
Distributed Operating Systems

Exercise 5: MEMORY CONSISTENCY, CACHE COHERENCE
AND LOCKS
In the tutorial, all solutions will be presented by students. Please be prepared for all questions
as the exercise will focus on discussion, not on understanding the question and gathering the
knowledge.

Memory Consistency

1) Sequential Consistency
In a system with sequential consistency each processor always executes memory
operations in the order specified by its program (program order). The order in which the
individual memory operations of each processor become visible to the other processors
on the shared interconnect (e.g., the bus) is called visibility order.
Three processors (P1, P2 and P3) in a shared-memory system execute the following code
(initially A = B = 0).

Here a1 denotes the first operation of processor P1, a2 denotes the first operation of P2
and b2 denotes the second operation of P2, etc.

The outcome of the execution, denoted by the tuple (u,v,w), may vary depending on the
order in which the individual operations of each processor become globally visible. Some
outcomes may not be possible on a sequentially consistent system. Complete the
following table with the possible results for (u,v,w). For each row describe if the result is
sequentially consistent and if so, specify a visibility order that produces the result. An
example is given in the second row.

P1 P2 P3

a1: A := 1 a2: u := A a3: v := B

b2: B := 1 b3: w := A

Department of Computer Science, Institute of System Architecture, Operating Systems Group

2) Relaxed Consistency: Peterson-Algorithm
A well-known algorithm for mutual exclusion is Peterson's algorithm (shown in pseudo-
code below). Explain why Peterson's algorithm does not break on machines with a store
buffer where reads are not permitted to bypass writes to the same memory location and
why it does break if reads are permitted to bypass writes to the same memory location on
systems with store forwarding (e.g., SPARC TSO).

// global variables and initial values
bool flag0 = false, flag1 = false;
int turn = 0;

// Process on CPU0
flag0 = true;
turn = 1;
while (turn == 1 && flag1);
// critical section
flag0 = false;

// Process on CPU1
flag1 = true;
turn = 0;
while (turn == 0 && flag0);
// critical section
flag1 = false;

3) Fence Instructions
Machines with relaxed memory consistency typically provide programmers with fence
instructions to tighten the ordering of memory instructions. Insert MFENCE (memory fence)
instructions in Dekker's and Peterson's algorithms to ensure their correct behavior on a
multi-processor system that implements a store buffer with store forwarding. Use as few
fence instructions as necessary.

u v w sequential consistent visibility order

0 0 0

0 0 1 yes a2, a3, a1, b3, b2

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Cache Coherency

Multiprocessor systems with caches use a coherency protocol, which ensures that writes by
one processor eventually become visible to all other processors and that no two processors
write to the same memory location simultaneously. One invalidation-based protocol
discussed in the lecture is the MESI protocol.

Two processors (P1 and P2) and uniform memory are connected to a shared bus, which
implements the MESI cache coherency protocol. In memory there exists a data structure with
the following layout: A (8 bytes), B (24 bytes), C (8 bytes). The cacheline size is 32 bytes, so that
A and B reside in cacheline X, whereas C resides in cacheline Y.

Processor P1 and P2 execute the following code:

// Processor P1
read(A);
read(B);
// do something with A
read(B);
write(A);

// Processor P2
read(B);
read(C);
// do something with C
read(B);
write(C);

4) Cache Coherency in Action
The following table lists the memory operations of the individual processors as they
appear on the shared bus. The first column lists the processor and the second column
specifies the memory operation being carried out. The next two columns list the MESI
state of the cachelines X and Y in each of the processors. The last two columns describe if
the operation caused a cacheline transfer to/from memory or to/from another cache.
Initially all cachelines are invalid (I).

CPU Operation P1 P2 Memory Transfer Cache Transfer

I I I I

1 read(A)

1 read(B)

2 read(B)

2 read(C)

1 read(B)

1 write(A)

2 read(B)

2 write(C)

5) False Sharing
Because B is contained in cacheline X, false sharing occurs with A. Discuss how to remedy
this problem and explain the impact on memory and cache transfers.

Cache Coherency and Locks

The cache-coherency protocol is sometimes crucial for the scaling of a particular lock
implementation. The reason is, that some lock implementations produce too many bus
messages and thereby slow down the execution of the processor.

6) Test-and-Set Locks
The Test-and-Set locks presented within the lecture do not scale well since they perform
exclusive write operations to the lock variable even if the lock is currently taken by a
different thread.

A possible implementation of a simple Test-and-Set locks can be done as follows:

class TSLock {
 private:
 unsigned int _lock

 public:
 TSLock() : _lock(0) { }

 void lock() {
 while (test_and_set(_lock) == 1) { }
 }

 void unlock() {
 _lock = 0;
 }
 };

Check the scalability problem of the Test-and-Set locks by completing the below-
mentioned table.

The first column of the table states which CPU is executing an instruction at the moment.
The second column contains the executed operation. The state of the lock variable should
be written in column three. The remaining four columns are supposed to contain the state
of the cache line containing the lock variable on the corresponding core according to the
MESI cache coherency protocol.

https://en.wikipedia.org/wiki/MESI_protocol

7) Test-Test-and-Set Locks
Within the lecture, an extension of the simple Test-and-Set lock was presented. This new
lock implementation contains an additional Test-operation before the actual taking of the
lock is performed. A possible implementation of a Test-Test-and-Set lock could look as
follows:

class TTSLock {
 private:
 unsigned int _lock;

 public:
 TTSLock() : _lock(0) { }

 void lock() {
 while (true) {
 while (_lock == 1) { }
 if (test_and_set(_lock) == 0)
 break;
 }
 }

 void unlock() { _lock = 0; }
};

CPU Operation Lock P1 P2 P3 P4

0 I I I I

1 lock (T&S) 1 M I I I

2 wait (T&S) 1 I M I I

4 wait (T&S) 1 I I I M

2 wait (T&S)

3 wait (T&S)

4 wait (T&S)

3 wait (T&S)

1 unlock

3 lock (T&S)

2 wait (T&S)

4 wait (T&S)

3 unlock

2 lock (T&S)

4 wait (T&S)

4 wait (T&S)

2 unlock

Repeat the previous exercise and use a Test-Test-and-Set lock instead of only a Test-and-
Set Lock. Keep in mind that the Test-operation of the lock is only a read access and not a
write access.

8) False Sharing and Locks
Earlier within this exercise session there was one exercise about false sharing. Discuss the
consequences if two independent lock variables l1 and l2 share the same cache line.

CPU Operation Lock P1 P2 P3 P4

0 I I I I

1 test 0 E I I I

2 test 0 S S I I

1 lock (T&S) 1 M I I I

2 lock (T&S)

3 wait

4 wait

2 wait

3 wait

4 wait

1 unlock

3 test

3 lock (T&S)

2 wait

4 wait

3 unlock

2 test

4 test

2 lock (T&S)

4 lock (T&S)

4 wait

4 wait

2 unlock

Extra Tasks

The following tasks will not be discussed during the lecture but are there for more advanced
and interested students to broaden their knowledge.

9) Lock Free
Implement double-address compare-and-swap with the help of compare-and-swap.

10) Reader-Writer-Lock
Implement a reader writer lock using the atomic read-modify-write instructions presented
in the lecture. Make sure the lock is fair, that is, both readers and writers get the lock after
a bounded time.

11) Fair Fast Scalable Reader-Writer
Lock In their paper "A Fair Fast Scalable Reader-Writer Lock", Krieger et al. present a
scalable reader-writer lock implementation based on the MCS lock discussed in the
lecture.

a) Search for typos in the readerUnlock function and correct them. Justify why there is a
bug. If you do not spot any errors, justify why the function is correct.

b) Describe how the readerUnlock function works.

c) The reader-writer lock implementation is fair, though inherently unfair spin-lock
implementations are used in the readerUnlock function. Why?

Material

• Orran Krieger, Michael Stumm, Ron Unrau, Jonathan Hanna: "A Fair Fast Scalable Reader-
Writer Lock", International Conference on Parallel Processing (ICPP), 1993

• Mellor-Crummey Scott: "Algorithms for scalable synchronization on shared memory
multiprocessors", ACM Transactions on Computer Systems, Volume 9, 1991

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4134171&arnumber=4134208&count=56&index=36
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4134171&arnumber=4134208&count=56&index=36
http://portal.acm.org/citation.cfm?id=103729
http://portal.acm.org/citation.cfm?id=103729

	Exercise 5: MEMORY CONSISTENCY, CACHE COHERENCE AND LOCKS
	Memory Consistency
	Cache Coherency
	Cache Coherency and Locks
	Extra Tasks
	Material

