
Distributed Operating Systems 

Exercise 5: MEMORY CONSISTENCY, CACHE COHERENCE 
AND LOCKS 
In the tutorial, all solutions will be presented by students. Please be prepared for all questions 
as the exercise will focus on discussion, not on understanding the question and gathering the 
knowledge. 

Memory Consistency 

1) Sequential Consistency 
In a system with sequential consistency each processor always executes memory 
operations in the order specified by its program (program order). The order in which the 
individual memory operations of each processor become visible to the other processors 
on the shared interconnect (e.g., the bus) is called visibility order. 
Three processors (P1, P2 and P3) in a shared-memory system execute the following code 
(initially A = B = 0). 

Here a1 denotes the first operation of processor P1, a2 denotes the first operation of P2 
and b2 denotes the second operation of P2, etc. 

The outcome of the execution, denoted by the tuple (u,v,w), may vary depending on the 
order in which the individual operations of each processor become globally visible. Some 
outcomes may not be possible on a sequentially consistent system. Complete the 
following table with the possible results for (u,v,w). For each row describe if the result is 
sequentially consistent and if so, specify a visibility order that produces the result. An 
example is given in the second row. 

P1 P2 P3

a1: A := 1 a2: u := A a3: v := B

b2: B := 1 b3: w := A
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2) Relaxed Consistency: Peterson-Algorithm 
A well-known algorithm for mutual exclusion is Peterson's algorithm (shown in pseudo-
code below). Explain why Peterson's algorithm does not break on machines with a store 
buffer where reads are not permitted to bypass writes to the same memory location and 
why it does break if reads are permitted to bypass writes to the same memory location on 
systems with store forwarding (e.g., SPARC TSO). 

// global variables and initial values 
bool flag0 = false, flag1 = false; 
int turn = 0; 

// Process on CPU0 
flag0 = true; 
turn = 1; 
while (turn == 1 && flag1); 
// critical section 
flag0 = false; 

// Process on CPU1 
flag1 = true; 
turn = 0; 
while (turn == 0 && flag0); 
// critical section 
flag1 = false; 

3) Fence Instructions 
Machines with relaxed memory consistency typically provide programmers with fence 
instructions to tighten the ordering of memory instructions. Insert MFENCE (memory fence) 
instructions in Dekker's and Peterson's algorithms to ensure their correct behavior on a 
multi-processor system that implements a store buffer with store forwarding. Use as few 
fence instructions as necessary. 

u v w sequential consistent visibility order

0 0 0

0 0 1 yes a2, a3, a1, b3, b2

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



Cache Coherency 

Multiprocessor systems with caches use a coherency protocol, which ensures that writes by 
one processor eventually become visible to all other processors and that no two processors 
write to the same memory location simultaneously. One invalidation-based protocol 
discussed in the lecture is the MESI protocol. 

Two processors (P1 and P2) and uniform memory are connected to a shared bus, which 
implements the MESI cache coherency protocol. In memory there exists a data structure with 
the following layout: A (8 bytes), B (24 bytes), C (8 bytes). The cacheline size is 32 bytes, so that 
A and B reside in cacheline X, whereas C resides in cacheline Y. 

Processor P1 and P2 execute the following code: 

// Processor P1 
read(A); 
read(B); 
// do something with A 
read(B); 
write(A); 

// Processor P2 
read(B); 
read(C); 
// do something with C 
read(B); 
write(C); 

4) Cache Coherency in Action 
The following table lists the memory operations of the individual processors as they 
appear on the shared bus. The first column lists the processor and the second column 
specifies the memory operation being carried out. The next two columns list the MESI 
state of the cachelines X and Y in each of the processors. The last two columns describe if 
the operation caused a cacheline transfer to/from memory or to/from another cache. 
Initially all cachelines are invalid (I). 

CPU Operation P1 P2 Memory Transfer Cache Transfer

I I I I

1 read(A)

1 read(B)

2 read(B)

2 read(C)

1 read(B)

1 write(A)

2 read(B)

2 write(C)



5) False Sharing 
Because B is contained in cacheline X, false sharing occurs with A. Discuss how to remedy 
this problem and explain the impact on memory and cache transfers. 

Cache Coherency and Locks 

The cache-coherency protocol is sometimes crucial for the scaling of a particular lock 
implementation. The reason is, that some lock implementations produce too many bus 
messages and thereby slow down the execution of the processor. 

6) Test-and-Set Locks 
The Test-and-Set locks presented within the lecture do not scale well since they perform 
exclusive write operations to the lock variable even if the lock is currently taken by a 
different thread. 
 
A possible implementation of a simple Test-and-Set locks can be done as follows: 

 
class TSLock { 
    private: 
     unsigned int _lock 
  
    public: 
     TSLock() : _lock(0) { } 
  
     void lock() { 
         while (test_and_set(_lock) == 1) { } 
     } 
  
     void unlock() { 
         _lock = 0; 
     } 
 }; 

Check the scalability problem of the Test-and-Set locks by completing the below-
mentioned table. 

The first column of the table states which CPU is executing an instruction at the moment. 
The second column contains the executed operation. The state of the lock variable should 
be written in column three. The remaining four columns are supposed to contain the state 
of the cache line containing the lock variable on the corresponding core according to the 
MESI cache coherency protocol. 

https://en.wikipedia.org/wiki/MESI_protocol


7) Test-Test-and-Set Locks 
Within the lecture, an extension of the simple Test-and-Set lock was presented. This new 
lock implementation contains an additional Test-operation before the actual taking of the 
lock is performed. A possible implementation of a Test-Test-and-Set lock could look as 
follows: 

class TTSLock { 
  private: 
    unsigned int _lock; 

  public: 
    TTSLock() : _lock(0) { } 

    void lock() { 
        while (true) { 
            while (_lock == 1) { } 
            if (test_and_set(_lock) == 0) 
                break; 
         } 
    } 

    void unlock() { _lock = 0; } 
}; 

CPU Operation Lock P1 P2 P3 P4

0 I I I I

1 lock (T&S) 1 M I I I

2 wait (T&S) 1 I M I I

4 wait (T&S) 1 I I I M

2 wait (T&S)

3 wait (T&S)

4 wait (T&S)

3 wait (T&S)

1 unlock

3 lock (T&S)

2 wait (T&S)

4 wait (T&S)

3 unlock

2 lock (T&S)

4 wait (T&S)

4 wait (T&S)

2 unlock



Repeat the previous exercise and use a Test-Test-and-Set lock instead of only a Test-and-
Set Lock. Keep in mind that the Test-operation of the lock is only a read access and not a 
write access. 

8) False Sharing and Locks 
Earlier within this exercise session there was one exercise about false sharing. Discuss the 
consequences if two independent lock variables l1 and l2 share the same cache line. 

CPU Operation Lock P1 P2 P3 P4

0 I I I I

1 test 0 E I I I

2 test 0 S S I I

1 lock (T&S) 1 M I I I

2 lock (T&S)

3 wait

4 wait

2 wait

3 wait

4 wait

1 unlock

3 test

3 lock (T&S)

2 wait

4 wait

3 unlock

2 test

4 test

2 lock (T&S)

4 lock (T&S)

4 wait

4 wait

2 unlock



Extra Tasks 

The following tasks will not be discussed during the lecture but are there for more advanced 
and interested students to broaden their knowledge. 

9) Lock Free 
Implement double-address compare-and-swap with the help of compare-and-swap. 

10) Reader-Writer-Lock 
Implement a reader writer lock using the atomic read-modify-write instructions presented 
in the lecture. Make sure the lock is fair, that is, both readers and writers get the lock after 
a bounded time. 

11) Fair Fast Scalable Reader-Writer 
Lock In their paper "A Fair Fast Scalable Reader-Writer Lock", Krieger et al. present a 
scalable reader-writer lock implementation based on the MCS lock discussed in the 
lecture. 

a) Search for typos in the readerUnlock function and correct them. Justify why there is a 
bug. If you do not spot any errors, justify why the function is correct. 

b) Describe how the readerUnlock function works. 

c) The reader-writer lock implementation is fair, though inherently unfair spin-lock 
implementations are used in the readerUnlock function. Why? 

Material 

• Orran Krieger, Michael Stumm, Ron Unrau, Jonathan Hanna: "A Fair Fast Scalable Reader-
Writer Lock", International Conference on Parallel Processing (ICPP), 1993 

• Mellor-Crummey Scott: "Algorithms for scalable synchronization on shared memory 
multiprocessors", ACM Transactions on Computer Systems, Volume 9, 1991 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4134171&arnumber=4134208&count=56&index=36
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4134171&arnumber=4134208&count=56&index=36
http://portal.acm.org/citation.cfm?id=103729
http://portal.acm.org/citation.cfm?id=103729
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