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● Hereinafter: Memory allocation in red for kernel, gray for userspace processes
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● CPU executes process S (high priority), that is doing network I/O
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Recap: Traditional I/O – Receiving a Network Packet
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● Server process S (high priority) is blocked while waiting for network input
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Recap: Traditional I/O – Receiving a Network Packet
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Recap: Traditional I/O – Receiving a Network Packet

● Instead of S, CPU executes an other process A (with low priority)
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Process A

NIC
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● Packet arrives at the NIC
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Recap: Traditional I/O – Receiving a Network Packet
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● NIC performs demodulation etc., saves packet in RAM of NIC
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● NIC emits an Interrupt (IRQ) to the CPU
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Recap: Traditional I/O – Receiving a Network Packet
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● CPU interrupts user program, executes IRQ handler set by OS
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Recap: Traditional I/O – Receiving a Network Packet
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● OS sets up Direct Memory Access (DMA) buffer for data transfer from NIC to RAM
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Recap: Traditional I/O – Receiving a Network Packet
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● DMA hardware transfers packet to in-kernel buffer
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● DMA hardware transfers packet to in-kernel buffer
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● Second IRQ triggers execution of the in-kernel network stack (data present in RAM)

CPU
NIC

Network Stack (in Kernel)

Recap: Traditional I/O – Receiving a Network Packet
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● Second IRQ triggers execution of the in-kernel network stack (data present in RAM)
– Since the 90’s most NICs use a ring buffer scheme that saves the second IRQ and the DMA setup (!)
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Recap: Traditional I/O – Receiving a Network Packet

IRQ
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● Packet processing eventually leads to unblocking the server process
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Recap: Traditional I/O – Receiving a Network Packet
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● Data still in kernel buffers: Copy data to a location accessible by the server
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Recap: Traditional I/O – Receiving a Network Packet



Barkhausen Institut 18

● Data still in kernel buffers: Copy data to a location accessible by the server

CPU
NIC

Network Stack (in Kernel)

Recap: Traditional I/O – Receiving a Network Packet



Barkhausen Institut 19

● Data still in kernel buffers: Copy data to a location accessible by the server
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Recap: Traditional I/O – Receiving a Network Packet
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● Server process can continue

CPU
NIC

Process S (Userland)

Recap: Traditional I/O – Receiving a Network Packet
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Recap: Traditional I/O – Receiving a Network Packet

● How does it look like from the server process’ POV? (Schematic I/O procedure)

int           fd = -1;
ssize_t       bytes_read;
unsigned char buffer[1024];

/* Obtain a handle to a device */
fd = open_func(“pathname”, <options>, <mode>);

/* Read data. I.e., wait for input. This blocks the        *  
 * calling process if no data is available immediately     */
memset(&buffer, 0, 1024);
bytes_read = recv_io_func(fd, &buffer, 1024);
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Traditional I/O – Common Insights

● Communication with peripheral devices is very slow 

● This creates a lot of leeway for “CPU-sided” I/O optimizations
– Caching
– I/O scheduling
– Use asynchronous I/O and try to do something else in the meantime

● Avoid CPU idling due to I/O operations (switch to a different process, ...)

● “Performance of the I/O software itself is of little concern”
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Modern Hardware – What has changed in the last ~15 years?

● CPU [1]: 
– Intel 7150 N (rel. 2007): 1 core @ 3500MHz 
– Intel Xeon Platinum 8358 (rel. 2021): 32 (64) cores @ 2600 MHz

● Storage [2,3], including a technology shift from HDDs to SSDs:
– Seagate Barracuda 7200.11 (rel. 2007): 1.5 TB, up to 120 MB/s 
– Samsung 990 pro (rel. 2022): 2.0 TB, 7400 MB/s (read) / 6900 MB/s (write)

● Network [4,5]:
– Mellanox Connect-X2 (rel. ~2010): up to 40 Gbit/s per port
– Mellanox Connect-X7 (rel. 2022): up to 400 Gbit/s per port
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Modern I/O Devices – Takeaways

● Performance improvement for peripheral devices much higher than for the CPU

● Strong trend towards more parallelism 
– Helps at increasing scalability
– Sometimes leveraged by hardware layout (flash memory)

● A similar increase in performance can be observed on the system bus (PCIe)
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Modern I/O Devices: Any Impact on the OS?

● Nowadays, I/O operations may take only a couple of microseconds!
– Compared to several milliseconds ~15 years ago
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● Systems software is becoming a bottleneck!
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The OS Is Becoming a Bottleneck – Latency / Throughput

● Case study for modern SSDs [8]:
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The OS Is Becoming a Bottleneck – Scalability

● Case study for modern SSDs [8]:
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Why is That?

● Performance costs on hardware (from within the OS)
– Writing 4 KiB to a modern SSD: ~15 µs
– RTT for a 4 KiB Packet in an InfiniBand fabric: < 10 µs

● Compared to OS operations (carried out multiple times on the I/O path)
– Copying 1 MiB in memory: ~ 1 µs
– Performing a context switch: ~ 2 – 3 µs
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Why is That? – Looking At the Intro Again
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Software-Induced Performance Barriers for Fast I/O

● Interrupt-based notification

● Context switches

● Copying data to / from intermediate buffers

● Inadequate design of drivers and applications
– Parallelism of hardware not exploited in software (e.g. former single queue block layer in Linux [9])
– Poor locking schemes (coarse-grained locking, ...)
– Complex “optimizations” on the hot path (   I/O scheduling on SSDs)→
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Measures for Reducing Software Overhead in I/O 
Operations

● Polling-based event notification: avoid IRQs

● Drivers in userspace: avoid context switches, microkernel-like benefits

● IPC using shared memory: avoid context switches

● Implement critical I/O path in hardware (offloading): mitigates all previous issues
– However, this trades speed for versatility!
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Measures for Reducing Software Overhead in I/O 
Operations

● Programming optimizations
– Parallelize I/O processing (often corresponds to features of modern hardware)
– Use of asynchronous I/O
– [lock-free programming]

● Avoid architectural performance pitfalls
– Try to achieve high CPU locality
– Take care of NUMA effects
– Reduce number of cross-core synchronization operations
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Case Study – Remote Direct Memory Access 
(RDMA)
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Remote Direct Memory Access (RDMA)

● Interface standard for high-performance NICs
– Multiple implementations exist: RDMA over Converged Ethernet (RoCE), InfiniBand (IB), iWARP
– While using different hardware, all approaches share a common API (verbs)

● Common design decisions [11]:
– Offloading of large parts of the network stack to the NIC
– Separation of data plane and control plane
– Data plane implemented as a part of the application processes
– Polling-based event notification 
– Several improvements of the network protocols compared to TCP/IP (out of scope for this lecture)
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Control Plane and Data Plane in a Standard Network 
Stack

● Same path for data plane (e.g. send) and control plane (e.g. ioctl) operations
– Too expensive for data plane operations that are frequently carried out
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ApplicationUser Space

Kernel Space

Hardware

Crossing mode boundary
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Control Plane and Data Plane in a Standard Network 
Stack

● Same path for data plane (e.g. send) and control plane (e.g. ioctl) operations
– Too expensive for data plane operations that are frequently carried out
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Control Plane and Data Plane in an RDMA Stack

● Data plane operations directly between NIC and application (kernel bypass)
– All control operations, e.g. creating DMA mappings, go through the kernel (security enforcement) 
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Control Plane and Data Plane in an RDMA Stack

● Data plane operations directly between NIC and application (kernel bypass)
– All control operations, e.g. creating DMA mappings, go through the kernel (security enforcement) 
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Receiving a Network Packet With (Two-Sided) RDMA

● Hereinafter: Memory allocation in red for kernel, gray for userspace processes

NIC CPU

Process S
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Receiving a Network Packet With (Two-Sided) RDMA

● First, S asks kernel to set up DMA mapping from its address space to NIC
– This is done only once when S starts using the NIC!

CPUNIC

In-Kernel Driver



Barkhausen Institut 51

Receiving a Network Packet With (Two-Sided) RDMA

● Result: NIC is allowed to directly read from / write to application memory
– One mapping for signaling (control buffer, doorbell register), another as a designated packet buffer

CPUNIC

In-Kernel Driver
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Receiving a Network Packet With (Two-Sided) RDMA

● Process S now signals to NIC that it is ready for receiving data (receive request)
– Interaction between NIC and process S done by writing to memory windows established before

CPUNIC

Process S
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Receiving a Network Packet With (Two-Sided) RDMA

● Process S now signals to NIC that it is ready for receiving data (receive request)
– Interaction between NIC and process S done by writing to memory windows established before

CPUNIC

Process S
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Receiving a Network Packet With (Two-Sided) RDMA

● With the receive request, a buffer for storing the next packet is specified
– Must be accessible by the NIC!

CPUNIC

Process S
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Receiving a Network Packet With (Two-Sided) RDMA

● NIC is notified of receive request by monitoring the mappings shared with S

CPUNIC

Process S
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Receiving a Network Packet With (Two-Sided) RDMA

● S now starts polling for changes in the signaling memory window
– This means busy waiting, comparable to a spinlock  CPU is effectively blocked→

CPUNIC

Process S

Continuous
Reading
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Receiving a Network Packet With (Two-Sided) RDMA

● Packet arrives at the NIC

CPUNIC

Process S

Continuous
Reading
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Receiving a Network Packet With (Two-Sided) RDMA

● NIC performs demodulation, packet parsing, etc.
– Protocol handling normally done in the kernel is performed directly by the NIC (in hardware)

CPUNIC

Process S

Continuous
Reading
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Receiving a Network Packet With (Two-Sided) RDMA

● NIC uses DMA to move packet to designated RAM buffer
– Note that this does not involve the CPU at all!

CPUNIC
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Receiving a Network Packet With (Two-Sided) RDMA

● NIC uses DMA to move packet to designated RAM buffer
– Note that this does not involve the CPU at all!
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Receiving a Network Packet With (Two-Sided) RDMA

● Lastly, the NIC writes a new value to the doorbell register
– Through constant polling, this change is immediately noticed by S

CPUNIC

Process S

Continuous
Reading
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Receiving a Network Packet With (Two-Sided) RDMA

● S can access packet payload directly from predefined buffer

CPUNIC

Process S
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RDMA – Programming Model

● Shared memory windows are abstracted to buffers and queue pairs
– Different queues for sending, receiving and completion notification (for more details see [10, 12])

Queue Pair

Receive QueueSend Queue

Work Queue
Entry

Work Queue
Entry

Work Queue
Entry

Completion Queue

Send and receive queue 
contain a list of work items 
that the NIC should take 
care of
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RDMA – Programming Model

● Shared memory windows are abstracted to buffers and queue pairs
– Different queues for sending, receiving and completion notification (for more details see [10, 12])

Queue Pair

Receive QueueSend Queue

Work Queue
Entry

Work Queue
Entry

Work Queue
Entry

Completion Queue

A single work queue entry 
specifies the type of 
operation, location of data 
buffers, etc.
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RDMA – Programming Model

● Shared memory windows are abstracted to buffers and queue pairs
– Different queues for sending, receiving and completion notification (for more details see [10, 12])

Queue Pair

Receive QueueSend Queue

Work Queue
Entry

Work Queue
Entry

Work Queue
Entry

Completion Queue

After working it off, the NIC 
posts the result of each 
work queue entry to a 
completion queue 
(technically not a part of a 
queue pair)
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RDMA – Programming Model

● However, note the increased complexity compared to traditional POSIX APIs
– E.g. queue pairs have a state machine associated with them (for more details see [10, 12])

/* This is only a snippet of pseudocode to showcase some of the complexity entangled with programming for RDMA devices. *
 * Many steps necessary to obtain an RDMA MWE are not depicted here. Also, all steps are over-simplified!                */

/* Create a device context, similar to an fd obtained from open() */
dev_context = ibv_open_device();

/* This is eventually a syscall for setting up the memory mappings between this process and the NIC */
register_memory(dev_context, buffer);

/* Creates a new queue pair */
queue_pair = ibv_create_qp(dev_ctx, …);

/* Move the queue pair into a fully operational state, this operation alone takes ~200 LOC if implemented manually */
transition_queue_pair(&queue_pair);

/* Tell the NIC that we are ready to receive a packet inside the previously registered buffer */
ibv_post_recv(buffer, …);

/* This is the tight loop that polls the queue pair for incoming events from the NIC */
long no_events = 0;
while (no_event == 0) {
  no_events = ibv_poll_cq(dev_context->cq,…);
}

/* After receiving a notification, data can be directly read from the buffer */
char *packet_data = buffer;
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RDMA – Programming Model

● Asynchronous programming is a key factor for performance
– Request issuing phase and completion are split into separate operations
– I/O operations do not block the calling process

● Using the time between I/O submission and completion to handle parallel requests
– Key for saturating fast devices with a modest number of threads

/* Tell the NIC that we are ready to receive a packet inside the previously registered buffer */
ibv_post_recv(buffer, …);

/* No context switch, may use I/O wait time to setup requests running in parallel etc. */

/* When having multiple requests inflight, ibv_poll_cq does not necessarily return the one posted above! */
long no_events = 0;
while (no_event == 0) {
  no_events = ibv_poll_cq(dev_context->cq,…);
}
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RDMA – Summary

● Data path avoids multiple performance bottlenecks
– Kernel is not involved at all
– No copying of data between in-kernel and application buffers
– Communication between NIC and host done through polling instead of IRQs

● A lot of network-related code (protocol handling) implemented in NIC hardware

● Note that the APIs for communicating with the device are asynchronous
– Instead of avoiding idle time, this is now a key feature to ensure low latency / high throughput!
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High-Performance I/O – Some More Aspects
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High-Performance I/O for Storage

● Similar problems to those of fast NICs exist with modern SSDs
– Introduction of NVMe (parallel, low-overhead storage protocol on top of PCIe)
– Advanced flash technology
– Microsecond-scale of storage I/O operations

● Storage-Performance Development Kit (SPDK) [8]
– Conceptually very similar to RDMA (userspace driver, avoiding interrupts, ...)

● Programming model for different classes of fast I/O devices is similar
– Queue pairs and doorbell registers as central abstractions
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High-Performance I/O – Eliminating System Calls

● System calls as a performance bottleneck [14, 15] 
– Broadly spoken, system calls are some form of interrupt as well
– Multiple issues: Expensive mode transitions, loss of caches, address space switch possible …

Userspace Process

Cache

CPU
syscall
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High-Performance I/O – Eliminating System Calls

● System calls as a performance bottleneck [14, 15] 
– Broadly spoken, system calls are some form of interrupt as well
– Multiple issues: Expensive mode transitions, loss of caches, address space switch possible …
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CPU
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point in kernel binary, 
clears microarchitectural state
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High-Performance I/O – Eliminating System Calls

● System calls as a performance bottleneck [14, 15] 
– Broadly spoken, system calls are some form of interrupt as well
– Multiple issues: Expensive mode transitions, loss of caches, address space switch possible …

Kernel

Cache

CPU

Cache cleared
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High-Performance I/O – Eliminating System Calls

● Instead, use shared memory between user process and kernel (  io_uring)→

– Both threads run on different CPU cores, polling on the shared memory window
– Possible advantage: Use of kernel abstractions and drivers at lower cost

Userspace Process Kernel

Kernel polls on “syscall” 
memory page

Cache

CPU

Cache

CPU
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High-Performance I/O – Eliminating System Calls

● Instead, use shared memory between user process and kernel (  io_uring)→

– Both threads run on different CPU cores, polling on the shared memory window
– Possible advantage: Use of kernel abstractions and drivers at lower cost
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High-Performance I/O – Eliminating System Calls

● Instead, use shared memory between user process and kernel (  io_uring)→

– Both threads run on different CPU cores, polling on the shared memory window
– Possible advantage: Use of kernel abstractions and drivers at lower cost
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High-Performance I/O – Eliminating System Calls

● Instead, use shared memory between user process and kernel (  io_uring)→

– Both threads run on different CPU cores, polling on the shared memory window
– Possible advantage: Use of kernel abstractions and drivers at lower cost
– Also, CPUs keep caches and other microarchitectural state

Userspace Process Kernel
Userspace Process polls 
memory window, waiting 
for the syscall to finish

Cache

CPU

Cache

CPU
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High-Performance I/O – A Grain of Salt

● Frameworks like RDMA / SPDK / … move the device close to the application
– Suddenly you may find yourself writing kernel-style code in userspace!
– Hard to get right in the first place (the device is working)
– Even harder to get the right performance (“RDMA does not scale”)
– Use of high-level libraries like openMPI (?)

● Replacement of mature OS stacks with new interfaces 
– Lack of common abstractions like multi-user management, live migration, … (see also [13])
– There is an increased risk of introducing new security vulnerabilities (e.g. seen with io_uring [7])

● High-Performance I/O might be an energy-efficiency nightmare (polling!)
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High-Performance I/O – Summary

● Modern I/O devices may challenge traditional OS designs
– Using standard approaches data rates of modern NICs / SSDs are difficult to provide to applications
– Systems software as a bottleneck (e.g. not accounting for parallelization of devices)

● Try to remove major OS parts (e.g. the kernel) from the critical data path
– Device drivers in userspace
– Function offloading
– Use polling on doorbell registers instead of interrupts

● Often, a tradeoff between usability and performance has to be accepted
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References for Further Reading

[1] https://en.wikipedia.org/wiki/List_of_Intel_Xeon_processors
[2] https://www.seagate.com/docs/pdf/datasheet/disc/ds_barracuda_7200_11.pdf
[3] https://download.semiconductor.samsung.com/resources/data-sheet/Samsung_NVMe_SSD_990_PRO_Datasheet_Rev.1.0.pdf
[4] https://cw.infinibandta.org/files/showcase_product/100818.162410.474.ConnectX-2_Silicon.pdf
[5] https://www.nvidia.com/content/dam/en-zz/Solutions/networking/infiniband-adapters/infiniband-connectx7-data-sheet.pdf

[6] https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch15.html
[7] https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
[8] Yang et al.: SPDK: A development kit to build high performance storage applications, 2017
[9] Bjørling et al.: Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems, 2013
[10] Barak, Dotan: RDMAmojo (https://www.rdmamojo.com)
[11] Introduction to InfiniBand (https://www.mellanox.com/pdf/whitepapers/IB_Intro_WP_190.pdf), 2003
[12] RDMA Aware Networks Programming User Manual, Rev. 1.3
        (https://indico.cern.ch/event/218156/attachments/351725/490089/RDMA_Aware_Programming_user_manual.pdf)
[13] Planeta et al.: MigrOS: Transparent Live-Migration Support for Containerised RDMA Applications, USENIX ATC’21
[14] Soares, L. and Stumm, M.: FlexSC: Flexible System Call Scheduling with Exception-Less System Calls, OSDI’10
[15] Efficient IO with io_uring (https://kernel.dk/io_uring.pdf)
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