner, ,SMP Scalability Comparisons of Linux® Kernels 2.2.14 and 2.3.99"

19

UNIVERSITAT
DRESDEN
Weitere Anforderungen

* Ausnutzung aller CPUs
- Eine CPU darf nicht leerlaufen, wenn laufbereite Prozesse existieren
* Beachtung spezieller Hardwareeigenschaften

- Wechsel von Prozessen zu einer anderen CPU vermeiden
* Cache ist ,angewarmt”

- Adressraum von Prozessen bei NUMA-Systemen lokal halten
* E/A-Last fair verteilen

- Ggf. Prozessprioritaten beachten

 Korrektheit

- Vermeidung von Race Conditions zwischen Prozessen auf
unterschiedlichen CPUs = Synchronisation!

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 20

TECHNISCHE
UNIVERSITAT

DRESDEN
Inhalt

* Wiederholung
* Hardwaregrundlagen

* Anforderungen

* Synchronisation

* CPU-Zuteilung

* Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

21

UNIVERSITAT
DRESDEN
Multiprozessorsynchronisation

* Auf Prozessebene durch passives Warten

- Anwendung klassischer Abstraktionen wie Semaphore oder Mutex
* Auf Betriebssystemebene schwieriger; Beispiel:

- wait und signal mussen per Definition unteilbar ausgefuhrt werden

* Im Uniprozessorfall fihren nur Unterbrechungen zu Race Conditions.
Diese konnen leicht (fur kurze Zeit) unterdruckt werden.

* Im Multiprozessorfall reicht das Unterdricken von Unterbrechungen
nicht aus! Die anderen CPUs laufen unbeeinflusst weiter.

2> Multiprozessorsynchronisation auf Kern-Ebene
muss mit aktivem Warten (spin locking) realisiert werden

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 22

UNIVERSITAT
DRESDEN
Spin Locking: Primitiven

lock- und unlock-Primitiven mussen mit unteilbaren
Lese-/Modifikations-/Schreibinstruktionen implementiert werden:

 Motorola 68K: TAS (Test-and-Set)

- Setzt Bit 7 des Zieloperanden acquire TAS lock
und liefert den vorherigen BNE acquire

Zustand in Condition Code Bits

* Intel x86: XCHG (Exchange) mov ax,1
- Tauscht den Inhalt eines acquire: xchg ax, lock
Registers mit dem einer Variablen cmp ax,0
im Speicher jne acquire

 PowerPC: LL/SC (Load Linked/Store Conditional)

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 23

UNIVERSITAT
DRESDEN
Spin Locking: Effizienz

* Um Cache-Thrashing zu vermeiden, sollten

lokale Sperrvariablen benutzt werden
- (hohe Buslast durch viele konkurrierende Schreibzugriffe -~ MESI)

CPU3—>| 3

CPU 3 spins on this (private) lock

CPU 2 spins on this (private) lock

/ CPU 4 spins on this (private) lock

> = 4

___— A When CPU 1 is finished with the
Shared memory / real lock, it releases it and also
CPU 1 releases the private lock CPU 2
holds the 1 is spinning on
real lock

Quelle: Tanenbaum, ,Modern Operating Systems”

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 24

UNIVERSITAT
DRESDEN
Spin Locking: Granularitat (1)

* Um Linux multiprozessortauglich zu machen,
wurde der ,,Big Kernel Lock"” (BKL) eingefuhrt.

- Extrem grobgranulares Sperren: Nur ein Prozessor durfte den Linux-
Kern betreten. Alle anderen mussten aktiv warten.
- Linux 2.0- und 2.2-Systeme skalierten daher sehr schlecht.
* Faustregel: bis zu 4 CPUs
* Heute verwenden Linux-Systeme stattdessen viele ,kleinere
Sperren” fr Datenstrukturen innerhalb des Kerns.

- Feingranulares Sperren

- Mehrere Prozessoren konnen unterschiedliche Teile des Systems
parallel ausfuhren.

- Linux 2.4-, 2.6-, ... -Systeme skalieren erheblich besser

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 25

UNIVERSITAT
DRESDEN
Spin Locking: Granularitat (2)

Die ideale Sperrgranularitat zu finden ist nicht einfach:
* Zu grobgranular:

— Prozessoren mussen unnotig warten
- Zyklen werden verschwendet

* Zu feingranular:

- Auf dem Ausfuhrungspfad eines Prozesses durch den Kern mussen
evtl. viele Sperren reserviert und freigegeben werden.
* Extra Aufwand - selbst wenn keine Konkurrenzsituation auftritt

- Code wird unubersichtlich. Aufrufe von Sperrprimitiven mussen an
diversen Stellen eingestreut werden.

- Verwendung mehrerer Sperren birgt Gefahr von Deadlocks.

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 26

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Spin Locking: Granularitat (3)

Wie sieht es heute
in Linux aus?

* feingranulares Sperren
mit allen Vor- und
Nachteilen

e es hilft nur eine andere
Software-Architektur

- kame Wegwerfen gleich

—s— Spinlock —— Mutex —— RCU —— LoC

6000 |-

4000 |-

Lock usages

0_| | | | | | | |

Do

]

o

o
[

|

WWW_

O a5 A0 A5 40 15 A0 15
q"b' q“)' \{5:\' \{5:\' qk* qk- q&’:\- qb‘r:\'

Kernel version

—_
(@)

— —
(W] He

—

—
]
~1

Lines of code

Figure 1. Increase of lock usage and lines of code (LoC) from

Linux 3.0 to 4.18.

Quelle [1]

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

27

TECHNISCHE
UNIVERSITAT

DRESDEN
Inhalt

* Wiederholung
* Hardwaregrundlagen
* Anforderungen

* Synchronisation

* CPU-Zuteilung

* Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

28

UNIVERSITAT
DRESDEN
CPU-Zuteilung im Multiprozessor

m gemeinsame READY-Liste

-

Prozess Prozess Prozess

B
e

oder ... eine READY-Liste pro CPU

<— Prozess Prozess Prozess

<— Prozess

<— Prozess Prozess
<— Prozess Prozess Prozess

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

UNIVERSITAT
DRESDEN
CPU-Zuteilung im Multiprozessor

m‘ gemeinsame READY-Liste

-

Prozess Prozess Prozess

B
e

* Automatischer Lastausgleich

- Keine CPU lauft leer
* Keine Bindung von Prozessen an bestimmte CPU

* Zugriffe auf die READY-Liste mussen synchronisiert werden

- Hoher Sperraufwand
- Konfliktwahrscheinlichkeit wachst mit CPU-Anzahl!

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

TECHNISCHE
@ UNIVERSITAT
DRESDEN

CPU-Zuteilung im Multiprozessor
eine READY-Liste pro CPU

<— Prozess % Prozess H Prozess

<— Prozess

<— Prozess Prozess
<— Prozess Prozess % Prozess
* Prozesse bleiben bei einer CPU
- Bessere Ausnutzung der Caches e P
* Weniger Synchronisationsaufwand systeme setzen heute
getrennte READY-

e CPU kann leerlaufen

- Losung: Lastausgleich bei Bedarf

Listen ein.

* Wenn eine Warteschlange leer ist

* Durch einen Load Balancer-Prozess

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Scheduling paralleler Programme

... erfordert spezielle Strategien.
* Beispiel: Lock/Step-Betrieb
(typisch fur viele parallelen Algorithmen)
1. Parallelen Berechnungsschritt durchfGhren

2. Barrierensynchronisation
3. wieder zu 1.

Barriere

Barriere

» Kooperierende Prozesse/Faden sollten gleichzeitig laufen
- Ansonsten mussen unter Umstanden viele Prozesse auf einen einzelnen warten

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 32

UNIVERSITAT
DRESDEN
Diskussion: Space Sharing

* Time Sharing

- Bei Uniprozessoren kann nur die Rechenzeit einer CPU auf Prozesse
verteilt werden.

* Space Sharing

- Bei Multiprozessoren kdnnen auch Gruppen von Prozessoren
vielfadigen Programmen zugeordnet werden:

8-CPU partition R S S e R S i I —oo- o
\ o| [1][2][a]14][5][e]i]7]acruparion
8| |9o]]|10] |11 12| {13 |14 15
6-CPU partiion — || 16] [17] [18]:[19 20| |21] |22 23 |
24] |25] [26 |27 ;28 29| |20 31|
Unassigned CPU/ e 12-CPU partition Q/\lﬂfcl/l:rnT i)r/;ir;s;:; S,ystems”

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 33

UNIVERSITAT
DRESDEN
Gang-Scheduling

* (CPU-Zuteilungsverfahren, das Time Sharing und

Space Sharing kombiniert

- Zusammengehorige Prozesse/Faden werden als Einheit betrachtet.
* Die,Gang"

- Alle Gang-Mitglieder arbeiten im Time Sharing simultan.

- Alle CPUs fuhren Prozesswechsel synchron aus.

CPU
0 1 2 3 4 B

oA A, A As A, A Es gibt verschiedene

1| B, B, B, Co C, C, Algorithmen/Strategien

2 Dg D, D, D, D, E, wie BaG, AFCFS, usw., die
Time 3| E, E, E, E, E: =3 entsprechende Plane
slot 41 A 'y A, A, A, A erzeugen.

5| B, B, B, C, C, C,

. i D, O O O S Quelle: Tanenbaum,

7 By Es Es B, Es - .Modern Operating Systems"

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 34

TECHNISCHE
UNIVERSITAT

DRESDEN
Inhalt

* Wiederholung

* Hardwaregrundlagen
* Anforderungen

* Synchronisation

* CPU-Zuteilung

 Zusammenfassung

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

35

UNIVERSITAT
DRESDEN
Zusammenfassung

* Multiprozessorsysteme, Mehrrechnersysteme und
Verteilte Systeme ermoglichen mehr Leistung durch
Parallelverarbeitung ...

- fur parallele Programme (HPC: Number Crunching, Server, ...)
- im Mehrbenutzerbetrieb

* Betriebssysteme fur Multiprozessoren erfordern ...

- Prozessorsynchronisation beim Zugriff auf Systemstrukturen

- Spezielle Scheduling-Verfahren
* Eine vs. mehrere Bereitlisten mit Lastausgleich

* Gang-Scheduling
* PC-Betriebssysteme mussen heute Multiprozessoren
unterstutzen, da Multicore-CPUs die Norm sind.

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme

36

ONIVERSITAT
DRESDEN
Literatur

[1] Alexander Lochmann, Horst Schirmeier, Hendrik Borghorst, and
Olaf Spinczyk. 2019. LockDoc: Trace-Based Analysis of Locking in the
Linux Kernel. In Proceedings of the Fourteenth EuroSys Conference

2019 (EuroSys "19). Association for Computing Machinery, New York,
NY, USA, Article 11, 1-15.

DOI: https://doi.org/10.1145/3302424.3303948

27.01.2026 Betriebssysteme und Sicherheit: 13 - Multiprozessorsysteme 37

https://doi.org/10.1145/3302424.3303948

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

