
Pre
lim

in
ar

y
NOVA Microhypervisor
Interface Specification

Udo Steinberg
udo@hypervisor.org

February 13, 2013

Pre
lim

in
ar

y

Copyright c© 2006–2011 Udo Steinberg, Technische Universität Dresden.
Copyright c© 2012–2013 Udo Steinberg, Intel Corporation.

This specification is provided ”as is” and may contain defects or deficiencies which cannot or will not be
corrected. The author makes no representations or warranties, either expressed or implied, including but
not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement that the
contents of the specification are suitable for any purpose or that any practice or implementation of such
contents will not infringe any third party patents, copyrights, trade secrets or other rights.

The specification could include technical inaccuracies or typographical errors. Additions and changes
are periodically made to the information therein; these will be incorporated into new versions of the
specification, if any.

Pre
lim

in
ar

y

Contents

I Introduction 1

1 System Architecture 2

II Basic Abstractions 3

2 Kernel Objects 4
2.1 Protection Domain . 4
2.2 Execution Context . 4
2.3 Scheduling Context . 5
2.4 Portal . 5
2.5 Semaphore . 5

3 Mechanisms 6
3.1 Scheduling . 6
3.2 Communication . 6
3.3 Exceptions and Intercepts . 7
3.4 Interrupts . 7
3.5 Capability Delegation . 7
3.6 Capability Revocation . 8
3.7 Device Assignment . 8

III Application Programming Interface 10

4 Data Types 11
4.1 Capability . 11

4.1.1 Null Capability . 11
4.1.2 Memory Capability . 11
4.1.3 Port I/O Capability . 11
4.1.4 Object Capability . 11
4.1.5 Reply Capability . 13

4.2 Capability Selector . 13
4.3 Capability Range Descriptor . 14

4.3.1 Null Capability Range Descriptor . 14
4.3.2 Memory Capability Range Descriptor . 14
4.3.3 Port I/O Capability Range Descriptor . 14
4.3.4 Object Capability Range Descriptor . 14

4.4 Message Transfer Descriptor . 15
4.5 Quantum Priority Descriptor . 15
4.6 User Thread Control Block . 16

4.6.1 Header Area . 16
4.6.2 Data Area . 16

i

Pre
lim

in
ar

y

5 Hypercalls 19
5.1 Definitions . 19
5.2 Communication . 20

5.2.1 Call . 20
5.2.2 Reply . 21

5.3 Capability Management . 22
5.3.1 Create Protection Domain . 22
5.3.2 Create Execution Context . 23
5.3.3 Create Scheduling Context . 24
5.3.4 Create Portal . 25
5.3.5 Create Semaphore . 26
5.3.6 Revoke Capability Range . 27
5.3.7 Lookup Capability Range . 28

5.4 Execution Control . 29
5.4.1 Execution Context Control . 29
5.4.2 Scheduling Context Control . 30
5.4.3 Portal Control . 31
5.4.4 Semaphore Control . 32

5.5 Device Control . 33
5.5.1 Assign PCI Device . 33
5.5.2 Assign Global System Interrupt . 34

6 Booting 35
6.1 Root Protection Domain . 35

6.1.1 Resource Access . 35
6.1.2 Initial Configuration . 35

6.2 Hypervisor Information Page . 36

IV Application Binary Interface 39

7 ABI x86-32 40
7.1 Initial State . 40
7.2 Event-Specific Capability Selectors . 40
7.3 UTCB Data Area Layout . 43
7.4 Message Transfer Descriptor . 45
7.5 Calling Convention . 46

8 ABI x86-64 51
8.1 Initial State . 51
8.2 Event-Specific Capability Selectors . 51
8.3 UTCB Data Area Layout . 54
8.4 Message Transfer Descriptor . 57
8.5 Calling Convention . 58

V Appendix 63

A Acronyms 64

B Bibliography 66

C Console 67

D Download 68

ii

Pre
lim

in
ar

yPart I

Introduction

1

Pre
lim

in
ar

y

1 System Architecture

The NOVA OS Virtualization Architecture facilitates the coexistence of multiple legacy guest operating
systems and a multi-server user environment on a single platform [4]. The core system leverages
virtualization technology provided by recent x86 platforms and comprises the Microhypervisor and one
or more Virtual-Machine Monitors (VMMs).

Microhypervisor

user

kernel

host
guest

Root Partition Manager DriversApplications

VMM VMM VMM VMM

VM VMVM VM

Guest
Operating

System

Guest
Operating

System Appliance
Virtual

Appliance
Virtual

Figure 1.1: System Architecture

Figure 1.1 shows the structure of the system. The microhypervisor is the only component running in
privileged root/kernel mode. It isolates the user-level servers, including the virtual-machine monitor, from
one another by placing them in different address spaces in unprivileged root/user mode. Each legacy guest
operating system runs in its own virtual-machine environment in non-root mode and is therefore isolated
from the other components.

Besides isolation, the microhypervisor also provides mechanisms for partitioning and delegation of
platform resources, such as CPU time, physical memory, I/O ports and hardware interrupts and for
establishing communication paths between different protection domains.

The virtual-machine monitor handles virtualization faults and implements virtual devices that enable legacy
guest operating systems to function in the same manner as they would on bare hardware. Providing
this functionality outside the microhypervisor in the VMM considerably reduces the size of the trusted
computing base for the multi-server user environment and for applications that do not require virtualization
support.

The architecture and interfaces of the VMM and the multi-server user environment are not described in this
document.

2

Pre
lim

in
ar

yPart II

Basic Abstractions

3

Pre
lim

in
ar

y

2 Kernel Objects

2.1 Protection Domain

1. The Protection Domain (PD) is a unit of protection and isolation.

2. A protection domain is referenced by a Protection Domain Capability (CAPOBJPD).

3. A protection domain is composed of a set of spaces that hold capabilities to platform resources
or kernel objects that can be accessed by execution contexts within the protection domain. The
following spaces are currently defined:

• Memory Space
• Port I/O Space
• Object Space

4. The memory space of a protection domain holds capabilities to page frames in physical memory.

5. The port I/O space of a protection domain holds capabilities to I/O ports.

6. The object space of a protection domain holds capabilities to the following kernel objects:

• Protection Domain (PD)
• Execution Context (EC)
• Scheduling Context (SC)
• Portal (PT)
• Semaphore (SM)

2.2 Execution Context

1. The Execution Context (EC) is an abstraction for an activity within a protection domain.

2. An execution context is referenced by an Execution Context Capability (CAPOBJEC).

3. An execution context is permanently bound to the protection domain in which it was created.

4. An execution context may optional have a scheduling context bound to it.

5. There exist two flavors of execution context:

• Kernel thread
• Virtual CPU

6. An execution context comprises the following information:

• Reference to protection domain (2.1)
• Event Selector Base (SELEVT) (3.3)
• Reply capability register (4.1)
• User Thread Control Block (UTCB) (4.6)
• Central Processing Unit (CPU) registers (architecture dependent)
• Floating Point Unit (FPU) registers (architecture dependent)

4

Pre
lim

in
ar

y

2.3 Scheduling Context

1. The Scheduling Context (SC) is a unit of dispatching and prioritization.

2. A scheduling context is referenced by a Scheduling Context Capability (CAPOBJSC).

3. A scheduling context is permanently bound to exactly one physical CPU.

4. At any point in time, a scheduling context is bound to exactly one execution context.

5. Donation of a scheduling context to another execution context binds the scheduling context to that
other execution context.

6. A scheduling context comprises the following information:

• Reference to execution context (2.2)

• Time quantum

• Priority

2.4 Portal

1. A Portal (PT) represents a dedicated entry point into the protection domain in which the portal was
created.

2. A portal is referenced by a Portal Capability (CAPOBJPT).

3. A portal is permanently bound to exactly one execution context.

4. A portal comprises the following information:

• Reference to execution context (2.2)

• Message Transfer Descriptor (MTD) (4.4)

• Entry instruction pointer

• Portal Identifier (PID)

2.5 Semaphore

1. A Semaphore (SM) provides a means to synchronize execution and interrupt delivery by selectively
blocking and unblocking execution contexts.

2. A semaphore is referenced by a Semaphore Capability (CAPOBJSM).

5

Pre
lim

in
ar

y

3 Mechanisms

3.1 Scheduling

The microhypervisor implements a round-robin scheduler with multiple priority levels. Whenever an
execution context is ready to execute, the runqueue contains all scheduling contexts bound to that execution
context. When an execution context blocks, the microhypervisor removes the corresponding scheduling
contexts from the runqueue.

When the microhypervisor needs to make a scheduling decision, it selects the highest-priority scheduling
context from the runqueue and dispatches the execution context bound to that scheduling context.

The parameters of a scheduling context influence the scheduling behavior of the system as follows:

• The priority defines the importance of a scheduling context. A higher-priority scheduling context
always has precedence and immediately preempts a lower-priority scheduling context.

• The time quantum defines the number of microseconds that the execution context, which is currently
bound to the scheduling context, can utilize the CPU when it is dispatched. A dispatched execution
context consumes the time quantum of its scheduling context until the quantum reaches zero; at
that point the microhypervisor preempts the execution context, replenishes the time quantum of the
scheduling context, and makes a scheduling decision.

3.2 Communication

Message passing between protection domains is governed by portals. A portal represents a dedicated entry
point into the protection domain to which the portal is bound. An execution context in a protection domain
can call any portal for which the protection domain holds a capability. Portal capabilities can be delegated
in order to establish cross-domain communication channels.

To initiate a message-passing operation from one protection domain to another, the caller execution
context passes a portal capability selector SELOBJPT to the microhypervisor. The microhypervisor uses
the capability selector to look up the portal capability CAPOBJPT in the object space of the caller protection
domain. If the lookup succeeds, the microhypervisor loads the destination protection domain and entry
instruction pointer for that domain from the portal.

An arbitrary number of portals can be bound to a callee execution context in a protection domain. The
callee provides the stack for handling one incoming request on any of these portals. If the callee is busy
handling another request, and both caller and callee are on the same CPU, the caller may optionally lend
its scheduling context to the callee to help it run the previous request to completion.

Once the callee is available to handle a new request and a caller exists for any portal bound to the callee,
the microhypervisor arranges a rendezvous and transfers the message from the UTCB of the caller to the
UTCB of the callee.

If the request established a reply capability for the callee, the callee may subsequently respond directly to
the caller through a reply operation without risking to block, because the caller is already waiting for the
response.

The following forms of message passing are currently supported:

6

Pre
lim

in
ar

y

Nondonating Call

During a nondonating call, the caller execution context traverses the destination portal, rendezvouses with
a callee execution context and transfers a message to it. The microhypervisor establishes a reply capability
for the callee. The caller blocks on the instruction following the hypercall and does not donate the current
scheduling context to the callee. The callee may later invoke the reply capability to send a response directly
to the blocked caller. Upon receiving the response the caller becomes unblocked.

Donating Call

A donating call differs from a nondonating call in that the caller donates the current scheduling context
to the callee. The donation mechanism implements priority and bandwidth inheritance from the caller
to the callee. The caller blocks on the instruction following the hypercall and the callee starts executing
immediately. The microhypervisor also establishes a reply capability for the callee. The callee may later
invoke the reply capability to send a response directly to the blocked caller. Upon receiving the response
the caller becomes unblocked.

Reply

The reply operation sends a message back to the caller identified by the reply capability and revokes the
reply capability. If the reply capability was established by a donating call, the microhypervisor returns the
previously donated scheduling context back to the caller. The callee blocks until the next request arrives.

3.3 Exceptions and Intercepts

When an execution context triggers a hardware exception or VM intercept, the microhypervisor adds the
exception number or intercept reason to the Event Selector Base (SELEVT) of the affected EC. If the
resulting capability selector refers to a portal capability CAPOBJPT , the microhypervisor arranges an implicit
donating call for the execution context through the corresponding portal; otherwise the execution context
is shut down.

The entire handling of the exception or intercept is performed using the current scheduling context of the
execution context that triggered the event. Furthermore, that execution context remains blocked until the
handler has replied with a message to resolve the exception or intercept.

The number of capability selectors used for exception and intercept handling is conveyed in the Hypervisor
Information Page (HIP) (6.2). The translation of hardware exception numbers and intercept reasons to
capability selectors is described in the processor-specific Application Binary Interface (ABI) (IV).

3.4 Interrupts

The microhypervisor provides a semaphore per Global System Interrupt (GSI) [2]. An execution
context waits for an interrupt by performing an sm ctrl[down] hypercall to block on the corresponding
semaphore. When the interrupt occurs, the microhypervisor issues an sm ctrl[up] operation for the
semaphore.

3.5 Capability Delegation

Delegation of capabilities from one protection domain to another is performed during communication. The
execution context that sends a message puts typed items in its UTCB, specifying which range of capabilites

7

Pre
lim

in
ar

y

from the sender’s protection domain it wants to delegate to the receiver’s protection domain. The receiver
specifies in its UTCB, which range of capabilities it is willing to accept and where they should be installed
in the receiver’s protection domain.

The microhypervisor computes the intersection of the sender and receiver ranges and delegates only those
capabilities that are covered by both ranges. The sender may optionally reduce the permissions of the
delegated capabilities for the receiver, using the mask field in the Capability Range Descriptor (CRD).

If the capability ranges of the sender and receiver differ in size, the capability hotspot, specified by the
sender, is used for disambiguation as illustrated in Figure 3.1.

∼ HOT ∼
}

SELHOT

01920232463/31

SND 0
}

SELSND

0192063/31

RCV 0
}

SELRCV

0232463/31

RCV HOT 0
}

SELRCVdisambiguated

01920232463/31

Figure 3.1: Capability Range Disambiguation

In this example, the sender has specified a capability range of order 20, starting at SELSND, whereas the
receiver has specified a capability range of order 24, starting at SELRCV. There exist 24 possible locations
in the receiver range, where the sender range could be delegated. Whenever two capability ranges differ
in size, the microhypervisor truncates the larger range by taking the ambiguous bits from the capability
hotspot.

3.6 Capability Revocation

Capability permissions may be revoked at any point in time. During the revoke hypercall, the execution
context supplies a Capability Range Descriptor (CRD), whose mask field describes which permissions
to revoke from all capabilities in the specified range. For each bit set in the mask, the microhypervisor
removes the corresponding bit in the capability permissions.

Revoking permissions from a capability also revokes those permissions from all inherited capabilities in
the same or other protection domains.

Once all permissions of a capability have been removed, the hypervisor deletes that capability. When all
capabilities and references to a kernel object have been deleted, the hypervisor destroys the kernel object.

3.7 Device Assignment

The microhypervisor provides mechanisms for direct assignment of PCI devices to VMs, and for
implementing user-level device drivers safely. The component that manages the PCI device (e.g., VMM or
device driver) must perform the following steps in any order:

• It must assign the device, via the Assign PCI hypercall, to the protection domain that implements the
driver for the device.

8

Pre
lim

in
ar

y

• If the device performs DMA, the protection domain to which the device is assigned must have
mapped the respective memory regions as DMA-enabled. This can be achieved by setting the D-
bit in the typed item that establishes the memory region.

• If the device generates interrupts, the interrupt must be configured via the Assign GSI hypercall.

9

Pre
lim

in
ar

yPart III

Application Programming Interface

10

Pre
lim

in
ar

y

4 Data Types

4.1 Capability

A Capability (CAP) is a reference to a kernel object plus associated auxiliary data, such as access
permissions. Capabilities are opaque and immutable to the user — they cannot be inspected, modified or
addressed directly; instead user programs access a capability via a capability selector (4.2). All capabilities
can be delegated and revoked as described in Section 3.5. The following types of capabilities exist:

4.1.1 Null Capability

A Null Capability (CAP0) does not reference anything and there are no permissions defined.

4.1.2 Memory Capability

A Memory Capability (CAPMEM) references a 4KB page frame. It is stored in the memory space of a
protection domain. The capability permissions are defined as follows:

∼ ∼ x w r
01234

r readable if set.

w writable if set.

x executable if set.

4.1.3 Port I/O Capability

An Port I/O Capability (CAPPIO) references an I/O port. It is stored in the port I/O space of a protection
domain. The capability permissions are defined as follows:

∼ ∼ ∼ ∼ a
01234

a accessible if set.

4.1.4 Object Capability

An Object Capability (CAPOBJ) references a kernel object. It is stored in the object space of a protection
domain. The following types of object capabilities are currently defined:

11

Pre
lim

in
ar

y

4.1.4.1 Protection Domain Capability

A Protection Domain Capability (CAPOBJPD) references a protection domain (2.1). The capability
permissions are defined as follows:

sm pt sc ec pd
01234

pd Hypercall create pd (5.3.1) permitted if set.

ec Hypercall create ec (5.3.2) permitted if set.

sc Hypercall create sc (5.3.3) permitted if set.

pt Hypercall create pt (5.3.4) permitted if set.

sm Hypercall create sm (5.3.5) permitted if set.

4.1.4.2 Execution Context Capability

An Execution Context Capability (CAPOBJEC) references an execution context (2.2). The capability
permissions are defined as follows:

∼ pt sc ∼ ct
01234

ct Hypercall ec ctrl (5.4.1) permitted if set.

sc Hypercall create sc (5.3.3) can bind a scheduling context if set.

pt Hypercall create pt (5.3.4) can bind a portal if set.

4.1.4.3 Scheduling Context Capability

A Scheduling Context Capability (CAPOBJSC) references a scheduling context (2.3). The capability
permissions are defined as follows:

∼ ∼ ∼ ∼ ct
01234

ct Hypercall sc ctrl (5.4.2) permitted if set.

4.1.4.4 Portal Capability

A Portal Capability (CAPOBJPT) references a portal (2.4). The capability permissions are defined as follows:

∼ ∼ ∼ call ct
01234

call Hypercall call (5.2.1 permitted if set.

ct Hypercall pt ctrl (5.4.3) permitted if set.

12

Pre
lim

in
ar

y

4.1.4.5 Semaphore Capability

A Semaphore Capability (CAPOBJSM) references a semaphore (2.5). The capability permissions are defined
as follows:

∼ ∼ ∼ dn up
01234

up Hypercall sm ctrl[up] (5.4.4) permitted if set.

dn Hypercall sm ctrl[down] (5.4.4) permitted if set.

4.1.5 Reply Capability

A Reply Capability (CAPRP) references a caller execution context. It is stored in the reply register of an
execution context during communication and automatically destroyed when invoked.

4.2 Capability Selector

A Capability Selector (SEL) is a user-visible abstract key for accessing a capability. The capability selector
serves as integer index for the memory space, port I/O space, or object space of a protection domain. All
capability selectors that do not refer to capabilities of another type refer to a null capability. For example,
in Figure 4.1 capability selector 2 refers to a capability for an execution context.

Portal

Portal

Execution Context

Null Capability
EC Capability
PT Capability
PT Capability

object space
with capabilities

kernel objects

2

0
1

3

capability selector

Figure 4.1: Capability Selector

13

Pre
lim

in
ar

y

4.3 Capability Range Descriptor

A Capability Range Descriptor (CRD) refers to all capabilities of a particular type in the selector
range SEL . . . SEL + 2Order − 1. It must be naturally aligned such that SEL ≡ 0 (mod 2Order). During
capability delegation, the permissions of the destination capability are computed as the logical AND of the
permissions of the source capability, the permission mask from the send capability range descriptor, and
the permission mask from the receive capability range descriptor.

4.3.1 Null Capability Range Descriptor

A Null Capability Range Descriptor (CRD0) does not refer to any capabilities.

∼ 0
01263/31

4.3.2 Memory Capability Range Descriptor

A Memory Capability Range Descriptor (CRDMEM) refers to the memory capabilities located within the
specified selector range of the memory space. Each memory capability covers 212 bytes of memory.

SELMEM Order Mask 1
01267111263/31

4.3.3 Port I/O Capability Range Descriptor

An Port I/O Capability Range Descriptor (CRDPIO) refers to the port I/O capabilities located within the
specified selector range of the port I/O space.

SELPIO Order Mask 2
01267111263/31

4.3.4 Object Capability Range Descriptor

An Object Capability Range Descriptor (CRDOBJ) refers to the object capabilities located within the
specified selector range of the object space.

SELOBJ Order Mask 3
01267111263/31

14

Pre
lim

in
ar

y

4.4 Message Transfer Descriptor

The Message Transfer Descriptor (MTD) is an architecture-specific bitfield that controls the contents of an
exception or intercept message. The MTD is provided by the portal associated with the event and conveyed
to the receiver as part of the exception or intercept message.

For each bit set to 1, the microhypervisor transfers the processor state associated with that bit to/from the
respective fields of the UTCB data area. The layout of the MTD and the fields in the UTCB data area are
described in the processor-specific ABI (IV).

4.5 Quantum Priority Descriptor

The Quantum Priority Descriptor (QPD) specifies the priority of a scheduling context and its time quantum
in microseconds. It has the following format:

Time Quantum ∼ Priority
078111263/31

Figure 4.2: Quantum Priority Descriptor

15

Pre
lim

in
ar

y

4.6 User Thread Control Block

All execution contexts, except virtual CPUs, have their own private User Thread Control Block (UTCB),
which consists of a header area and a data area as illustrated in Figure 4.3.

wlast
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

w0

Data

TLS

CRDWIND

CRDWINT

Number Of Items: T[31−16] U[15−0]

Header

063/31

Figure 4.3: User Thread Control Block: General Layout

4.6.1 Header Area

The UTCB header fields are defined as follows:

U

Number of untyped items.

T

Number of typed items.

CRDWINT

This capability range descriptor (4.3) specifies a receive window in the memory, port I/O, or object
space, in which the microhypervisor is allowed to perform capability translations. A null capability
range descriptor disables capability translations.

CRDWIND

This capability range descriptor (4.3) specifies a receive window in the memory, port I/O, or object
space, in which the execution context is willing to accept capability delegations. A null capability
range descriptor disables capability delegations.

TLS

This field is never written by the microhypervisor and can be used to store thread-local data.

4.6.2 Data Area

The size of the data area is defined by the size of the UTCB minus the size of the header area. An execution
context uses its UTCB to send or receive messages, and to transfer typed items during capability delegation.
The U and T fields in the UTCB header area define the number of untyped and typed items.

16

Pre
lim

in
ar

y

4.6.2.1 Untyped Items

The microhypervisor transfers untyped items from the beginning of the UTCB data area upwards. Each
untyped item occupies one word as illustrated in Figure 4.4 For example, during a transfer of u untyped
items, the microhypervisor copies words w0...wu−1 from the UTCB data area of the sender to words
w0...wu−1 in the UTCB data area of the receiver, without interpreting the contents of these words.

Data
}

w0

063/31

Figure 4.4: User Thread Control Block: Untyped Item

4.6.2.2 Typed Items

The microhypervisor transfers typed items from the end of the UTCB data area downwards. Each typed
item occupies two words. For example, during a transfer of t typed items, the microhypervisor interprets
words wlast...wlast−2t+1 of the sender’s UTCB data area. For each typed item in the sender UTCB, the
microhypervisor creates a corresponding typed item in the receiver UTCB. The following typed items are
currently defined:

Translate:

∼ 0
}

wlast

CRD
}

wlast−1

0163/31

Figure 4.5: User Thread Control Block: Translate Item

If the type of the sender’s CRD does not match the type of the receive window CRDWINT in the
receiver’s UTCB header, the receiver obtains a typed item with a null capability range descriptor.

Otherwise, the microhypervisor attempts to translate the capability range specified by the base
address and order in the sender protection domain to the corresponding capability range in the
receiver protection domain from which it had been originally delegated. If the translation fails,
e.g., because the sender range is not derived from the receiver range, the receiver obtains a typed
item with a null capability range descriptor. Otherwise the capability range descriptor describes the
corresponding range in the receiver and the sender permissions for that range.

Delegate:

SELHOT H G D 0 1
}

wlast

CRD
}

wlast−1

018910111263/31

Figure 4.6: User Thread Control Block: Delegate Item

If the type of the sender’s CRD does not match the type of the receive window CRDWIND in the
receiver’s UTCB header, the receiver obtains a typed item with a null capability range descriptor.

Otherwise, the microhypervisor computes the range of capabilities to delegate from the sender to
the receiver, using the hotspot SELHOT for range disambiguation, as described in Section 3.5. The
capability range descriptor in the receiver’s typed item describes the contents of the receive window.

The following bits provide additional control over the capability delegation:

17

Pre
lim

in
ar

y

H
If the bit is clear, the source of the capability delegation is the protection domain itself. If the
bit is set, the source is set to the microhypervisor. Only the root protection domain can use this
bit to request capabilities from the microhypervisor. For other protection domains this bit is
treated as clear.

G
If the bit is clear, the resources referenced by the CRD will not be accessible in the guest VM.
If the bit is set, the resources will be accessible in the guest VM. This bit is only applicable to
CRDMEM and CRDPIO.

D
If the bit is clear, the resources referenced by the CRD will not be accessible by DMA. If the
bit is set, the resources will be accessible by DMA. This bit is only applicable to CRDMEM.

18

Pre
lim

in
ar

y

5 Hypercalls

5.1 Definitions

Hypercall Numbers

Each hypercall is identified by a unique number. Figure 5.1 lists the currently defined hypercalls.

Number Hypercall Section
0x0 CALL 5.2.1
0x1 REPLY 5.2.2
0x2 CREATE PD 5.3.1
0x3 CREATE EC 5.3.2
0x4 CREATE SC 5.3.3
0x5 CREATE PT 5.3.4
0x6 CREATE SM 5.3.5
0x7 REVOKE 5.3.6
0x8 LOOKUP 5.3.7
0x9 EC CTRL 5.4.1
0xa SC CTRL 5.4.2
0xb PT CTRL 5.4.3
0xc SM CTRL 5.4.4
0xd ASSIGN PCI 5.5.1
0xe ASSIGN GSI 5.5.2

Figure 5.1: Hypercall Numbers

Status Codes

Figure 5.2 shows the status codes returned to indicate success or failure of a hypercall.

Number Status Code Description
0x0 SUCCESS Successful Operation
0x1 COM TIM Communication Timeout
0x2 COM ABT Communication Abort
0x3 BAD HYP Invalid Hypercall
0x4 BAD CAP Invalid Capability
0x5 BAD PAR Invalid Parameter
0x6 BAD FTR Invalid Feature
0x7 BAD CPU Invalid CPU Number
0x8 BAD DEV Invalid Device ID

Figure 5.2: Status Codes

19

Pre
lim

in
ar

y

5.2 Communication

5.2.1 Call

Synopsis:

status = call (SELOBJPT);

Parameters:

SELOBJPT : Target Portal

Flags:

0 DD DB
0123

DB Disable Blocking (0=blocking, 1=nonblocking)

DD Disable Donation (0=dcall, 1=ncall)

Description:

1. If the execution context (2.2), to which the target portal referenced by SELOBJPT is bound, is
busy, the microhypervisor considers the ’disable blocking’ flag. If the flag is set, the hypercall
returns with a timeout. Otherwise the caller blocks until the callee execution context becomes
available.

2. The microhypervisor transfers a message, whose contents is determined by the UTCB, from
the caller to the callee.

3. The microhypervisor establishes a reply capability (4.1) in the reply register of the callee. The
caller blocks until the callee invokes the reply capability. If the ’disable donation’ flag is clear,
the current scheduling context, previously bound to the caller, is donated and thereby bound to
the callee.

Status:

SUCCESS

Hypercall completed successfully.

COM TIM

Rendezvous with the callee execution context timed out.

COM ABT

Operation aborted during execution of the callee execution context.

BAD CAP

SELOBJPT did not refer to a Portal Capability (CAPOBJPT).

BAD CPU

Caller execution context and callee execution context are on different CPUs.

20

Pre
lim

in
ar

y

5.2.2 Reply

Synopsis:

PID = reply();

Description:

1. If the reply register contains a reply capability, the microhypervisor transfers a message, whose
contents is determined by the UTCB, to the caller execution context referenced by the reply
capability.

2. If the caller had donated its scheduling context to the callee, the microhypervisor binds that
scheduling context back to the caller, thereby terminating the donation.

3. The microhypervisor destroys the reply capability by replacing it with a null capability CAP∅.

4. The callee blocks until a subsequent request arrives.

Status:

This hypercall does not return. Instead, when one of the portals bound to the execution context is
called, the microhypervisor passes the Portal Identifier (PID) of the called portal to the execution
context, and execution continues at the instruction pointer specified in that portal.

21

Pre
lim

in
ar

y

5.3 Capability Management

5.3.1 Create Protection Domain

Synopsis:

status = create pd (SELOBJ0, SELOBJPD, CRDOBJ);

Parameters:

SELOBJ0 : Created PD

SELOBJPD : Owner PD

CRDOBJ: Initial Portals

Description:

Creates a new protection domain, accounted to the PD specified by SELOBJPD . Prior to the hypercall,
SELOBJ0 must refer to a null capability, and SELOBJPD must refer to a protection domain capability
with permission bit CAPPD set. The caller PD obtains in place of SELOBJ0 a protection domain
capability that refers to the created PD. The microhypervisor delegates the capability range, specified
by CRDOBJ, from the caller PD to the created PD.

Status:

SUCCESS

Hypercall completed successfully.

BAD CAP

SELOBJ0 did not refer to a Null Capability (CAP0).
SELOBJPD did not refer to a Protection Domain Capability (CAPOBJPD).
CAPOBJPD has insufficient permissions.

22

Pre
lim

in
ar

y

5.3.2 Create Execution Context

Synopsis:

status = create ec (SELOBJ0, SELOBJPD, CPU, UTCB, SP, SELEVT);

Parameters:

SELOBJ0 : Created EC
SELOBJPD : Owner PD
CPU: CPU Number
UTCB: Virtual Address: UTCB Pointer
SP: Virtual Address: Initial Stack Pointer
SELEVT: Event Selector Base

Flags:

0 G
013

G Global Thread (0=local, 1=global)

Description:

Creates a new execution context, accounted to the PD specified by SELOBJPD , and sets the processor
affinity according to CPU. Prior to the hypercall, SELOBJ0 must refer to a null capability, and
SELOBJPD must refer to a protection domain capability with permission bit CAPEC set. The caller
PD obtains in place of SELOBJ0 an execution context capability that refers to the created EC. The
microhypervisor binds the execution context to the protection domain referred to by SELOBJPD in the
caller PD.

If the UTCB address is zero, the microhypervisor creates a virtual CPU, otherwise it creates a thread
according to the G flag. Local threads cannot have a scheduling context bound to them. Their initial
state is as if they had just done a reply hypercall, so they start running when they receive a request on
a portal bound to them. Global threads and virtual CPUs generate a startup exception the first time a
scheduling context is bound to them.

The hypervisor sets the initial stack pointer only once during creation of the execution context.
Subsequently the execution context is responsible for maintaining its stack pointer across hypercalls.
Applications can also use the initial stack pointer value as a means to identify execution contexts
during their startup exception.

Status:

SUCCESS
Hypercall completed successfully.

BAD CAP
SELOBJ0 did not refer to a Null Capability (CAP0).
SELOBJPD did not refer to a Protection Domain Capability (CAPOBJPD).
CAPOBJPD has insufficient permissions.

BAD CPU
Invalid CPU number.

BAD FTR
Virtual CPUs not supported.

BAD PAR
Invalid UTCB address.

23

Pre
lim

in
ar

y

5.3.3 Create Scheduling Context

Synopsis:

status = create sc (SELOBJ0, SELOBJPD, SELOBJEC, QPD);

Parameters:

SELOBJ0 : Created SC

SELOBJPD : Owner PD

SELOBJEC : Bound EC

QPD: Quantum Priority Descriptor (4.5)

Description:

Creates a new scheduling context, accounted to the PD specified by SELOBJPD , and sets the scheduling
parameters according to QPD. Prior to the hypercall, SELOBJ0 must refer to a null capability,
SELOBJPD must refer to a protection domain capability with permission bit CAPSC set, and SELOBJEC

must refer to an execution context capability with permission bit CAPSC set. The caller PD obtains in
place of SELOBJ0 a scheduling context capability that refers to the created SC. The microhypervisor
binds the scheduling context to the execution context referred to by SELOBJEC in the caller PD.

Status:

SUCCESS

Hypercall completed successfully.

BAD CAP

SELOBJ0 did not refer to a Null Capability (CAP0).
SELOBJPD did not refer to a Protection Domain Capability (CAPOBJPD).
SELOBJEC did not refer to an Execution Context Capability (CAPOBJEC).
CAPOBJPD or CAPOBJEC has insufficient permissions.
Binding the scheduling context to the execution context failed.

BAD PAR

QPD time quantum or priority is zero.

24

Pre
lim

in
ar

y

5.3.4 Create Portal

Synopsis:

status = create pt (SELOBJ0, SELOBJPD, SELOBJEC, MTD, IP);

Parameters:

SELOBJ0 : Created PT

SELOBJPD : Owner PD

SELOBJEC : Bound EC

MTD: Message Transfer Descriptor (4.4)

IP: Virtual Address: Instruction Pointer

Description:

Creates a new portal, accounted to the PD specified by SELOBJPD . Prior to the hypercall, SELOBJ0

must refer to a null capability, SELOBJPD must refer to a protection domain capability with permission
bit CAPPT set, and SELOBJEC must refer to an execution context capability with permission bit CAPPT
set. The caller PD obtains in place of SELOBJ0 a portal capability that refers to the created portal.
The microhypervisor binds the portal to the execution context referred to by SELOBJEC in the caller
PD.

Status:

SUCCESS

Hypercall completed successfully.

BAD CAP

SELOBJ0 did not refer to a Null Capability (CAP0).
SELOBJPD did not refer to a Protection Domain Capability (CAPOBJPD).
SELOBJEC did not refer to an Execution Context Capability (CAPOBJEC).
CAPOBJPD or CAPOBJEC has insufficient permissions.
Binding the portal to the execution context failed.

25

Pre
lim

in
ar

y

5.3.5 Create Semaphore

Synopsis:

status = create sm (SELOBJ0, SELOBJPD, CNT);

Parameters:

SELOBJ0 : Created SM

SELOBJPD : Owner PD

CNT: Unsigned: Initial Counter Value

Description:

Creates a new semaphore, accounted to the PD specified by SELOBJPD . Prior to the hypercall, SELOBJ0

must refer to a null capability, and SELOBJPD must refer to a protection domain capability with
permission bit CAPSM set. The caller PD obtains in place of SELOBJ0 a semaphore capability that
refers to the created semaphore. The microhypervisor initializes the semaphore counter with the
value of CNT.

Status:

SUCCESS

Hypercall completed successfully.

BAD CAP

SELOBJ0 did not refer to a Null Capability (CAP0).
SELOBJPD did not refer to a Protection Domain Capability (CAPOBJPD).
CAPOBJPD has insufficient permissions.

26

Pre
lim

in
ar

y

5.3.6 Revoke Capability Range

Synopsis:

status = revoke (CRD);

Parameters:

CRD: Capability Range Descriptor (4.3)

Flags:

0 SR
013

SR Self Revoke (0=only children, 1=including self)

Description:

Revokes permissions from all inherited capabilities in the range specified by the Capability Range
Descriptor (CRD). If the self revoke bit is set, the permissions will also be revoked from the range
specified by the Capability Range Descriptor (CRD). See Section 3.6 for more details.

This operation never fails but can take a long time to complete if there are many capabilities to
revoke.

Status:

SUCCESS

Hypercall completed successfully.

27

Pre
lim

in
ar

y

5.3.7 Lookup Capability Range

Synopsis:

status = lookup (CRD);

Parameters:

CRD: Capability Range Descriptor (4.3)

Description:

Looks up a range of capabilities in the caller’s protection domain. The caller must specify a base
address and type in the CRD prior to the hypercall. If a capability exists at the specified address, the
microhypervisor returns a completely filled CRD describing the capability range. Otherwise a null
capability range descriptor is returned.

Status:

SUCCESS

Hypercall completed successfully.

28

Pre
lim

in
ar

y

5.4 Execution Control

5.4.1 Execution Context Control

Synopsis:

status = ec ctrl (SELOBJEC);

Parameters:

SELOBJEC : Execution Context

Description:

Pends an event for the specified execution context, which causes it to generate a recall exception
before its next return from the microhypervisor.

Status:

SUCCESS

Hypercall completed successfully.

BAD CAP

SELOBJEC did not refer to an Execution Context Capability (CAPOBJEC).
CAPOBJEC has insufficient permissions.

29

Pre
lim

in
ar

y

5.4.2 Scheduling Context Control

Synopsis:

status = sc ctrl (SELOBJSC, &Time);

Parameters:

SELOBJSC : Scheduling Context

Return Values:

Time: Aggregate consumed execution time in microseconds.

Description:

Returns runtime statistics for the specified scheduling context.

Status:

SUCCESS

Hypercall completed successfully.

BAD CAP

SELOBJSC did not refer to a Scheduling Context Capability (CAPOBJSC).
CAPOBJSC has insufficient permissions.

30

Pre
lim

in
ar

y

5.4.3 Portal Control

Synopsis:

status = pt ctrl (SELOBJPT, PID);

Parameters:

SELOBJPT : Portal

PID: User-Specified Portal Identifier

Flags:

0
03

Description:

Sets the portal identifier to the specified value. Subsequent portal traversals will return the new value.

Status:

SUCCESS

Hypercall completed successfully.

BAD CAP

SELOBJPT did not refer to a Portal Capability (CAPOBJPT).
CAPOBJPT has insufficient permissions.

31

Pre
lim

in
ar

y

5.4.4 Semaphore Control

Synopsis:

status = sm ctrl (SELOBJSM);

Parameters:

SELOBJSM : Semaphore

Flags:

0 ZC OP
0123

OP Operation (0=up, 1=down)

ZC Zero Counter (0=decrement, 1=set to zero)

Description:

The down operation blocks the calling execution context if the semaphore counter is zero, otherwise
the counter is decremented or set to zero, depending on the setting of the ZC bit.

The up operation releases an execution context blocked on the semaphore if one exists, otherwise it
increments the counter.

Status:

SUCCESS

Hypercall completed successfully.

BAD CAP

SELOBJSM did not refer to a Semaphore Capability (CAPOBJSM).
CAPOBJSM has insufficient permissions.

32

Pre
lim

in
ar

y

5.5 Device Control

5.5.1 Assign PCI Device

Synopsis:

status = assign pci (SELOBJPD, SELMEMDEV, RID);

Parameters:

SELOBJPD : Target PD

SELMEMDEV : PCI Device

RID: Routing Hint

Description:

Assigns the PCI device, named by SELMEMDEV , to the protection domain, named by SELOBJPD .
SELMEMDEV must refer to a memory capability for the memory-mapped PCI configuration space
of the device.

Status:

SUCCESS

Hypercall completed successfully.

BAD CAP

SELOBJPD did not refer to a Protection Domain Capability (CAPOBJPD).

BAD DEV

SELMEMDEV did not refer to a valid PCI device.

33

Pre
lim

in
ar

y

5.5.2 Assign Global System Interrupt

Synopsis:

status = assign gsi (SELOBJSM, SELMEMDEV, CPU, &MSI);

Parameters:

SELOBJSM : Interrupt Semaphore

SELMEMDEV : PCI or HPET Device

CPU: CPU Number

Return Values:

MSI: Values to program into the MSI registers of the PCI or HPET device to ensure proper operation.

Description:

Routes the Global System Interrupt (GSI), named by SELOBJSM , to the specified CPU, where it will
be signaled on the corresponding interrupt semaphore. For Message Signaled Interrupts, SELMEMDEV

must refer to a memory capability that names the device, according to the following table:

Interrupt Type Device Type SELMEMDEV MSI Hint

Message Signaled Interrupt PCI PCI Configuration Space ValidHPET Device I/O Space
IOAPIC Interrupt Pin Any Ignored N/A

Status:

SUCCESS

Hypercall completed successfully.

BAD CAP

SELOBJSM did not refer to an Interrupt Semaphore Capability (CAPOBJSM).

BAD DEV

SELMEMDEV did not refer to a valid PCI or HPET device.

BAD CPU

Invalid CPU number.

34

Pre
lim

in
ar

y

6 Booting

6.1 Root Protection Domain

When the microhypervisor has initialized the system, it creates the root protection domain with a root
execution context and a root scheduling context.

6.1.1 Resource Access

Execution contexts in the root protection domain have the special ability to request resources from the
microhypervisor during communication, by setting the H-bit in a typed item (4.6.2.2). In addition to
memory and I/O ports, the following capabilities can be requested:

Idle Scheduling Contexts

Capability selectors 0 ... n - 1 in the microhypervisor refer to CAPOBJSC for the idle thread of the
respective CPU, where n is the maximum number of supported CPUs, as indicated by the HIP.
These capabilities can be used with the sc ctrl hypercall.

Interrupt Semaphores

Capability selectors n ... n + GSI - 1 in the microhypervisor refer to CAPOBJSM for global system
interrupts, where GSI is the maximum number of supported GSIs, as indicated by the HIP. These
capabilities can be used with the sm ctrl and assign gsi hypercalls.

6.1.2 Initial Configuration

At bootup the root protection domain is configured as follows:

6.1.2.1 Memory Space

Program Segments

The microhypervisor loads the program segments of the roottask into the memory space as specified
by the ELF program headers of the roottask image.

Hypervisor Information Page

The HIP is mapped into the memory space at a specific virtual address that is passed to the root
execution context during startup.

UTCB

The UTCB of the root execution context is mapped into the memory space just below the HIP.

All other regions of the memory space are initially empty.

6.1.2.2 Port I/O Space

The port I/O space is initially empty.

35

Pre
lim

in
ar

y

6.1.2.3 Object Space

The object space contains the following capabilities:

• Capability selector EXC + 0 refers to the root PD capability.

• Capability selector EXC + 1 refers to the root EC capability.

• Capability selector EXC + 2 refers to the root SC capability.

All other capability selectors refer to null capabilities.

6.2 Hypervisor Information Page

The Hypervisor Information Page (HIP) conveys information about the platform and configuration to the
root protection domain. The processor register that contains the virtual address of the HIP during booting is
ABI-specific (IV). Figure 6.1 shows the layout of the Hypervisor Information Page. All fields are unsigned
values unless stated otherwise.

...

Auxiliary Type

Size

Address
+OMEM

Memory
Descriptors

...

reserved Package Core Thread Flags
+OCPU

 CPU
Descriptors

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Bus Freq TSC Freq
+0x30

UTCB Sizes PAGE Sizes
+0x28

GSI VMI
+0x20

EXC SEL
+0x18

API Version Feature Flags
+0x10

SMEM OMEM SCPU OCPU
+0x08

Length Checksum Signature
+0x00

081624324863

Figure 6.1: Hypervisor Information Page

Signature:

A value of 0x41564f4e identifies the NOVA microhypervisor.

Checksum:

The checksum is valid if 16bit-wise addition the HIP contents produces a value of 0.

36

Pre
lim

in
ar

y

Length:

Length of the HIP in bytes. This includes all CPU and memory descriptors.

OCPU:

Offset of the first CPU descriptor in bytes, relative to the HIP base.

SCPU:

Size of one CPU descriptor in bytes.

OMEM:

Offset of the first memory descriptor in bytes, relative to the HIP base.

SMEM:

Size of one memory descriptor in bytes.

Feature Flags:

The microhypervisor supports a particular feature if and only if the corresponding bit in the feature
flags is set to 1. The following features are currently defined:

0 SV
M

V
M

X 0
012331

VMX: Intel Virtual Machine Extensions

SVM: AMD Secure Virtual Machine

API Version:

API version number.

SEL:

Number of available capability selectors in each object space. Specifying a capability selector
beyond the maximum number supported wraps around to the beginning of the object space.

EXC:

Number of capability selectors used for exception handling (3.3).

VMI:

Number of capability selectors used for virtual-machine intercept handling (3.3).

GSI:

Number of global system interrupts (3.4).

PAGE Sizes:

If bit n is set, the implementation supports memory pages of size 2n bytes.

UTCB Sizes:

If bit n is set, the implementation supports user thread control blocks of size 2n bytes.

TSC Freq:

Time Stamp Counter Frequency in kHz.

BUS Freq:

Interconnect Frequency in kHz.

37

Pre
lim

in
ar

y

CPU Descriptor

The array of CPU descriptors contains ncpu entries, where

ncpu =
OMEM − OCPU

S CPU
. (6.1)

The value of ncpu reflects the maximum number of CPUs supported by the microhypervisor. The array
index of a CPU descriptor corresponds to the CPU number that must be specified for certain hypercalls to
target that CPU. A CPU can only be used if its descriptor is marked as enabled.

Package, Core, Thread:

CPU multiprocessor topology information.

Flags:

CPU status flags.

0 Enabled

017

MEM Descriptor

The array of MEM descriptors contains nmem entries, where

nmem =
Length − OMEM

S MEM
. (6.2)

Memory descriptors with a positive type field provide information about the memory layout of the platform,
which corresponds to the memory map provided by firmware. User applications should ignore or truncate
memory descriptors for regions outside the addressable range, e.g., physical memory beyond 4GB for 32bit
APIs.

Memory descriptors with a negative type field provide information about preallocated regions of physical
memory. User applications should assume that the preallocated regions overlap the physical memory
regions of the platform.

Address:

Physical base address of memory region.

Size:

Size of memory region in bytes.

Type:

The following types of memory region are currently defined:
Type Description

1 Available Memory

Platform Physical Memory
2 Reserved Memory
3 ACPI Reclaim Memory
4 ACPI NVS Memory

Other Treat as Reserved Memory
-1 Microhypervisor Allocated Physical Memory-2 Multiboot Module

Auxiliary:

Physical address of command line if type is ’Multiboot Module’, reserved otherwise.

38

Pre
lim

in
ar

yPart IV

Application Binary Interface

39

Pre
lim

in
ar

y

7 ABI x86-32

7.1 Initial State

Figure 7.1 details the state of the CPU registers when the microhypervisor has finished booting and transfers
control to the root protection domain.

Register Description
CS Selector=∼, Base=0, Limit=0xFFFFFFFF, Code Segment, ro

SS,DS,ES,FS,GS Selector=∼, Base=0, Limit=0xFFFFFFFF, Data Segment, rw
EIP Address of entry point from ELF header
ESP Address of hypervisor information page

EAX Bootstrap CPU number
ECX,EDX,EBX,EBP,ESI,EDI ∼

EFLAGS 0x202

Figure 7.1: Initial State

7.2 Event-Specific Capability Selectors

For the delivery of exception and intercept messages, the microhypervisor performs an implicit portal
traversal. The selector for the destination portal (SELOBJPT) is determined by adding the exception number
or VM exit reason to SELEVT of the affected execution context.

Exceptions

SELOBJPT Exception SELOBJPT Exception
SELEVT + 0x0 #DE SELEVT + 0x10 #MF
SELEVT + 0x1 #DB SELEVT + 0x11 #AC
SELEVT + 0x2 reserved SELEVT + 0x12 #MC1

SELEVT + 0x3 #BP SELEVT + 0x13 #XM
SELEVT + 0x4 #OF SELEVT + 0x14 reserved
SELEVT + 0x5 #BR SELEVT + 0x15 reserved
SELEVT + 0x6 #UD SELEVT + 0x16 reserved
SELEVT + 0x7 #NM1 SELEVT + 0x17 reserved
SELEVT + 0x8 #DF1 SELEVT + 0x18 reserved
SELEVT + 0x9 reserved SELEVT + 0x19 reserved
SELEVT + 0xa #TS1 SELEVT + 0x1a reserved
SELEVT + 0xb #NP SELEVT + 0x1b reserved
SELEVT + 0xc #SS SELEVT + 0x1c reserved
SELEVT + 0xd #GP SELEVT + 0x1d reserved
SELEVT + 0xe #PF SELEVT + 0x1e STARTUP
SELEVT + 0xf reserved SELEVT + 0x1f RECALL

40

Pre
lim

in
ar

y

VMX Intercepts

Number Intercept Number Intercept Number Intercept
0x0 Exception or NMI1 0x15 VMPTRLD 0x2a reserved
0x1 INTR1 0x16 VMPTRST 0x2b TPR Below Threshold
0x2 Triple Fault2 0x17 VMREAD 0x2c APIC Access
0x3 INIT2 0x18 VMRESUME 0x2d reserved
0x4 SIPI2 0x19 VMWRITE 0x2e GDTR/IDTR Access
0x5 I/O SMI 0x1a VMXOFF 0x2f LDTR/TR Access
0x6 Other SMI 0x1b VMXON 0x30 EPT Violation2

0x7 Interrupt Window 0x1c CR Access1 0x31 EPT Misconfiguration
0x8 NMI Window 0x1d DR Access 0x32 INVEPT
0x9 Task Switch2 0x1e I/O Access2 0x33 RDTSCP
0xa CPUID2 0x1f RDMSR2 0x34 VMX Preemption Timer
0xb GETSEC2 0x20 WRMSR2 0x35 INVVPID
0xc HLT2 0x21 Invalid Guest State2 0x36 WBINVD
0xd INVD2 0x22 MSR Load Failure 0x37 XSETBV
0xe INVLPG1 0x23 reserved 0x38 reserved
0xf RDPMC 0x24 MWAIT 0x39 RDRAND

0x10 RDTSC 0x25 MTF 0x3a INVPCID
0x11 RSM 0x26 reserved 0x3b VMFUNC
0x12 VMCALL 0x27 MONITOR 0x3c reserved
0x13 VMCLEAR 0x28 PAUSE 0xfe STARTUP
0x14 VMLAUNCH 0x29 Machine Check 0xff RECALL

Please refer to [3] for more details on each of these events.

SVM Intercepts

Number Intercept Number Intercept Number Intercept
0x0–0xf CR Read1 0x6e RDTSC 0x81 VMMCALL

0x10–0x1f CR Write1 0x6f RDPMC 0x82 VMLOAD2

0x20–0x2f DR Read 0x70 PUSHF 0x83 VMSAVE2

0x30–0x3f DR Write 0x71 POPF 0x84 STGI
0x40–0x5f Exception1 0x72 CPUID 0x85 CLGI2

0x60 INTR1 0x73 RSM 0x86 SKINIT2

0x61 NMI1 0x74 IRET 0x87 RDTSCP
0x62 SMI 0x75 INT 0x88 ICEBP
0x63 INIT2 0x76 INVD2 0x89 WBINVD
0x64 Interrupt Window 0x77 PAUSE 0x8a MONITOR
0x65 CR0 Selective Write 0x78 HLT2 0x8b MWAIT
0x66 IDTR Read 0x79 INVLPG1 0x8c MWAIT (cond.)
0x67 GDTR Read 0x7a INVLPGA 0x8d reserved
0x68 LDTR Read 0x7b I/O Access2 0x8e reserved
0x69 TR Read 0x7c MSR Access2 0x8f reserved
0x6a IDTR Write 0x7d Task Switch 0xfc NPT Fault2

0x6b GDTR Write 0x7e FERR Freeze 0xfd Invalid Guest State2

0x6c LDTR Write 0x7f Triple Fault2 0xfe STARTUP
0x6d TR Write 0x80 VMRUN 0xff RECALL

41

Pre
lim

in
ar

y

Please refer to [1] for more details on each of these events.

1These events may be handled by the microhypervisor, in which case they will not cause portal traversals.
2These events may be force-enabled by the microhypervisor, in which case they will cause portal traversals.

42

Pre
lim

in
ar

y

7.3 UTCB Data Area Layout

TSC Offset TSC Value
+0x120

reserved IDTR Base IDTR Limit reserved
+0x110

reserved GDTR Base GDTR Limit reserved
+0x100

reserved TR Base TR Limit TR AR TR Sel
+0xf0

reserved LDTR Base LDTR Limit LDTR AR LDTR Sel
+0xe0

reserved GS Base GS Limit GS AR GS Sel
+0xd0

reserved FS Base FS Limit FS AR FS Sel
+0xc0

reserved DS Base DS Limit DS AR DS Sel
+0xb0

reserved SS Base SS Limit SS AR SS Sel
+0xa0

reserved CS Base CS Limit CS AR CS Sel
+0x90

reserved ES Base ES Limit ES AR ES Sel
+0x80

SYSENTER EIP SYSENTER ESP SYSENTER CS DR7
+0x70

CR4 CR3 CR2 CR0
+0x60

Preemption Timer Secondary Exit Ctrl Primary Exit Ctrl
+0x50

Secondary Exit Qual Primary Exit Qual
+0x40

EDI ESI EBP ESP
+0x30

EBX EDX ECX EAX
+0x20

Injection Error Injection Information Activity State Interruptibility State
+0x10

EFLAGS EIP Instruction Length MTD
+0x00

Format of Injection Information

V ∼ N I E Type Vector
07810111213143031

Vector

IDT Vector of Interrupt or Exception

Type

0 = External Interrupt
2 = Non-Maskable Interrupt
3 = Hardware Exception
4 = Software Interrupt
5 = Privileged Software Exception
6 = Software Exception

E

0 = Do not deliver the error code from the Injection Error field of the UTCB
1 = Deliver the error code from the Injection Error field of the UTCB

43

Pre
lim

in
ar

y

I

0 = Do not request an interrupt window
1 = Request an interrupt window

N

0 = Do not request an NMI window
1 = Request an NMI window

V

0 = Injection Information fields Vector, Type, E are invalid
1 = Injection Information fields Vector, Type, E are valid

Format of Segment Access Rights

∼ U G D/B L AVL P DPL S Type
034567891011121315

Type

Segment Type

S

Descriptor Type:
0 = System
1 = Code or Data

DPL

Descriptor Privilege Level

P

Segment Present

AVL

Available for use by system software

L

64-bit mode active (CS only)

D/B

Default Operation Size:
0 = 16-bit segment
1 = 32-bit segment

G

Granularity

U

Segment Unusable:
0 = Segment Usable
1 = Segment Unusable

44

Pre
lim

in
ar

y

7.4 Message Transfer Descriptor

The MTD, which controls the state transfer for exceptions and intercepts, as described in Section 4.4, has
the following format:

∼

PT
M

R

E
FE

R

T
SC ST
A

IN
J

C
T

R
L

Q
U

A
L

SY
S

D
R

C
R

ID
T

R

G
D

T
R

L
D

T
R

T
R

C
S/

SS

FS
/G

S

D
S/

E
S

E
FL E
IP

E
SP

B
SD

A
C

D
B

012345678910111213141516171819202131

Figure 7.2: Message Transfer Descriptor

Bit Type Exceptions Intercepts
ACDB rw EAX, ECX, EDX, EBX EAX, ECX, EDX, EBX
BSD rw EBP, ESI, EDI EBP, ESI, EDI
ESP rw ESP ESP
EIP rw EIP EIP, Instruction Length
EFL rw EFLAGS1 EFLAGS
DS/ES rw ≡ DS, ES (Selector, Base, Limit, Access Rights)
FS/GS rw ≡ FS, GS (Selector, Base, Limit, Access Rights)
CS/SS rw ≡ CS, SS (Selector, Base, Limit, Access Rights)
TR rw ≡ TR (Selector, Base, Limit, Access Rights)
LDTR rw ≡ LDTR (Selector, Base, Limit, Access Rights)
GDTR rw ≡ GDTR (Base, Limit)
IDTR rw ≡ IDTR (Base, Limit)
CR rw ≡ CR0, CR2, CR3, CR4
DR rw ≡ DR7
SYS rw ≡ SYSENTER MSRs (CS, ESP, EIP)
QUAL r Exit Qualifications2 Exit Qualifications
CTRL w ≡ Execution Controls
INJ rw ≡ Injection Info, Injection Error Code
STA rw ≡ Interruptibility State, Activity State
TSC rw ≡ TSC Value, TSC Offset3

EFER rw ≡ EFER MSR
PTMR rw ≡ Preemption Timer

Each bit controls the transfer of a subset of the CPU state to/from the respective UTCB fields (7.3). State
with access type r can be read from CPU into the UTCB. State with access type w can be written from the
UTCB into the CPU.

1Only the arithmetic flags are writable.
2The primary exit qualification contains the exception error code. The secondary exit qualification contains the fault address.
3Reads load the absolute value of the TSC offset into the UTCB. Writes add the value from UTCB to the TSC offset.

45

Pre
lim

in
ar

y

7.5 Calling Convention

The following pages describes the calling convention for each hypercall. An execution context calls into
the microhypervisor by loading the hypercall identifier and other parameters into the specified processor
registers and then executes the sysenter instruction.

The hypercall identifier consists of the hypercall number and hypercall-specific flags, as illustrated in
Figure 7.3.

flags number
0347

Figure 7.3: Hypercall Identifier

The status code returned from a hypercall has the format shown in Figure 7.4.

status
07

Figure 7.4: Status Code

The assignment of hypercall parameters to general-purpose registers is shown on the left side; the contents
of the registers after the hypercall is shown on the right side.

Call

SELOBJPT [31−8]/hypercall[7−0] EAX — Call −→ EAX status[7−0]
– EDI EDI ≡

– ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

Reply

hypercall[7−0] EAX — Reply −→ EAX SELOBJPT

– EDI EDI ≡

– ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

– EDX EDX ∼

– ESP ESP return SP
– EIP EIP pt→IP

46

Pre
lim

in
ar

y

Create Protection Domain

SELOBJ0 [31−8]/hypercall[7−0] EAX — Create PD −→ EAX status[7−0]
SELOBJPD EDI EDI ≡

CRDOBJ ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

Create Execution Context

SELOBJ0 [31−8]/hypercall[7−0] EAX — Create EC −→ EAX status[7−0]
SELOBJPD EDI EDI ≡

UTCB[31−12]/CPU[11−0] ESI sysenter ESI ≡

SP EBX EBX ≡

SELEVT EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

Create Scheduling Context

SELOBJ0 [31−8]/hypercall[7−0] EAX — Create SC −→ EAX status[7−0]
SELOBJPD EDI EDI ≡

SELOBJEC ESI sysenter ESI ≡

QPD EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

Create Portal

SELOBJ0 [31−8]/hypercall[7−0] EAX — Create PT −→ EAX status[7−0]
SELOBJPD EDI EDI ≡

SELOBJEC ESI sysenter ESI ≡

MTD EBX EBX ≡

IP EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

47

Pre
lim

in
ar

y

Create Semaphore

SELOBJ0 [31−8]/hypercall[7−0] EAX — Create SM −→ EAX status[7−0]
SELOBJPD EDI EDI ≡

CNT ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

Revoke Capability Range

hypercall[7−0] EAX — Revoke −→ EAX status[7−0]
CRD EDI EDI ≡

– ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

Lookup Capability Range

hypercall[7−0] EAX — Lookup −→ EAX status[7−0]
CRD EDI EDI CRD

– ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

Execution Context Control

SELOBJEC [31−8]/hypercall[7−0] EAX — EC Control −→ EAX status[7−0]
– EDI EDI ≡

– ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

48

Pre
lim

in
ar

y

Scheduling Context Control

SELOBJSC [31−8]/hypercall[7−0] EAX — SC Control −→ EAX status[7−0]
– EDI EDI Time[63−32]
– ESI sysenter ESI Time[31−0]
– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

Portal Control

SELOBJPT [31−8]/hypercall[7−0] EAX — PT Control −→ EAX status[7−0]
PID EDI EDI ≡

– ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

Semaphore Control

SELOBJSM [31−8]/hypercall[7−0] EAX — SM Control −→ EAX status[7−0]
– EDI EDI ≡

– ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

Assign PCI Device

SELOBJPD [31−8]/hypercall[7−0] EAX — Assign PCI −→ EAX status[7−0]
SELMEMDEV EDI EDI ≡

RID ESI sysenter ESI ≡

– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

49

Pre
lim

in
ar

y

Assign Global System Interrupt

SELOBJSM [31−8]/hypercall[7−0] EAX — Assign GSI −→ EAX status[7−0]
SELMEMDEV EDI EDI MSI Addr

CPU ESI sysenter ESI MSI Data
– EBX EBX ≡

– EBP EBP ≡

return SP ECX ECX ≡

return IP EDX EDX ≡

– ESP ESP return SP
– EIP EIP return IP

50

Pre
lim

in
ar

y

8 ABI x86-64

8.1 Initial State

Figure 8.1 details the state of the CPU registers when the microhypervisor has finished booting and transfers
control to the root protection domain.

Register Description
CS Selector=∼, Base=0, Limit=0xFFFFFFFF, Code Segment, ro

SS,DS,ES,FS,GS Selector=∼, Base=0, Limit=0xFFFFFFFF, Data Segment, rw
RIP Address of entry point from ELF header
RSP Address of hypervisor information page
RDI Bootstrap CPU number

RAX,RCX,RDX,RBX,RBP,RSI ∼

R8,R9,R10,R11,R12,R13,R14,R15 ∼

RFLAGS 0x202

Figure 8.1: Initial State

8.2 Event-Specific Capability Selectors

For the delivery of exception and intercept messages, the microhypervisor performs an implicit portal
traversal. The selector for the destination portal (SELOBJPT) is determined by adding the exception number
or VM exit reason to SELEVT of the affected execution context.

Exceptions

SELOBJPT Exception SELOBJPT Exception
SELEVT + 0x0 #DE SELEVT + 0x10 #MF
SELEVT + 0x1 #DB SELEVT + 0x11 #AC
SELEVT + 0x2 reserved SELEVT + 0x12 #MC1

SELEVT + 0x3 #BP SELEVT + 0x13 #XM
SELEVT + 0x4 #OF SELEVT + 0x14 reserved
SELEVT + 0x5 #BR SELEVT + 0x15 reserved
SELEVT + 0x6 #UD SELEVT + 0x16 reserved
SELEVT + 0x7 #NM1 SELEVT + 0x17 reserved
SELEVT + 0x8 #DF1 SELEVT + 0x18 reserved
SELEVT + 0x9 reserved SELEVT + 0x19 reserved
SELEVT + 0xa #TS1 SELEVT + 0x1a reserved
SELEVT + 0xb #NP SELEVT + 0x1b reserved
SELEVT + 0xc #SS SELEVT + 0x1c reserved
SELEVT + 0xd #GP SELEVT + 0x1d reserved
SELEVT + 0xe #PF SELEVT + 0x1e STARTUP
SELEVT + 0xf reserved SELEVT + 0x1f RECALL

51

Pre
lim

in
ar

y

VMX Intercepts

Number Intercept Number Intercept Number Intercept
0x0 Exception or NMI1 0x15 VMPTRLD 0x2a reserved
0x1 INTR1 0x16 VMPTRST 0x2b TPR Below Threshold
0x2 Triple Fault2 0x17 VMREAD 0x2c APIC Access
0x3 INIT2 0x18 VMRESUME 0x2d reserved
0x4 SIPI2 0x19 VMWRITE 0x2e GDTR/IDTR Access
0x5 I/O SMI 0x1a VMXOFF 0x2f LDTR/TR Access
0x6 Other SMI 0x1b VMXON 0x30 EPT Violation2

0x7 Interrupt Window 0x1c CR Access1 0x31 EPT Misconfiguration
0x8 NMI Window 0x1d DR Access 0x32 INVEPT
0x9 Task Switch2 0x1e I/O Access2 0x33 RDTSCP
0xa CPUID2 0x1f RDMSR2 0x34 VMX Preemption Timer
0xb GETSEC2 0x20 WRMSR2 0x35 INVVPID
0xc HLT2 0x21 Invalid Guest State2 0x36 WBINVD
0xd INVD2 0x22 MSR Load Failure 0x37 XSETBV
0xe INVLPG1 0x23 reserved 0x38 reserved
0xf RDPMC 0x24 MWAIT 0x39 RDRAND

0x10 RDTSC 0x25 MTF 0x3a INVPCID
0x11 RSM 0x26 reserved 0x3b VMFUNC
0x12 VMCALL 0x27 MONITOR 0x3c reserved
0x13 VMCLEAR 0x28 PAUSE 0xfe STARTUP
0x14 VMLAUNCH 0x29 Machine Check 0xff RECALL

Please refer to [3] for more details on each of these events.

SVM Intercepts

Number Intercept Number Intercept Number Intercept
0x0–0xf CR Read1 0x6e RDTSC 0x81 VMMCALL

0x10–0x1f CR Write1 0x6f RDPMC 0x82 VMLOAD2

0x20–0x2f DR Read 0x70 PUSHF 0x83 VMSAVE2

0x30–0x3f DR Write 0x71 POPF 0x84 STGI
0x40–0x5f Exception1 0x72 CPUID 0x85 CLGI2

0x60 INTR1 0x73 RSM 0x86 SKINIT2

0x61 NMI1 0x74 IRET 0x87 RDTSCP
0x62 SMI 0x75 INT 0x88 ICEBP
0x63 INIT2 0x76 INVD2 0x89 WBINVD
0x64 Interrupt Window 0x77 PAUSE 0x8a MONITOR
0x65 CR0 Selective Write 0x78 HLT2 0x8b MWAIT
0x66 IDTR Read 0x79 INVLPG1 0x8c MWAIT (cond.)
0x67 GDTR Read 0x7a INVLPGA 0x8d reserved
0x68 LDTR Read 0x7b I/O Access2 0x8e reserved
0x69 TR Read 0x7c MSR Access2 0x8f reserved
0x6a IDTR Write 0x7d Task Switch 0xfc NPT Fault2

0x6b GDTR Write 0x7e FERR Freeze 0xfd Invalid Guest State2

0x6c LDTR Write 0x7f Triple Fault2 0xfe STARTUP
0x6d TR Write 0x80 VMRUN 0xff RECALL

52

Pre
lim

in
ar

y

Please refer to [1] for more details on each of these events.

1These events may be handled by the microhypervisor, in which case they will not cause portal traversals.
2These events may be force-enabled by the microhypervisor, in which case they will cause portal traversals.

53

Pre
lim

in
ar

y

8.3 UTCB Data Area Layout

TSC Offset TSC Value
+0x1c0

IDTR Base IDTR Limit reserved
+0x1b0

GDTR Base GDTR Limit reserved
+0x1a0

TR Base TR Limit TR AR TR Sel
+0x190

LDTR Base LDTR Limit LDTR AR LDTR Sel
+0x180

GS Base GS Limit GS AR GS Sel
+0x170

FS Base FS Limit FS AR FS Sel
+0x160

DS Base DS Limit DS AR DS Sel
+0x150

SS Base SS Limit SS AR SS Sel
+0x140

CS Base CS Limit CS AR CS Sel
+0x130

ES Base ES Limit ES AR ES Sel
+0x120

SYSENTER RIP SYSENTER RSP
+0x110

SYSENTER CS DR7
+0x100

EFER CR8
+0xf0

CR4 CR3
+0xe0

CR2 CR0
+0xd0

Preemption Timer Secondary Exit Ctrl Primary Exit Ctrl
+0xc0

Secondary Exit Qual Primary Exit Qual
+0xb0

R15 R14
+0xa0

R13 R12
+0x90

R11 R10
+0x80

R9 R8
+0x70

RDI RSI
+0x60

RBP RSP
+0x50

RBX RDX
+0x40

RCX RAX
+0x30

Injection Error Injection Information Activity State Interruptibility State
+0x20

RFLAGS RIP
+0x10

Instruction Length MTD
+0x00

Format of Injection Information

V ∼ N I E Type Vector
07810111213143031

Vector

54

Pre
lim

in
ar

y

IDT Vector of Interrupt or Exception

Type

0 = External Interrupt
2 = Non-Maskable Interrupt
3 = Hardware Exception
4 = Software Interrupt
5 = Privileged Software Exception
6 = Software Exception

E

0 = Do not deliver the error code from the Injection Error field of the UTCB
1 = Deliver the error code from the Injection Error field of the UTCB

I

0 = Do not request an interrupt window
1 = Request an interrupt window

N

0 = Do not request an NMI window
1 = Request an NMI window

V

0 = Injection Information fields Vector, Type, E are invalid
1 = Injection Information fields Vector, Type, E are valid

Format of Segment Access Rights

∼ U G D/B L AVL P DPL S Type
034567891011121315

Type

Segment Type

S

Descriptor Type:
0 = System
1 = Code or Data

DPL

Descriptor Privilege Level

P

Segment Present

AVL

Available for use by system software

L

64-bit mode active (CS only)

55

Pre
lim

in
ar

y

D/B

Default Operation Size:
0 = 16-bit segment
1 = 32-bit segment

G

Granularity

U

Segment Unusable:
0 = Segment Usable
1 = Segment Unusable

56

Pre
lim

in
ar

y

8.4 Message Transfer Descriptor

The MTD, which controls the state transfer for exceptions and intercepts, as described in Section 4.4, has
the following format:

∼

PT
M

R

E
FE

R

T
SC ST
A

IN
J

C
T

R
L

Q
U

A
L

SY
S

D
R

C
R

ID
T

R

G
D

T
R

L
D

T
R

T
R

C
S/

SS

FS
/G

S

D
S/

E
S

E
FL E
IP

E
SP

B
SD

A
C

D
B

012345678910111213141516171819202131

Figure 8.2: Message Transfer Descriptor

Bit Type Exceptions Intercepts
ACDB rw EAX, ECX, EDX, EBX EAX, ECX, EDX, EBX
BSD rw EBP, ESI, EDI EBP, ESI, EDI
ESP rw ESP ESP
EIP rw EIP EIP, Instruction Length
EFL rw EFLAGS1 EFLAGS
DS/ES rw ≡ DS, ES (Selector, Base, Limit, Access Rights)
FS/GS rw ≡ FS, GS (Selector, Base, Limit, Access Rights)
CS/SS rw ≡ CS, SS (Selector, Base, Limit, Access Rights)
TR rw ≡ TR (Selector, Base, Limit, Access Rights)
LDTR rw ≡ LDTR (Selector, Base, Limit, Access Rights)
GDTR rw ≡ GDTR (Base, Limit)
IDTR rw ≡ IDTR (Base, Limit)
CR rw ≡ CR0, CR2, CR3, CR4
DR rw ≡ DR7
SYS rw ≡ SYSENTER MSRs (CS, ESP, EIP)
QUAL r Exit Qualifications2 Exit Qualifications
CTRL w ≡ Execution Controls
INJ rw ≡ Injection Info, Injection Error Code
STA rw ≡ Interruptibility State, Activity State
TSC rw ≡ TSC Value, TSC Offset3

EFER rw ≡ EFER MSR
PTMR rw ≡ Preemption Timer

Each bit controls the transfer of a subset of the CPU state to/from the respective UTCB fields (7.3). State
with access type r can be read from CPU into the UTCB. State with access type w can be written from the
UTCB into the CPU.

1Only the arithmetic flags are writable.
2The primary exit qualification contains the exception error code. The secondary exit qualification contains the fault address.
3Reads load the absolute value of the TSC offset into the UTCB. Writes add the value from UTCB to the TSC offset.

57

Pre
lim

in
ar

y

8.5 Calling Convention

The following pages describes the calling convention for each hypercall. An execution context calls into
the microhypervisor by loading the hypercall identifier and other parameters into the specified processor
registers and then executes the syscall instruction.

The hypercall identifier consists of the hypercall number and hypercall-specific flags, as illustrated in
Figure 8.3.

flags number
0347

Figure 8.3: Hypercall Identifier

The status code returned from a hypercall has the format shown in Figure 8.4.

status
07

Figure 8.4: Status Code

The assignment of hypercall parameters to general-purpose registers is shown on the left side; the contents
of the registers after the hypercall is shown on the right side.

Call

SELOBJPT [63−8]/hypercall[7−0] RDI — Call −→ RDI status[7−0]
– RSI RSI ≡

– RDX syscall RDX ≡

– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

Reply

hypercall[7−0] RDI — Reply −→ RDI SELOBJPT

– RSI RSI ≡

– RDX syscall RDX ≡

– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP pt→IP

58

Pre
lim

in
ar

y

Create Protection Domain

SELOBJ0 [63−8]/hypercall[7−0] RDI — Create PD −→ RDI status[7−0]
SELOBJPD RSI RSI ≡

CRDOBJ RDX syscall RDX ≡

– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

Create Execution Context

SELOBJ0 [63−8]/hypercall[7−0] RDI — Create EC −→ RDI status[7−0]
SELOBJPD RSI RSI ≡

UTCB[63−12]/CPU[11−0] RDX syscall RDX ≡

SP RAX RAX ≡

SELEVT R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

Create Scheduling Context

SELOBJ0 [63−8]/hypercall[7−0] RDI — Create SC −→ RDI status[7−0]
SELOBJPD RSI RSI ≡

SELOBJEC RDX syscall RDX ≡

QPD RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

Create Portal

SELOBJ0 [63−8]/hypercall[7−0] RDI — Create PT −→ RDI status[7−0]
SELOBJPD RSI RSI ≡

SELOBJEC RDX syscall RDX ≡

MTD RAX RAX ≡

IP R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

59

Pre
lim

in
ar

y

Create Semaphore

SELOBJ0 [63−8]/hypercall[7−0] RDI — Create SM −→ RDI status[7−0]
SELOBJPD RSI RSI ≡

CNT RDX syscall RDX ≡

– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

Revoke Capability Range

hypercall[7−0] RDI — Revoke −→ RDI status[7−0]
CRD RSI RSI ≡

– RDX syscall RDX ≡

– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

Lookup Capability Range

hypercall[7−0] RDI — Lookup −→ RDI status[7−0]
CRD RSI RSI CRD

– RDX syscall RDX ≡

– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

Execution Context Control

SELOBJEC [63−8]/hypercall[7−0] RDI — EC Control −→ RDI status[7−0]
– RSI RSI ≡

– RDX syscall RDX ≡

– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

60

Pre
lim

in
ar

y

Scheduling Context Control

SELOBJSC [63−8]/hypercall[7−0] RDI — SC Control −→ RDI status[7−0]
– RSI RSI Time[63−32]
– RDX syscall RDX Time[31−0]
– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

Portal Control

SELOBJPT [63−8]/hypercall[7−0] RDI — PT Control −→ RDI status[7−0]
PID RSI RSI ≡

– RDX syscall RDX ≡

– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

Semaphore Control

SELOBJSM [63−8]/hypercall[7−0] RDI — SM Control −→ RDI status[7−0]
– RSI RSI ≡

– RDX syscall RDX ≡

– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

Assign PCI Device

SELOBJPD [63−8]/hypercall[7−0] RDI — Assign PCI −→ RDI status[7−0]
SELMEMDEV RSI RSI ≡

RID RDX syscall RDX ≡

– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

61

Pre
lim

in
ar

y

Assign Global System Interrupt

SELOBJSM [63−8]/hypercall[7−0] RDI — Assign GSI −→ RDI status[7−0]
SELMEMDEV RSI RSI MSI Addr

CPU RDX syscall RDX MSI Data
– RAX RAX ≡

– R8 R8 ≡

– RCX RCX ∼

– R11 R11 ∼

– RSP RSP ≡

– RIP RIP RIP+2

62

Pre
lim

in
ar

yPart V

Appendix

63

Pre
lim

in
ar

y

A Acronyms

ABI Application Binary Interface

CAP Capability

CAP0 Null Capability

CAPMEM Memory Capability

CAPOBJ Object Capability

CAPOBJEC Execution Context Capability

CAPOBJPD Protection Domain Capability

CAPOBJPT Portal Capability

CAPOBJSC Scheduling Context Capability

CAPOBJSM Semaphore Capability

CAPPIO Port I/O Capability

CAPRP Reply Capability

CPU Central Processing Unit

CRD Capability Range Descriptor

CRD0 Null Capability Range Descriptor

CRDMEM Memory Capability Range Descriptor

CRDOBJ Object Capability Range Descriptor

CRDPIO Port I/O Capability Range Descriptor

CRDWIND Capability Receive Window: Delegation

CRDWINT Capability Receive Window: Translation

DMA Direct Memory Access

EC Execution Context

ELF Executable and Linkable Format

FPU Floating Point Unit

GSI Global System Interrupt

HIP Hypervisor Information Page

MSI Message Signaled Interrupt

MTD Message Transfer Descriptor

64

Pre
lim

in
ar

y

IOAPIC I/O Advanced Programmable Interrupt Controller

IP Instruction Pointer

PD Protection Domain

PID Portal Identifier

PT Portal

QPD Quantum Priority Descriptor

SC Scheduling Context

SEL Capability Selector

SELEVT Event Selector Base

SELMEM Memory Capability Selector

SELMEMDEV Memory Capability Selector: Device

SELOBJ Object Capability Selector

SELOBJ0 Object Capability Selector: Null Capability

SELOBJEC Object Capability Selector: Execution Context Capability

SELOBJPD Object Capability Selector: Protection Domain Capability

SELOBJPT Object Capability Selector: Portal Capability

SELOBJSC Object Capability Selector: Scheduling Context Capability

SELOBJSM Object Capability Selector: Semaphore Capability

SELPIO Port I/O Capability Selector

SM Semaphore

SP Stack Pointer

UTCB User Thread Control Block

VMM Virtual-Machine Monitor

VM Virtual Machine

65

Pre
lim

in
ar

y

B Bibliography

[1] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual Volume 2: System Program-
ming, 2012. Publication Number: 24593.

[2] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd.,
Toshiba Corporation. Advanced Configuration and Power Interface Specification, 2011. Revision 5.0.

[3] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s Manual Combined
Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C, 2012. Order Number: 325462.

[4] Udo Steinberg and Bernhard Kauer. NOVA: A Microhypervisor-Based Secure Virtualization Archi-
tecture. In Proceedings of the 5th ACM SIGOPS/EuroSys European Conference on Computer Systems,
pages 209–222. ACM, 2010.

66

Pre
lim

in
ar

y

C Console

The VGA console shows information about the microhypervisor version and architecture, as well as the
compiler that was used to build the image. For each physical processor core, the microhypervisor prints
information about the topology and the core type. At the bottom of the console, event spinners can
optionally be displayed for each core.

NOVA Microhypervisor v5-0cb7f70 (x86 32): Aug 3 2012 12:27:17 [gcc 4.8.0]

[0] CORE:0:0:0 6:3a:9:1 [12] Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

[2] CORE:0:2:0 6:3a:9:1 [12] Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

[1] CORE:0:1:0 6:3a:9:1 [12] Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

[3] CORE:0:3:0 6:3a:9:1 [12] Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

↑↑ Microcode Patch Level

↑ ↑↑ ↑ ↑ Family : Model : Stepping : Platform

↑ ↑ ↑ Package : Core : Thread

↑↑ Core Number

↓ Scheduling Events

↓ Helping Events

↓ RCU Grace Periods

↓↓ vTLB Fills & vTLB Flushes

↓ · · · Local APIC Interrupts

↓↓ Inter-Processor Interrupts

↓↓ · · · Global System Interrupts & Message Signaled Interrupts

624 F6 3 01 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789AB5DEF

214 C2 5 71 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABC5EF

F14 8A 9 13 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCD3F

AB4 EA C 80 0723456784ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEA

67

Pre
lim

in
ar

y

D Download

The source code of the NOVA microhypervisor can be downloaded from GitHub.

https://github.com/IntelLabs/NOVA

68

https://github.com/IntelLabs/NOVA

	I Introduction
	1 System Architecture

	II Basic Abstractions
	2 Kernel Objects
	2.1 Protection Domain
	2.2 Execution Context
	2.3 Scheduling Context
	2.4 Portal
	2.5 Semaphore

	3 Mechanisms
	3.1 Scheduling
	3.2 Communication
	3.3 Exceptions and Intercepts
	3.4 Interrupts
	3.5 Capability Delegation
	3.6 Capability Revocation
	3.7 Device Assignment

	III Application Programming Interface
	4 Data Types
	4.1 Capability
	4.1.1 Null Capability
	4.1.2 Memory Capability
	4.1.3 Port I/O Capability
	4.1.4 Object Capability
	4.1.5 Reply Capability

	4.2 Capability Selector
	4.3 Capability Range Descriptor
	4.3.1 Null Capability Range Descriptor
	4.3.2 Memory Capability Range Descriptor
	4.3.3 Port I/O Capability Range Descriptor
	4.3.4 Object Capability Range Descriptor

	4.4 Message Transfer Descriptor
	4.5 Quantum Priority Descriptor
	4.6 User Thread Control Block
	4.6.1 Header Area
	4.6.2 Data Area

	5 Hypercalls
	5.1 Definitions
	5.2 Communication
	5.2.1 Call
	5.2.2 Reply

	5.3 Capability Management
	5.3.1 Create Protection Domain
	5.3.2 Create Execution Context
	5.3.3 Create Scheduling Context
	5.3.4 Create Portal
	5.3.5 Create Semaphore
	5.3.6 Revoke Capability Range
	5.3.7 Lookup Capability Range

	5.4 Execution Control
	5.4.1 Execution Context Control
	5.4.2 Scheduling Context Control
	5.4.3 Portal Control
	5.4.4 Semaphore Control

	5.5 Device Control
	5.5.1 Assign PCI Device
	5.5.2 Assign Global System Interrupt

	6 Booting
	6.1 Root Protection Domain
	6.1.1 Resource Access
	6.1.2 Initial Configuration

	6.2 Hypervisor Information Page

	IV Application Binary Interface
	7 ABI x86-32
	7.1 Initial State
	7.2 Event-Specific Capability Selectors
	7.3 UTCB Data Area Layout
	7.4 Message Transfer Descriptor
	7.5 Calling Convention

	8 ABI x86-64
	8.1 Initial State
	8.2 Event-Specific Capability Selectors
	8.3 UTCB Data Area Layout
	8.4 Message Transfer Descriptor
	8.5 Calling Convention

	V Appendix
	A Acronyms
	B Bibliography
	C Console
	D Download

