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Concurrent programs 

int i; 
int k; 

global variables: 

i = 1; 
if (i > 1) k = 3; 

i = i + 1; 
if (k == 0) k = 4; 

|| 

TU Dresden, 5.05.2014 

Cache Coherency: Consistency of reads/writes  
to the same memory location. 

 
Ordering and consistency of reads/writes to  

different memory locations? 
 => Memory Consistency 
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Memory Consistency Models 

Memory Consistency Model 
defines how loads and stores to different memory 
locations become visible with respect to each other. 

 

Different memory consistency models exist 
– Sequential Consistency (MIPS R10K) 

– IBM 370 (z-Series) 

– Total Store Order (Sparc v8) 

– Processor Consistency (Intel x86) 

– Partial Store Order (Sparc v8) 

– Weak Ordering 

– Release Consistency 

– Dependent Load Ordering (Alpha) 

TU Dresden, 5.05.2014 

more complex, 
more performance 
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Sequential Consistency (SC) 

“The  result  of  any  execution  is  the  same  as  if  the 
operations of all the processors were executed in some 
sequential order, and the operations of each individual 
processor appear in this sequence in the order 
specified by its program. A multiprocessor satisfying 
this condition will be called sequentially consistent.”  
[Lamport 1979] 

 

Three major ingredients: 

� Atomicity:  “one  operation  at  a  time” 
   a, b are atomic if A || B = A;B or B;A 

� Issue:  “order  specified  by  its  program”   
  (program order) 

� Visibility:  “some  sequential  order”   
  the same for all processors 

TU Dresden, 5.05.2014 
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Sequential Consistency 

TU Dresden, 5.05.2014 

Violating Atomicity 
 
CPU 0         CPU 1 
 [A] = 0xdeadbeaf; u = [A];  

  
if (u == 0x0000beaf) 
    print  (“mmh,  delicious”) 

(a1) (a2) 

a1.low, a2.low, a2.high, a1.high  
disallowed in sequentially consistent systems 

[A] [B] Memory 
u, v Registers 
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Sequential Consistency 

TU Dresden, 5.05.2014 

Violating Program Order 
 
CPU 0         CPU 1 
 [Buffer] = 0xbeaf; 
[Flag]    = 1; /* full */ 

u = [Flag];  
 
if (u == 1) 
    /* use buffer */ (b2) 

(a1) 
(b1) 

(a2) 

b1, a2, b2, a2 
disallowed in sequentially consistent systems 
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Sequential Consistency 

TU Dresden, 5.05.2014 

Violating Same Total Visibility Order 
 
CPU 0     

[Data]   = 0xbeaf; 

v = [Data]; 
 
print  (“He  said”  v) 

(a1) 

(a3) 

disallowed in sequentially consistent systems 

CPU 2 
v = [Data]; 
 
print  (“He  said”  v) 

CPU 3 
(a4) 

CPU 1 

[Data]   = 0xdead; (a2) 

a1,  a2,  …,  a3,  a4 a2,  a1,  …,  a3,  a4 
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Sequential Consistency 

TU Dresden, 5.05.2014 

But:  (assuming  [A]  …  [Z]  is  “normal”  memory) 
 
CPU 0             CPU 1    

lock() 
  [A] = 1; 
  [B] = 1; 
  [C] = 1;  
  … 
  [Z] = 1; 
unlock() 

lock() 
  u = [A]; 
unlock() 
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More Examples for  
Sequential Consistency 

 

CPU0   CPU1 
[A] = 1; (a1)  u = [B]; (a2)   

[B] = 1; (b1)  v = [A]; (b2)   

 

(u,v) = (1,1) 
– Sequentially consistent: a1, b1, a2, b2 

 

(u,v) = (1,0) 
– Not sequentially consistent: a2, b2, a1, b1 

– Violates program order for CPU0/1 

– No visibility order possible that is seq. consistent! 

 

TU Dresden, 5.05.2014 
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More Examples for  
Sequential Consistency 

 

CPU0   CPU1 
[A] = 1; (a1)  [B] = 1; (a2)   

u = [B]; (b1)  v = [A]; (b2)   

 

(u,v) = (1,1) 
– Sequentially consistent: a1, a2, b1, b2 

 

(u,v) = (0,0) 
– Not sequentially consistent: b1, b2, a1, a2 

– Violates program order for CPU0/1 

– No visibility order possible that is seq. Consistent! 

TU Dresden, 5.05.2014 
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SC vs. weaker consistency models 

Memory consistency models describe which operations 
can be reordered in the visibility order of memory 
operations and which are maintained. 

 

In-order memory operations in SC: 
– Read→Read 

– Read→Write 

– Write→Read 

– Write→Write 

 

Weaker models relax some or all of these orderings. 

TU Dresden, 5.05.2014 



Distributed Operating Systems Slide 38 

Store Buffer 

Memory 

CPU0 

Cache 

SB 

CPU1 

Cache 

SB 

SB optimizes writes to memory 
and/or caches to optimize 
interconnect accesses. 

 
CPU can continue before write 
is completed. 

 
Store forwarding allows 
reads from local CPU to see 
pending writes in the SB. 

 
SB invisible to remote CPUs. 
 
FIFO vs. non-FIFO. Writes can 
be combined, may reorder 
writes on some architectures. 

TU Dresden, 5.05.2014 
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Relaxing Write→Read or Write→Write 

Relaxing Write→Read (later reads can bypass earlier writes) 

– Write followed by a read can execute out-of-order 

– Typical hardware usage: Store Buffer 

• Writes must wait for cache line ownership 

• Reads can bypass writes in the buffer 

• Hides write latency 

 

Relaxing Write→Write (later writes can bypass earlier writes) 

– Write followed by a write can execute out-of-order 

– Typical hardware usage: Coalescing store buffer 

TU Dresden, 5.05.2014 
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IBM 370 (z Series) model 

• In-order memory operations: 
– Read→Read 

– Read→Write 

– Write→Write 

 

• Out-of-order memory operations: 
– Write-to-Read (later reads can bypass earlier writes) 

• Unless both to same location 

– Write-to-Read to same location must execute in-order 

• No forwarding from the store buffer 

TU Dresden, 5.05.2014 
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SPARC v8 Total Store Order (TSO) 

• In-order memory operations: 
– Read-to-Read 

– Read-to-Write 

– Write-to-Write 

• Out-of-order memory operations: 
– Write-to-Read (later reads can bypass earlier writes) 

• Forwarding of pending writes in the store buffer to 
successive reads to the same location 

– Writes become visible to writing processor first 

• Store buffer is FIFO 

TU Dresden, 5.05.2014 
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TSO vs. SC and z Series 

 

CPU0   CPU1 
[A] = 1; (a1)  [B] = 1; (a2) 

u = [A]; (b1)  v = [B]; (b2) 

w = [B]; (c1)  x = [A]; (c2) 

 

 

• (u,v,w,x) = (1,1,0,0) 
– Not possible with SC and z Series 

– Possible with TSO 

• b1, b2, c1, c2, a1, a2 

• b1 reads [A] from write buffer 

• b2 reads [B] from write buffer 

 

TU Dresden, 5.05.2014 
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Processor Consistency (PC) 

• Similar to Total Store Order (TSO) 

• Additionally supports multiple cached memory copies 
– Relaxed atomicity for write operations 

• Each write broken into suboperations to update 
cached copies of other CPUs 

– Non-unique write order: per-CPU visibility order 
 

• Additional coherency requirement 
– All write suboperations to the same location complete in 

the same order across all memory copies (or in other 
words: each processor sees writes to the same location in 
the same order) 

 

TU Dresden, 5.05.2014 
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PC vs. SC, z Series, TSO 

 

CPU0   CPU1   CPU2 
[A] = 1; (a1)  u = [A]; (a2)  v = [B]; (a3) 

      [B] = 1; (b2)  w = [A]; (b3) 

 

• (u,v,w) = (1,1,0) 
– Not possible with SC, z Series, TSO 

– Possible with Processor Consistency (PC) 

• CPU0 sets [A], sends update to other CPUs 

• CPU1 gets update, sets [B], sends update 

• CPU2 sees update from CPU1, but hasn't seen update 
from CPU0 yet 

– Single memory bus enforces single visibility order 

– Multiple visibility orders with different topologies 

 
TU Dresden, 5.05.2014 
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Causality 

 
CPU0  CPU1   CPU2 
[A] = 1; while ([A] == 0); while ([B] == 0); 

     [B] = 1;  print [A]; 

 

Write Atomicity 
All cores see writes at the same time (and the same order). 

 

Relaxing write atomicity 
– CPU0 writes [A]; sends update to CPU1/2 

– CPU1 receives; writes [B]; sends update to CPU2 

– CPU2 receives update from CPU1, prints [A] = 0 

– CPU2 receives update from CPU0 

Not sequentially consistent! 

TU Dresden, 5.05.2014 



Distributed Operating Systems Slide 46 

SPARC V8 Partial Store Order (PSO) 

• In-order memory operations: 
– Read→Read 

– Read→Write 

• Out-of-order memory operations: 
– Write→Read (later reads can bypass earlier writes) 

• Forwarding of pending writes to successive reads to 
the same location 

– Write→Write (later writes can bypass earlier writes) 

• Unless both are to the same location 

• Breaks naive producer-consumer code 

• Write atomicity is maintained → single visibility order 

TU Dresden, 5.05.2014 
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PSO vs. SC, z Series, TSO, PC 

 

CPU0   CPU1 
[A] = 1; (a1)  while ([Flag] == 0);  (a2) 

[B] = 1; (b1)  u = [A];   (b2) 

[Flag] = 1; (c1) v = [B];   (c2) 

 

• (u,v) = (0,0) or (0,1) or (1,0) 
– Not possible with SC, z Series, TSO, PC 

– Possible with PSO 

• c1,a2,b2,c2,a1,b1 

• Store Barrier (STBAR) before c1 ensures sequentially 
consistent result (u,v) = (1,1) 

 

 

TU Dresden, 5.05.2014 
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Relaxing all Program Orders 

• In addition to previous relaxations: 
– Read→Read (later reads can bypass earlier reads) 

• Read followed by read can execute out-of-order 

– Read→Write (later writes can bypass earlier reads) 
• Read followed by a write can execute out-of-order 

• Examples 
– Weak Ordering (WO) 

– Release Consistency (RC) 

– DEC Alpha 

– SPARC V9 Relaxed Memory Model (RMO) 

– PowerPC 

– Itanium (IA-64) 

TU Dresden, 5.05.2014 
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Weak Ordering (WO) 

• Conceptually similar to Processor Consistency 
– Including coherency requirement 

• Classifies memory operations into 
– Data operations 

– Synchronization operations 

• Reordering of operations between synchronization 
operations typically does not affect correctness of a 
program 

• Program order only maintained at synchronization 
points 
– Between synchronization operations 

TU Dresden, 5.05.2014 



Distributed Operating Systems Slide 50 

Release Consistency (RC) 

• Distinguishes memory operations as 
– Ordinary (data) 

– Special 

• Sync (synchronization) 

• Nsync (asynchronous data) 

• Sync operations classified as 
– Acquire 

• Read operation for gaining access to a shared 
resource 

• e.g., spinning on a flag to be set, reading a pointer 

– Release 

• Write operation for granting permission to a shared 
resource 

• e.g., setting a synchronization flag 

TU Dresden, 5.05.2014 
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Flavors of Release Consistency 

• RCSC 

– Sequential consistency between special operations 

– Program order enforced between: 

• acquire → all 

• all → release 

• special → special 

• RCPC 

– Processor consistency between special operations 

– Program order enforced between: 

• acquire → all 

• all → release 

• special → special, except release followed by acquire 

 

TU Dresden, 5.05.2014 



Distributed Operating Systems Slide 52 

Dependent Load Reordering (Alpha) 

 

A = 1, B = 0, P = &A 

CPU0   CPU1 
[B] = 1;  (a1) u = [P]  (a2) 

Store barrier  v = [u]; (b2) 

[P] = &B;  (b1) 

 

Load depends previous load for address generation. Alpha may 
reorder loads due to speculation. Allows: 

(u,v) = (&B, 0) 

– Even with barrier between a1,b1! 

– Visibility order: a1,b1,b2,a2 

 

Most (all?) processors except Alpha disallow dependend 
load/store reordering. 

TU Dresden, 5.05.2014 
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Enforcing Ordering: 
Synchronization Instructions 

• IA32 
– lfence, sfence, mfence (load, store, memory fence) 

• Alpha 
– mb (memory barrier), wmb (write memory barrier) 

• SPARC (PSO) 
– stbar (store barrier) 

• SPARC (RMO) 
– membar (4-bit encoding for r-r, r-w, w-r, w-w) 

• PowerPC 
– sync (similar to Alpha mb, except r-r), lwsync 

– eieio (enforce in-order execution of I/O) 

TU Dresden, 5.05.2014 
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Compiler Optimizations 

Compilers reorder memory accesses for performance. 
Effects are equivalent to reordering by hardware. 

 

Flag0 = true;  ld r1 ← flag1 

while (flag1) {  st flag0 ← true 

 …    loop: cmp r1,0 

 …    ... 

}    ld r1 ← flag1 

 

Is this a legal optimization? 

 

Single threaded: Yes  Multithreaded: NO! 
Can't perceive difference 

TU Dresden, 5.05.2014 
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How do we portably program this?! 

Standardized memory models for HLL: 
– C / C++ 2011 

– Java 

 

Basic model: Sequentially Consistency for data-race free 
programs (SC-DRF) 

 

A data race free program will execute sequentially 
consistent. 

 

Data Race (informal) 
Multiple threads access a memory location without 

synchronization, one of them is a writer. 

TU Dresden, 5.05.2014 
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Data Race Free Example 

a = b = 0; 

 
Thread 1   Thread 2 
mtx_lock(l);   

a = 1;    x = a; 

b = 1;    y = b; 

mtx_unlock(l); 

 

Not Data Race Free: 
– a,b accessed without synchronization 

– (x,y) = (0,0) (1,0) (0,1) (1,1) all legal! 

– Need to add synchronization to Thread 2 

With synchronization yields either (0,0) or (1,1): 
– Data race free, sequentially consistent! 

TU Dresden, 5.05.2014 
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Enforcing Memory Ordering in C++ 

• Mutexes may cause scalability issues 

• C++ 11 offers rich set of atomic memory operations 
(std::atomic) 
– Implements RCSC: 

• Atomic reads acquire 

• Atomic stores release 

– Can use weaker ordering if desired 

– Compare-and-Swap 

– Add/Sub/And/Or/Xor/... 

• Does the right thing on all platforms 
– Adds appropriate memory barriers 

– Uses locked instructions as necessary 

– May use locks on certain platforms! 

TU Dresden, 5.05.2014 
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