Scalability in Computer Systems
DNS/BIND as an example
Outline and Goal of Lecture

Outline:

• Scalability: terminology, problems and basic approaches
• Names in Distributed Systems: purposes of naming, terminology
• Application of scalability approaches on name resolution

Goal:
understand some of the important principles how to build scalable systems
using DNS as an example
Scalability
the ease with which a system or component can be modified to fit the problem area.

http://www.sei.cmu.edu/str/indexes/glossary/

Scalability [in telecommunication and software engineering] indicates the capability of a system to increase performance under an increased load when resources (typically hardware) are added

Wikipedia
Definitions Scalability

Definition (Wang, Xu 98):

- A computer system (HW + SW) is called scalable if it can scale up (improve its resources) to accommodate ever increasing performance and functionality demand and / or scale down (decrease resources) to reduce cost.

Dimensions of Scalability:

- Size (more CPUs)
- Other Resources (Memory)
- Software (Versions, better libs, etc.)
- Heterogeneity
 (different hardware / SW = portability)
Scalability in Computer Systems

A system is described as scalable
if it remains effective when there is a significant increase in the
number of resources and the number of users.

Coulouris, Dollimore, Kindberg: Distributed Systems

A system is scalable
if it works well for very large and very small numbers
Another aspect of scalability:

Prepare for change in functionality

• software engineering
• choose sufficiently large logical resources
• provide hooks for extension
Problems for Scalability in Distributed/Parallel Systems

Performance bottlenecks in ...
Failures of ...
Abuse of ...

- computers
- communication
Principles to achieve Scalability (“RPC”)

Partitioning
split systems into parts that can operate independently to a large extent

Replication
provide several copies of components

- that are kept consistent eventually
- that can be used in case of failure of copies

Locality (Caching)
maintain a copy of information

- that is nearer, cheaper/faster to access than the original
Some Challenges

Balance load:
keep load under reasonable threshold
 • at each component
 • in the communication subsystems

load balancing can be static or dynamic. Will study a detailed example for dynamic load balancing later (Mosix).

Minimize the delay induced by “RPC”.

Prepare for change.

Information Dissemination.
 Choose right degree of consistency.
Names, Identifiers, Addresses

Names
 • symbolic
 • have a meaning for people

Identifiers
 • identifies a component (uniquely)
 • are used by programs

Addresses
 • locates a component
 • can change
Name resolution

Name Resolution:

- map symbolic names to objects
- better: to a set of attributes such as identifiers, addresses, other names, security properties

Interfaces:

- Register (Name, attributes, ...)
- Lookup (Name) -> attributes
Related

Compilers

- statically map names to addresses

Dynamic libraries

- dynamically remap addresses

Port Mapper

- map service to port

Name resolution is a form of dynamic mapping of pathnames to attributes.
Observation

Many services, tools, ... provide their own name resolution

• file systems
 path names to I-Nodes
• login
• RPC systems (portmapper)
Purpose of Directory Services

- integration of name services
- generic name service
- world-wide use of names

Today mostly used:
- email/web
- computer attributes (IP addresses)
- people attributes (certificates, ...)

 gritty
A Bit of History

UUCP/MMDF (cum grano salis):
- \texttt{ira!gmdzi!oldenburg!heinrich!user} (path to destination)
- \texttt{user@ira!heinrich\%gmdzi}
 (mixing identifiers and path information)

ARPA-Net:
- a single file: \texttt{hosts.txt}
- maintained at Network Information Center of SRI (Stanford)
- accessed via \texttt{ftp}
- TCP/IP in BSD Unix \Rightarrow chaos
 name collisions, consistency, load

DNS: Paul Mockapetries (84) ...
More Terminology

Name Space

• set of names recognized by a name service

Context

• unit for which a name can be mapped directly

Aliases

• several names for one object
More Terminology

Naming Domain

• Subtree in the hierarchy of DNS contexts

Zone

• (aka Zone of authority) Subset of a domain over which an authority has complete control. Subzones (starting at apices of a zone) can be delegated to other authorities.

Navigation

• querying in a set of cooperating name spaces
Basic Implementation Variants

recursive

iterative
Requirements / Properties

• arbitrarily large numbers
• arbitrary units of administration
• long living names, the higher in the hierarchy the longer
• high robustness
• restructuring of name spaces
• consistency
• efficiency
DNS Name Space

- com
- edu...
- mil
- us
- de...
- au
- sax
- tu-dresden
- gmd
- borno
- zeus
- hera
- ibm
- ibch61
- inf
- os
- irz301
Examples

inf.tu-dresden.de Domain
os.inf.tu-dresden.de Computer
heidelberg.ibm.com Domain

ftp ftp.inf.tu-dresden.de
DNS: --> IP address: 141.76.2.3
ftp daemon: IP address, port 21

Properties:
 • location independent
 • not very deep
Implementation Structure (BIND)

- resolver (runtime library)
- name server
- root name server
- NS 2
- NS 3
Zones:
- administrative unit
- resolves all names within a zone recursively
- maps to names and addresses of name servers responsible for sub zones
- maintains management data

Name server:
- process doing the name resolution for one zone

Resource records (RR):
- key interface
Replication

Currently 13 root name servers

each zone has at least

- one primary
- one secondary

name server
Caching

each name server caches resource records
time to live attribute

authoritative versus non-authoritative answers
Resource Records

<table>
<thead>
<tr>
<th>record type</th>
<th>interpretation</th>
<th>content</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>address</td>
<td>IPv4 address</td>
</tr>
<tr>
<td>AAAA</td>
<td>address</td>
<td>IPv6 address</td>
</tr>
<tr>
<td>NS</td>
<td>name server</td>
<td>DNS name</td>
</tr>
<tr>
<td>CNAME</td>
<td>symbolic link</td>
<td>DNS name of canonical name</td>
</tr>
<tr>
<td>SOA</td>
<td>start of authority</td>
<td>zone-specific properties</td>
</tr>
<tr>
<td>PTR</td>
<td>IP reverse pointer</td>
<td>DNS name</td>
</tr>
<tr>
<td>HINFO</td>
<td>host info</td>
<td>text description of host OS</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reverse Resolution

Example
IP-Address: 141.76.48.97
=> DNS-Name: 97.48.76.141.in-addr.arpa

Xaver.os.inf.tu-dresden.de
Summary: Scalability and DNS

Good points:

- replication and caching work well
- over time, DNS scaled from small numbers to millions

Bad Points:

- IP addresses too small
Literature

Paul Albitz & Cricket Liu
DNS and BIND
O´Reilly & Associates, Inc.