
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Distributed Operating Systems
Memory Consistency

SS2014

Marcus Völp

(slides Julian Stecklina, Marcus Völp)

Distributed Operating Systems Slide 28

Concurrent programs

int i;
int k;

global variables:

i = 1;
if (i > 1) k = 3;

i = i + 1;
if (k == 0) k = 4;

||

TU Dresden, 5.05.2014

Cache Coherency: Consistency of reads/writes
to the same memory location.

Ordering and consistency of reads/writes to

different memory locations?
 => Memory Consistency

Distributed Operating Systems Slide 29

Memory Consistency Models

Memory Consistency Model
defines how loads and stores to different memory
locations become visible with respect to each other.

Different memory consistency models exist
– Sequential Consistency (MIPS R10K)

– IBM 370 (z-Series)

– Total Store Order (Sparc v8)

– Processor Consistency (Intel x86)

– Partial Store Order (Sparc v8)

– Weak Ordering

– Release Consistency

– Dependent Load Ordering (Alpha)

TU Dresden, 5.05.2014

more complex,
more performance

Distributed Operating Systems Slide 30

Sequential Consistency (SC)

“The result of any execution is the same as if the
operations of all the processors were executed in some
sequential order, and the operations of each individual
processor appear in this sequence in the order
specified by its program. A multiprocessor satisfying
this condition will be called sequentially consistent.”
[Lamport 1979]

Three major ingredients:

� Atomicity: “one operation at a time”
 a, b are atomic if A || B = A;B or B;A

� Issue: “order specified by its program”
 (program order)

� Visibility: “some sequential order”
 the same for all processors

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 31

Sequential Consistency

TU Dresden, 5.05.2014

Violating Atomicity

CPU 0 CPU 1
 [A] = 0xdeadbeaf; u = [A];

if (u == 0x0000beaf)
 print (“mmh, delicious”)

(a1) (a2)

a1.low, a2.low, a2.high, a1.high
disallowed in sequentially consistent systems

[A] [B] Memory
u, v Registers

Distributed Operating Systems Slide 32

Sequential Consistency

TU Dresden, 5.05.2014

Violating Program Order

CPU 0 CPU 1
 [Buffer] = 0xbeaf;
[Flag] = 1; /* full */

u = [Flag];

if (u == 1)
 /* use buffer */ (b2)

(a1)
(b1)

(a2)

b1, a2, b2, a2
disallowed in sequentially consistent systems

Distributed Operating Systems Slide 33

Sequential Consistency

TU Dresden, 5.05.2014

Violating Same Total Visibility Order

CPU 0

[Data] = 0xbeaf;

v = [Data];

print (“He said” v)

(a1)

(a3)

disallowed in sequentially consistent systems

CPU 2
v = [Data];

print (“He said” v)

CPU 3
(a4)

CPU 1

[Data] = 0xdead; (a2)

a1, a2, …, a3, a4 a2, a1, …, a3, a4

Distributed Operating Systems Slide 34

Sequential Consistency

TU Dresden, 5.05.2014

But: (assuming [A] … [Z] is “normal” memory)

CPU 0 CPU 1

lock()
 [A] = 1;
 [B] = 1;
 [C] = 1;
 …
 [Z] = 1;
unlock()

lock()
 u = [A];
unlock()

Distributed Operating Systems Slide 35

More Examples for
Sequential Consistency

CPU0 CPU1
[A] = 1; (a1) u = [B]; (a2)

[B] = 1; (b1) v = [A]; (b2)

(u,v) = (1,1)
– Sequentially consistent: a1, b1, a2, b2

(u,v) = (1,0)
– Not sequentially consistent: a2, b2, a1, b1

– Violates program order for CPU0/1

– No visibility order possible that is seq. consistent!

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 36

More Examples for
Sequential Consistency

CPU0 CPU1
[A] = 1; (a1) [B] = 1; (a2)

u = [B]; (b1) v = [A]; (b2)

(u,v) = (1,1)
– Sequentially consistent: a1, a2, b1, b2

(u,v) = (0,0)
– Not sequentially consistent: b1, b2, a1, a2

– Violates program order for CPU0/1

– No visibility order possible that is seq. Consistent!

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 37

SC vs. weaker consistency models

Memory consistency models describe which operations
can be reordered in the visibility order of memory
operations and which are maintained.

In-order memory operations in SC:
– Read→Read

– Read→Write

– Write→Read

– Write→Write

Weaker models relax some or all of these orderings.

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 38

Store Buffer

Memory

CPU0

Cache

SB

CPU1

Cache

SB

SB optimizes writes to memory
and/or caches to optimize
interconnect accesses.

CPU can continue before write
is completed.

Store forwarding allows
reads from local CPU to see
pending writes in the SB.

SB invisible to remote CPUs.

FIFO vs. non-FIFO. Writes can
be combined, may reorder
writes on some architectures.

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 39

Relaxing Write→Read or Write→Write

Relaxing Write→Read (later reads can bypass earlier writes)

– Write followed by a read can execute out-of-order

– Typical hardware usage: Store Buffer

• Writes must wait for cache line ownership

• Reads can bypass writes in the buffer

• Hides write latency

Relaxing Write→Write (later writes can bypass earlier writes)

– Write followed by a write can execute out-of-order

– Typical hardware usage: Coalescing store buffer

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 40

IBM 370 (z Series) model

• In-order memory operations:
– Read→Read

– Read→Write

– Write→Write

• Out-of-order memory operations:
– Write-to-Read (later reads can bypass earlier writes)

• Unless both to same location

– Write-to-Read to same location must execute in-order

• No forwarding from the store buffer

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 41

SPARC v8 Total Store Order (TSO)

• In-order memory operations:
– Read-to-Read

– Read-to-Write

– Write-to-Write

• Out-of-order memory operations:
– Write-to-Read (later reads can bypass earlier writes)

• Forwarding of pending writes in the store buffer to
successive reads to the same location

– Writes become visible to writing processor first

• Store buffer is FIFO

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 42

TSO vs. SC and z Series

CPU0 CPU1
[A] = 1; (a1) [B] = 1; (a2)

u = [A]; (b1) v = [B]; (b2)

w = [B]; (c1) x = [A]; (c2)

• (u,v,w,x) = (1,1,0,0)
– Not possible with SC and z Series

– Possible with TSO

• b1, b2, c1, c2, a1, a2

• b1 reads [A] from write buffer

• b2 reads [B] from write buffer

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 43

Processor Consistency (PC)

• Similar to Total Store Order (TSO)

• Additionally supports multiple cached memory copies
– Relaxed atomicity for write operations

• Each write broken into suboperations to update
cached copies of other CPUs

– Non-unique write order: per-CPU visibility order

• Additional coherency requirement
– All write suboperations to the same location complete in

the same order across all memory copies (or in other
words: each processor sees writes to the same location in
the same order)

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 44

PC vs. SC, z Series, TSO

CPU0 CPU1 CPU2
[A] = 1; (a1) u = [A]; (a2) v = [B]; (a3)

 [B] = 1; (b2) w = [A]; (b3)

• (u,v,w) = (1,1,0)
– Not possible with SC, z Series, TSO

– Possible with Processor Consistency (PC)

• CPU0 sets [A], sends update to other CPUs

• CPU1 gets update, sets [B], sends update

• CPU2 sees update from CPU1, but hasn't seen update
from CPU0 yet

– Single memory bus enforces single visibility order

– Multiple visibility orders with different topologies

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 45

Causality

CPU0 CPU1 CPU2
[A] = 1; while ([A] == 0); while ([B] == 0);

 [B] = 1; print [A];

Write Atomicity
All cores see writes at the same time (and the same order).

Relaxing write atomicity
– CPU0 writes [A]; sends update to CPU1/2

– CPU1 receives; writes [B]; sends update to CPU2

– CPU2 receives update from CPU1, prints [A] = 0

– CPU2 receives update from CPU0

Not sequentially consistent!

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 46

SPARC V8 Partial Store Order (PSO)

• In-order memory operations:
– Read→Read

– Read→Write

• Out-of-order memory operations:
– Write→Read (later reads can bypass earlier writes)

• Forwarding of pending writes to successive reads to
the same location

– Write→Write (later writes can bypass earlier writes)

• Unless both are to the same location

• Breaks naive producer-consumer code

• Write atomicity is maintained → single visibility order

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 47

PSO vs. SC, z Series, TSO, PC

CPU0 CPU1
[A] = 1; (a1) while ([Flag] == 0); (a2)

[B] = 1; (b1) u = [A]; (b2)

[Flag] = 1; (c1) v = [B]; (c2)

• (u,v) = (0,0) or (0,1) or (1,0)
– Not possible with SC, z Series, TSO, PC

– Possible with PSO

• c1,a2,b2,c2,a1,b1

• Store Barrier (STBAR) before c1 ensures sequentially
consistent result (u,v) = (1,1)

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 48

Relaxing all Program Orders

• In addition to previous relaxations:
– Read→Read (later reads can bypass earlier reads)

• Read followed by read can execute out-of-order

– Read→Write (later writes can bypass earlier reads)
• Read followed by a write can execute out-of-order

• Examples
– Weak Ordering (WO)

– Release Consistency (RC)

– DEC Alpha

– SPARC V9 Relaxed Memory Model (RMO)

– PowerPC

– Itanium (IA-64)

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 49

Weak Ordering (WO)

• Conceptually similar to Processor Consistency
– Including coherency requirement

• Classifies memory operations into
– Data operations

– Synchronization operations

• Reordering of operations between synchronization
operations typically does not affect correctness of a
program

• Program order only maintained at synchronization
points
– Between synchronization operations

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 50

Release Consistency (RC)

• Distinguishes memory operations as
– Ordinary (data)

– Special

• Sync (synchronization)

• Nsync (asynchronous data)

• Sync operations classified as
– Acquire

• Read operation for gaining access to a shared
resource

• e.g., spinning on a flag to be set, reading a pointer

– Release

• Write operation for granting permission to a shared
resource

• e.g., setting a synchronization flag

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 51

Flavors of Release Consistency

• RCSC

– Sequential consistency between special operations

– Program order enforced between:

• acquire → all

• all → release

• special → special

• RCPC

– Processor consistency between special operations

– Program order enforced between:

• acquire → all

• all → release

• special → special, except release followed by acquire

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 52

Dependent Load Reordering (Alpha)

A = 1, B = 0, P = &A

CPU0 CPU1
[B] = 1; (a1) u = [P] (a2)

Store barrier v = [u]; (b2)

[P] = &B; (b1)

Load depends previous load for address generation. Alpha may
reorder loads due to speculation. Allows:

(u,v) = (&B, 0)

– Even with barrier between a1,b1!

– Visibility order: a1,b1,b2,a2

Most (all?) processors except Alpha disallow dependend
load/store reordering.

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 53

Enforcing Ordering:
Synchronization Instructions

• IA32
– lfence, sfence, mfence (load, store, memory fence)

• Alpha
– mb (memory barrier), wmb (write memory barrier)

• SPARC (PSO)
– stbar (store barrier)

• SPARC (RMO)
– membar (4-bit encoding for r-r, r-w, w-r, w-w)

• PowerPC
– sync (similar to Alpha mb, except r-r), lwsync

– eieio (enforce in-order execution of I/O)

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 54

Compiler Optimizations

Compilers reorder memory accesses for performance.
Effects are equivalent to reordering by hardware.

Flag0 = true; ld r1 ← flag1

while (flag1) { st flag0 ← true

 … loop: cmp r1,0

 … ...

} ld r1 ← flag1

Is this a legal optimization?

Single threaded: Yes Multithreaded: NO!
Can't perceive difference

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 55

How do we portably program this?!

Standardized memory models for HLL:
– C / C++ 2011

– Java

Basic model: Sequentially Consistency for data-race free
programs (SC-DRF)

A data race free program will execute sequentially
consistent.

Data Race (informal)
Multiple threads access a memory location without

synchronization, one of them is a writer.

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 56

Data Race Free Example

a = b = 0;

Thread 1 Thread 2
mtx_lock(l);

a = 1; x = a;

b = 1; y = b;

mtx_unlock(l);

Not Data Race Free:
– a,b accessed without synchronization

– (x,y) = (0,0) (1,0) (0,1) (1,1) all legal!

– Need to add synchronization to Thread 2

With synchronization yields either (0,0) or (1,1):
– Data race free, sequentially consistent!

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 57

Enforcing Memory Ordering in C++

• Mutexes may cause scalability issues

• C++ 11 offers rich set of atomic memory operations
(std::atomic)
– Implements RCSC:

• Atomic reads acquire

• Atomic stores release

– Can use weaker ordering if desired

– Compare-and-Swap

– Add/Sub/And/Or/Xor/...

• Does the right thing on all platforms
– Adds appropriate memory barriers

– Uses locked instructions as necessary

– May use locks on certain platforms!

TU Dresden, 5.05.2014

Distributed Operating Systems Slide 105

References

� A Primer on Memory Consistency and Cache Coherence
Sorin, Hill, Wood; 2011

� atomic<> Weapons: The C++ Memory Model and
Modern Hardware (Video)
Sutter; 2013

� Shared memory consistency models: a tutorial
Adve, Gharachorloo; 1996

� IA Memory Model
Richard Hudson; Google Tech Talk 2008

� Memory Ordering in Modern Microprocessors
McKenney; Linux Journal 2005

� How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs
Lamport, 1979

� PowerPC Storage Model

 TU Dresden, 5.05.2014

References

Scheduler-Conscious Synchronization
 Leonidas Kontothanassis, Robert Wisniewski, Michael Scott

Scalable Reader- Writer Synchronization for Shared-Memory Multiprocessors
 John M. Mellor-Crummey, Michael L. Scottt

Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors
 John Mellor-Crummey, Michael Scott

Concurrent Update on Multiprogrammed Shared Memory Multiprocessors
 Maged M. Michael, Michael L. Scott

Scalable Queue-Based Spin Locks with Timeout
 Michael L. Scott and William N. Scherer III

References

Reactive Synchronization Algorithms for Multiprocessors
 B. Lim, A. Agarwal

Lock Free Data Structures
 John D. Valois (PhD Thesis)

Reduction: A Method for Proving Properties of Parallel Programs
 R. Lipton - Communications of the ACM 1975

Decoupling Contention Management from Scheduling (ASPLOS 2010)
 F.R. Johnson, R. Stoica, A. Ailamaki, T. Mowry

Corey: An Operating System for Many Cores (OSDI 2008)
 Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao,
 Frans Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein,
 Ming Wu, Yuehua Dai, Yang Zhang, Zheng Zhang

