
barkhauseninstitut.org

OS Support For High-Performance Hardware

Lectures on Distributed Operating Systems (SS’24)

till.miemietz@barkhauseninstitut.org

Barkhausen Institut 2

● Hereinafter: Memory allocation in red for kernel, gray for userspace processes

CPU
NIC

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 3

● CPU executes process S (high priority), that is doing network I/O

CPU

Process S

NIC

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 4

● Server process S (high priority) is blocked while waiting for network input

CPU

Process S

NIC

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 5

Recap: Traditional I/O – Receiving a Network Packet

● Instead of S, CPU executes an other process A (with low priority)

CPU

Process A

NIC

Barkhausen Institut 6

● Packet arrives at the NIC

CPU
NIC

Process A

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 7

● NIC performs demodulation etc., saves packet in RAM of NIC

CPU
NIC

Process A

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 8

● NIC emits an Interrupt (IRQ) to the CPU

CPU
NIC

Process A

IRQ

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 9

● CPU interrupts user program, executes IRQ handler set by OS

CPU
NIC

Interrupt Handler (in Kernel)

IRQ

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 10

● OS sets up Direct Memory Access (DMA) buffer for data transfer from NIC to RAM

CPU
NIC

Interrupt Handler (in Kernel)

DMA Setup

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 11

● DMA hardware transfers packet to in-kernel buffer

CPU
NIC

Interrupt Handler (in Kernel)

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 12

● DMA hardware transfers packet to in-kernel buffer

CPU
NIC

Interrupt Handler (in Kernel)

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 13

● DMA hardware transfers packet to in-kernel buffer

CPU
NIC

Interrupt Handler (in Kernel)

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 14

● Second IRQ triggers execution of the in-kernel network stack (data present in RAM)

CPU
NIC

Network Stack (in Kernel)

Recap: Traditional I/O – Receiving a Network Packet

IRQ

Barkhausen Institut 15

● Second IRQ triggers execution of the in-kernel network stack (data present in RAM)
– Since the 90’s most NICs use a ring buffer scheme that saves the second IRQ and the DMA setup (!)

CPU
NIC

Network Stack (in Kernel)

Recap: Traditional I/O – Receiving a Network Packet

IRQ

Barkhausen Institut 16

● Packet processing eventually leads to unblocking the server process

CPU
NIC

Network Stack (in Kernel)

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 17

● Data still in kernel buffers: Copy data to a location accessible by the server

CPU
NIC

Network Stack (in Kernel)

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 18

● Data still in kernel buffers: Copy data to a location accessible by the server

CPU
NIC

Network Stack (in Kernel)

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 19

● Data still in kernel buffers: Copy data to a location accessible by the server

CPU
NIC

Network Stack (in Kernel)

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 20

● Server process can continue

CPU
NIC

Process S (Userland)

Recap: Traditional I/O – Receiving a Network Packet

Barkhausen Institut 21

Recap: Traditional I/O – Receiving a Network Packet

● How does it look like from the server process’ POV? (Schematic I/O procedure)

int fd = -1;
ssize_t bytes_read;
unsigned char buffer[1024];

/* Obtain a handle to a device */
fd = open_func(“pathname”, <options>, <mode>);

/* Read data. I.e., wait for input. This blocks the *
 * calling process if no data is available immediately */
memset(&buffer, 0, 1024);
bytes_read = recv_io_func(fd, &buffer, 1024);

Barkhausen Institut 22

Traditional I/O – Common Insights

● Communication with peripheral devices is very slow

● This creates a lot of leeway for “CPU-sided” I/O optimizations
– Caching
– I/O scheduling
– Use asynchronous I/O and try to do something else in the meantime

● Avoid CPU idling due to I/O operations (switch to a different process, ...)

● “Performance of the I/O software itself is of little concern”

Barkhausen Institut 23

Modern Hardware – What has changed in the last ~15 years?

● CPU [1]:
– Intel 7150 N (rel. 2007): 1 core @ 3500MHz
– Intel Xeon Platinum 8358 (rel. 2021): 32 (64) cores @ 2600 MHz

● Storage [2,3], including a technology shift from HDDs to SSDs:
– Seagate Barracuda 7200.11 (rel. 2007): 1.5 TB, up to 120 MB/s
– Samsung 990 pro (rel. 2022): 2.0 TB, 7400 MB/s (read) / 6900 MB/s (write)

● Network [4,5]:
– Mellanox Connect-X2 (rel. ~2010): up to 40 Gbit/s per port
– Mellanox Connect-X7 (rel. 2022): up to 400 Gbit/s per port

Barkhausen Institut 24

Modern I/O Devices – Takeaways

● Performance improvement for peripheral devices much higher than for the CPU

● Strong trend towards more parallelism
– Helps at increasing scalability
– Sometimes leveraged by hardware layout (flash memory)

● A similar increase in performance can be observed on the system bus (PCIe)

Barkhausen Institut 25

Modern I/O Devices: Any Impact on the OS?

● Nowadays, I/O operations may take only a couple of microseconds!
– Compared to several milliseconds ~15 years ago

Time

Ab
so

lu
te

 I/
O

 L
at

en
cy

2007 2023
Time

Re
la

tiv
e

I/O
 L

at
en

cy

2007 2023

Software

Hardware

1

● Systems software is becoming a bottleneck!

Barkhausen Institut 26

The OS Is Becoming a Bottleneck – Latency / Throughput

● Case study for modern SSDs [8]:

Barkhausen Institut 27

The OS Is Becoming a Bottleneck – Scalability

● Case study for modern SSDs [8]:

Barkhausen Institut 28

Why is That?

● Performance costs on hardware (from within the OS)
– Writing 4 KiB to a modern SSD: ~15 µs
– RTT for a 4 KiB Packet in an InfiniBand fabric: < 10 µs

● Compared to OS operations (carried out multiple times on the I/O path)
– Copying 1 MiB in memory: ~ 1 µs
– Performing a context switch: ~ 2 – 3 µs

Barkhausen Institut 29

Why is That? – Looking At the Intro Again

CPU
NIC

Process S

IRQ

Kernel Software

Process A

DMA Transfer

Barkhausen Institut 30

Why is That? – Looking At the Intro Again

CPU
NIC

Process S

DMA Transfer

IRQ

Kernel Software

Process A

Barkhausen Institut 31

Software-Induced Performance Barriers for Fast I/O

● Interrupt-based notification

● Context switches

● Copying data to / from intermediate buffers

● Inadequate design of drivers and applications
– Parallelism of hardware not exploited in software (e.g. former single queue block layer in Linux [9])
– Poor locking schemes (coarse-grained locking, ...)
– Complex “optimizations” on the hot path (I/O scheduling on SSDs)→

Barkhausen Institut 32

Measures for Reducing Software Overhead in I/O
Operations

● Polling-based event notification: avoid IRQs

● Drivers in userspace: avoid context switches, microkernel-like benefits

● IPC using shared memory: avoid context switches

● Implement critical I/O path in hardware (offloading): mitigates all previous issues
– However, this trades speed for versatility!

Barkhausen Institut 33

Measures for Reducing Software Overhead in I/O
Operations

● Programming optimizations
– Parallelize I/O processing (often corresponds to features of modern hardware)
– Use of asynchronous I/O
– [lock-free programming]

● Avoid architectural performance pitfalls
– Try to achieve high CPU locality
– Take care of NUMA effects
– Reduce number of cross-core synchronization operations

Barkhausen Institut 34

Case Study – Remote Direct Memory Access
(RDMA)

Barkhausen Institut 35

Remote Direct Memory Access (RDMA)

● Interface standard for high-performance NICs
– Multiple implementations exist: RDMA over Converged Ethernet (RoCE), InfiniBand (IB), iWARP
– While using different hardware, all approaches share a common API (verbs)

● Common design decisions [11]:
– Offloading of large parts of the network stack to the NIC
– Separation of data plane and control plane
– Data plane implemented as a part of the application processes
– Polling-based event notification
– Several improvements of the network protocols compared to TCP/IP (out of scope for this lecture)

Barkhausen Institut 36

Control Plane and Data Plane in a Standard Network
Stack

● Same path for data plane (e.g. send) and control plane (e.g. ioctl) operations
– Too expensive for data plane operations that are frequently carried out

NIC

Device Driver

Ethernet

IP

TCP

ApplicationUser Space

Kernel Space

Hardware

Crossing mode boundary

Barkhausen Institut 37

Control Plane and Data Plane in a Standard Network
Stack

● Same path for data plane (e.g. send) and control plane (e.g. ioctl) operations
– Too expensive for data plane operations that are frequently carried out

NIC

Device Driver

Ethernet

IP

TCP

ApplicationUser Space

Kernel Space

Hardware

Crossing mode boundary

Trickling through several
layers of software

Barkhausen Institut 38

Control Plane and Data Plane in a Standard Network
Stack

● Same path for data plane (e.g. send) and control plane (e.g. ioctl) operations
– Too expensive for data plane operations that are frequently carried out

NIC

Device Driver

Ethernet

IP

TCP

ApplicationUser Space

Kernel Space

Hardware

Crossing mode boundary

Trickling through several
layers of software

Barkhausen Institut 39

Control Plane and Data Plane in a Standard Network
Stack

● Same path for data plane (e.g. send) and control plane (e.g. ioctl) operations
– Too expensive for data plane operations that are frequently carried out

NIC

Device Driver

Ethernet

IP

TCP

ApplicationUser Space

Kernel Space

Hardware

Crossing mode boundary

Trickling through several
layers of software

Barkhausen Institut 40

Control Plane and Data Plane in a Standard Network
Stack

● Same path for data plane (e.g. send) and control plane (e.g. ioctl) operations
– Too expensive for data plane operations that are frequently carried out

NIC

Device Driver

Ethernet

IP

TCP

ApplicationUser Space

Kernel Space

Hardware

Crossing mode boundary

Trickling through several
layers of software

Barkhausen Institut 41

Control Plane and Data Plane in a Standard Network
Stack

● Same path for data plane (e.g. send) and control plane (e.g. ioctl) operations
– Too expensive for data plane operations that are frequently carried out

NIC

Device Driver

Ethernet

IP

TCP

ApplicationUser Space

Kernel Space

Hardware

Crossing mode boundary

Propagation to device

Trickling through several
layers of software

Barkhausen Institut 42

Control Plane and Data Plane in an RDMA Stack

● Data plane operations directly between NIC and application (kernel bypass)
– All control operations, e.g. creating DMA mappings, go through the kernel (security enforcement)

User Space

Kernel Space

Hardware

Control Operation
handed over to verbs API

RDMA NIC (HCA)

In-Kernel Driver

User Space Driver

libibverbs

Application

Barkhausen Institut 43

Control Plane and Data Plane in an RDMA Stack

● Data plane operations directly between NIC and application (kernel bypass)
– All control operations, e.g. creating DMA mappings, go through the kernel (security enforcement)

User Space

Kernel Space

Hardware

Control Operation
handed over to verbs API

In-Kernel Driver

User Space Driver

libibverbs

Application

Handed over to kernel,
kernel does permission
checks etc.

RDMA NIC (HCA)

Barkhausen Institut 44

Control Plane and Data Plane in an RDMA Stack

● Data plane operations directly between NIC and application (kernel bypass)
– All control operations, e.g. creating DMA mappings, go through the kernel (security enforcement)

User Space

Kernel Space

Hardware

Control Operation
handed over to verbs API

In-Kernel Driver

User Space Driver

libibverbs

Application

Handed over to kernel,
kernel does permission
checks etc.

RDMA NIC (HCA)

Barkhausen Institut 45

Control Plane and Data Plane in an RDMA Stack

● Data plane operations directly between NIC and application (kernel bypass)
– All control operations, e.g. creating DMA mappings, go through the kernel (security enforcement)

User Space

Kernel Space

Hardware

Control Operation
handed over to verbs API

In-Kernel Driver

User Space Driver

libibverbs

Application

Handed over to kernel,
kernel does permission
checks etc.

Propagation to device
RDMA NIC (HCA)

Barkhausen Institut 46

Control Plane and Data Plane in an RDMA Stack

● Data plane operations directly between NIC and application (kernel bypass)
– All control operations, e.g. creating DMA mappings, go through the kernel (security enforcement)

User Space

Kernel Space

Hardware

Data Operation handed
over to verbs API

In-Kernel Driver

User Space Driver

libibverbs

Application

RDMA NIC (HCA)

Barkhausen Institut 47

Control Plane and Data Plane in an RDMA Stack

● Data plane operations directly between NIC and application (kernel bypass)
– All control operations, e.g. creating DMA mappings, go through the kernel (security enforcement)

User Space

Kernel Space

Hardware

Data Operation handed
over to verbs API

In-Kernel Driver

User Space Driver

libibverbs

Application

Userspace driver forwards
operation to HCA

RDMA NIC (HCA)

Barkhausen Institut 48

Control Plane and Data Plane in an RDMA Stack

● Data plane operations directly between NIC and application (kernel bypass)
– All control operations, e.g. creating DMA mappings, go through the kernel (security enforcement)

User Space

Kernel Space

Hardware

Data Operation handed
over to verbs API

In-Kernel Driver

User Space Driver

libibverbs

Application

Verbs library forwards
operation to userspace driver

Data reaches NIC without going
through the kernel, saving
copies and mode transitions

RDMA NIC (HCA)

Barkhausen Institut 49

Receiving a Network Packet With (Two-Sided) RDMA

● Hereinafter: Memory allocation in red for kernel, gray for userspace processes

NIC CPU

Process S

Barkhausen Institut 50

Receiving a Network Packet With (Two-Sided) RDMA

● First, S asks kernel to set up DMA mapping from its address space to NIC
– This is done only once when S starts using the NIC!

CPUNIC

In-Kernel Driver

Barkhausen Institut 51

Receiving a Network Packet With (Two-Sided) RDMA

● Result: NIC is allowed to directly read from / write to application memory
– One mapping for signaling (control buffer, doorbell register), another as a designated packet buffer

CPUNIC

In-Kernel Driver

Barkhausen Institut 52

Receiving a Network Packet With (Two-Sided) RDMA

● Process S now signals to NIC that it is ready for receiving data (receive request)
– Interaction between NIC and process S done by writing to memory windows established before

CPUNIC

Process S

Barkhausen Institut 53

Receiving a Network Packet With (Two-Sided) RDMA

● Process S now signals to NIC that it is ready for receiving data (receive request)
– Interaction between NIC and process S done by writing to memory windows established before

CPUNIC

Process S

Barkhausen Institut 54

Receiving a Network Packet With (Two-Sided) RDMA

● With the receive request, a buffer for storing the next packet is specified
– Must be accessible by the NIC!

CPUNIC

Process S

Barkhausen Institut 55

Receiving a Network Packet With (Two-Sided) RDMA

● NIC is notified of receive request by monitoring the mappings shared with S

CPUNIC

Process S

Barkhausen Institut 56

Receiving a Network Packet With (Two-Sided) RDMA

● S now starts polling for changes in the signaling memory window
– This means busy waiting, comparable to a spinlock CPU is effectively blocked→

CPUNIC

Process S

Continuous
Reading

Barkhausen Institut 57

Receiving a Network Packet With (Two-Sided) RDMA

● Packet arrives at the NIC

CPUNIC

Process S

Continuous
Reading

Barkhausen Institut 58

Receiving a Network Packet With (Two-Sided) RDMA

● NIC performs demodulation, packet parsing, etc.
– Protocol handling normally done in the kernel is performed directly by the NIC (in hardware)

CPUNIC

Process S

Continuous
Reading

Barkhausen Institut 59

Receiving a Network Packet With (Two-Sided) RDMA

● NIC uses DMA to move packet to designated RAM buffer
– Note that this does not involve the CPU at all!

CPUNIC

Process S

Continuous
Reading

Barkhausen Institut 60

Receiving a Network Packet With (Two-Sided) RDMA

● NIC uses DMA to move packet to designated RAM buffer
– Note that this does not involve the CPU at all!

CPUNIC

Process S

Continuous
Reading

Barkhausen Institut 61

Receiving a Network Packet With (Two-Sided) RDMA

● NIC uses DMA to move packet to designated RAM buffer
– Note that this does not involve the CPU at all!

CPUNIC

Process S

Continuous
Reading

Barkhausen Institut 62

Receiving a Network Packet With (Two-Sided) RDMA

● Lastly, the NIC writes a new value to the doorbell register
– Through constant polling, this change is immediately noticed by S

CPUNIC

Process S

Continuous
Reading

Barkhausen Institut 63

Receiving a Network Packet With (Two-Sided) RDMA

● S can access packet payload directly from predefined buffer

CPUNIC

Process S

Barkhausen Institut 64

RDMA – Programming Model

● Shared memory windows are abstracted to buffers and queue pairs
– Different queues for sending, receiving and completion notification (for more details see [10, 12])

Queue Pair

Receive QueueSend Queue

Work Queue
Entry

Work Queue
Entry

Work Queue
Entry

Completion Queue

Send and receive queue
contain a list of work items
that the NIC should take
care of

Barkhausen Institut 65

RDMA – Programming Model

● Shared memory windows are abstracted to buffers and queue pairs
– Different queues for sending, receiving and completion notification (for more details see [10, 12])

Queue Pair

Receive QueueSend Queue

Work Queue
Entry

Work Queue
Entry

Work Queue
Entry

Completion Queue

A single work queue entry
specifies the type of
operation, location of data
buffers, etc.

Barkhausen Institut 66

RDMA – Programming Model

● Shared memory windows are abstracted to buffers and queue pairs
– Different queues for sending, receiving and completion notification (for more details see [10, 12])

Queue Pair

Receive QueueSend Queue

Work Queue
Entry

Work Queue
Entry

Work Queue
Entry

Completion Queue

After working it off, the NIC
posts the result of each
work queue entry to a
completion queue
(technically not a part of a
queue pair)

Barkhausen Institut 67

RDMA – Programming Model

● However, note the increased complexity compared to traditional POSIX APIs
– E.g. queue pairs have a state machine associated with them (for more details see [10, 12])

/* This is only a snippet of pseudocode to showcase some of the complexity entangled with programming for RDMA devices. *
 * Many steps necessary to obtain an RDMA MWE are not depicted here. Also, all steps are over-simplified! */

/* Create a device context, similar to an fd obtained from open() */
dev_context = ibv_open_device();

/* This is eventually a syscall for setting up the memory mappings between this process and the NIC */
register_memory(dev_context, buffer);

/* Creates a new queue pair */
queue_pair = ibv_create_qp(dev_ctx, …);

/* Move the queue pair into a fully operational state, this operation alone takes ~200 LOC if implemented manually */
transition_queue_pair(&queue_pair);

/* Tell the NIC that we are ready to receive a packet inside the previously registered buffer */
ibv_post_recv(buffer, …);

/* This is the tight loop that polls the queue pair for incoming events from the NIC */
long no_events = 0;
while (no_event == 0) {
 no_events = ibv_poll_cq(dev_context->cq,…);
}

/* After receiving a notification, data can be directly read from the buffer */
char *packet_data = buffer;

Barkhausen Institut 68

RDMA – Programming Model

● Asynchronous programming is a key factor for performance
– Request issuing phase and completion are split into separate operations
– I/O operations do not block the calling process

● Using the time between I/O submission and completion to handle parallel requests
– Key for saturating fast devices with a modest number of threads

/* Tell the NIC that we are ready to receive a packet inside the previously registered buffer */
ibv_post_recv(buffer, …);

/* No context switch, may use I/O wait time to setup requests running in parallel etc. */

/* When having multiple requests inflight, ibv_poll_cq does not necessarily return the one posted above! */
long no_events = 0;
while (no_event == 0) {
 no_events = ibv_poll_cq(dev_context->cq,…);
}

Barkhausen Institut 69

RDMA – Summary

● Data path avoids multiple performance bottlenecks
– Kernel is not involved at all
– No copying of data between in-kernel and application buffers
– Communication between NIC and host done through polling instead of IRQs

● A lot of network-related code (protocol handling) implemented in NIC hardware

● Note that the APIs for communicating with the device are asynchronous
– Instead of avoiding idle time, this is now a key feature to ensure low latency / high throughput!

Barkhausen Institut 70

High-Performance I/O – Some More Aspects

Barkhausen Institut 71

High-Performance I/O for Storage

● Similar problems to those of fast NICs exist with modern SSDs
– Introduction of NVMe (parallel, low-overhead storage protocol on top of PCIe)
– Advanced flash technology
– Microsecond-scale of storage I/O operations

● Storage-Performance Development Kit (SPDK) [8]
– Conceptually very similar to RDMA (userspace driver, avoiding interrupts, ...)

● Programming model for different classes of fast I/O devices is similar
– Queue pairs and doorbell registers as central abstractions

Barkhausen Institut 72

High-Performance I/O – Eliminating System Calls

● System calls as a performance bottleneck [14, 15]
– Broadly spoken, system calls are some form of interrupt as well
– Multiple issues: Expensive mode transitions, loss of caches, address space switch possible …

Userspace Process

Cache

CPU
syscall

Barkhausen Institut 73

High-Performance I/O – Eliminating System Calls

● System calls as a performance bottleneck [14, 15]
– Broadly spoken, system calls are some form of interrupt as well
– Multiple issues: Expensive mode transitions, loss of caches, address space switch possible …

Userspace Process

Cache

CPU

CPU jumps to predefined entry
point in kernel binary,
clears microarchitectural state

Barkhausen Institut 74

High-Performance I/O – Eliminating System Calls

● System calls as a performance bottleneck [14, 15]
– Broadly spoken, system calls are some form of interrupt as well
– Multiple issues: Expensive mode transitions, loss of caches, address space switch possible …

Kernel

Cache

CPU

Cache cleared

Barkhausen Institut 75

High-Performance I/O – Eliminating System Calls

● Instead, use shared memory between user process and kernel (io_uring)→

– Both threads run on different CPU cores, polling on the shared memory window
– Possible advantage: Use of kernel abstractions and drivers at lower cost

Userspace Process Kernel

Kernel polls on “syscall”
memory page

Cache

CPU

Cache

CPU

Barkhausen Institut 76

High-Performance I/O – Eliminating System Calls

● Instead, use shared memory between user process and kernel (io_uring)→

– Both threads run on different CPU cores, polling on the shared memory window
– Possible advantage: Use of kernel abstractions and drivers at lower cost

Userspace Process KernelApplication sets flag to
indicate syscall request

Cache

CPU

Cache

CPU

Barkhausen Institut 77

High-Performance I/O – Eliminating System Calls

● Instead, use shared memory between user process and kernel (io_uring)→

– Both threads run on different CPU cores, polling on the shared memory window
– Possible advantage: Use of kernel abstractions and drivers at lower cost

Userspace Process Kernel
Kernel sees change of
flag in memory, starts
processing of system call

Cache

CPU

Cache

CPU

Barkhausen Institut 78

High-Performance I/O – Eliminating System Calls

● Instead, use shared memory between user process and kernel (io_uring)→

– Both threads run on different CPU cores, polling on the shared memory window
– Possible advantage: Use of kernel abstractions and drivers at lower cost
– Also, CPUs keep caches and other microarchitectural state

Userspace Process Kernel
Userspace Process polls
memory window, waiting
for the syscall to finish

Cache

CPU

Cache

CPU

Barkhausen Institut 79

High-Performance I/O – A Grain of Salt

● Frameworks like RDMA / SPDK / … move the device close to the application
– Suddenly you may find yourself writing kernel-style code in userspace!
– Hard to get right in the first place (the device is working)
– Even harder to get the right performance (“RDMA does not scale”)
– Use of high-level libraries like openMPI (?)

● Replacement of mature OS stacks with new interfaces
– Lack of common abstractions like multi-user management, live migration, … (see also [13])
– There is an increased risk of introducing new security vulnerabilities (e.g. seen with io_uring [7])

● High-Performance I/O might be an energy-efficiency nightmare (polling!)

Barkhausen Institut 80

High-Performance I/O – Summary

● Modern I/O devices may challenge traditional OS designs
– Using standard approaches data rates of modern NICs / SSDs are difficult to provide to applications
– Systems software as a bottleneck (e.g. not accounting for parallelization of devices)

● Try to remove major OS parts (e.g. the kernel) from the critical data path
– Device drivers in userspace
– Function offloading
– Use polling on doorbell registers instead of interrupts

● Often, a tradeoff between usability and performance has to be accepted

Barkhausen Institut 81

References for Further Reading

[1] https://en.wikipedia.org/wiki/List_of_Intel_Xeon_processors
[2] https://www.seagate.com/docs/pdf/datasheet/disc/ds_barracuda_7200_11.pdf
[3] https://download.semiconductor.samsung.com/resources/data-sheet/Samsung_NVMe_SSD_990_PRO_Datasheet_Rev.1.0.pdf
[4] https://cw.infinibandta.org/files/showcase_product/100818.162410.474.ConnectX-2_Silicon.pdf
[5] https://www.nvidia.com/content/dam/en-zz/Solutions/networking/infiniband-adapters/infiniband-connectx7-data-sheet.pdf

[6] https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch15.html
[7] https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
[8] Yang et al.: SPDK: A development kit to build high performance storage applications, 2017
[9] Bjørling et al.: Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems, 2013
[10] Barak, Dotan: RDMAmojo (https://www.rdmamojo.com)
[11] Introduction to InfiniBand (https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf), 2003
[12] RDMA Aware Networks Programming User Manual, Rev. 1.3
 (https://indico.cern.ch/event/218156/attachments/351725/490089/RDMA_Aware_Programming_user_manual.pdf)
[13] Planeta et al.: MigrOS: Transparent Live-Migration Support for Containerised RDMA Applications, USENIX ATC’21
[14] Soares, L. and Stumm, M.: FlexSC: Flexible System Call Scheduling with Exception-Less System Calls, OSDI’10
[15] Efficient IO with io_uring (https://kernel.dk/io_uring.pdf)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

