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SO FAR

talked about in-kernel building blocks:

threads

memory

IPC


drivers will enable access to a wide range 
of non-kernel resources


need to manage resources
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COURSE EIP

Basic Abstractions

System Services

Applications
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RESOURCES

Disk Bandwidth

Network I/O

Files

TCP/IP Sessions

ThreadsMemory

Semaphores

Communication Rights

Windows
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COMPARISON
Memory Time

discrete, limited continuous, infinite

hidden in the system user-perceivable

managed by pager managed by scheduler

page-granular partitions arbitrary granularity

all pages are of equal value value depends on workload

active policy decisions, 
passive enforcement

active policy decisions, 
active enforcement

hierarchical management Fiasco: flattened in-kernel view
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REAL-TIME
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DEFINITION

a real-time system denotes a system, 
whose correctness depends on the timely 
delivery of results


“it matters, when a result is produced”


real-time denotes a predictable relation 
between system progress and wall-clock 
time
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benign failures

complex

MOS: Real-Time

focused 
catastrophic failures

EXAMPLES

engine control in a car


break-by-wire


avionics


railway control


set-top box media player


mobile stack in your cell phone
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TOPICS

① Predictability

② Guarantees

③ Enforcement
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PREDICTABILITY
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ENEMIES
gap between worst and average case


memory caches, disk caches, TLBs

“smart” hardware


system management mode

disk request reordering


cross-talk from resource sharing

servers showing O(n) behavior

SMP


external influences: interrupts
12
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CROSSCUTTING

Kernel

System Services

Applications

Hardware

Realtim
e
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CUSTOM RTOS

small real-time executives tailor-made for 
specific applications


fixed workload known a priori


pre-calculated time-driven schedule


used on small embedded controllers


benign hardware
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RTLINUX
full Linux kernel and real-time processes 
run side-by-side


small real-time executive underneath 
supports scheduling and IPC


real-time processes implemented as 
kernel modules


all of this runs in kernel mode


no isolation
15
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XNU
the kernel used in macOS and iOS


offers a real-time priority band above the 
priority of kernel threads


interface: “I need X time with a Y period.”


threads exceeding their assignment will 
be demoted


all drivers need to handle interrupts 
correctly

16

Hexley DarwinOS Mascot Copyright 2000 by Jon Hooper.

All Rights Reserved.



TU Dresden MOS: Real-Time

FIASCO
static thread priorities


O(1) complexity for most system calls


fully preemptible in kernel mode

bounded interrupt latency


lock-free synchronization

uses atomic operations


wait-free synchronization

locking with helping instead of blocking
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BE AFRAID

Non-Real-Time Kernel

Real-Time Middleware

Applications

“real-time” architecture for those afraid of 
touching the OS

example: Real-Time Java
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RESOURCES
a real-time kernel alone is not enough


microkernel solution: temporal isolation

eliminates cross-talk through system calls

interrupt handling controlled by scheduler


user-level servers as resource managers

implement real-time views on specific 
resources


real-time is not only about CPU
19
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GUARANTEES
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PROBLEM

worst case execution time (WCET) largely 
exceeds average case


offering guarantees for the worst case will 
waste lots of resources


missing some deadlines can be tolerated 
with the firm and soft real-time flavors
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MOTIVATION
desktop real-time


there are no hard real-time applications 
on desktops


there is a lot of firm and soft real-time

low-latency audio processing

smooth video playback

desktop effects

user interface responsiveness
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H.264 DECODING

0

5

10

15

0 5 10 15 20 25 30ms

WCET

23



TU Dresden MOS: Real-Time

KEY IDEA
guarantees even slightly below 100% of 
WCET can dramatically reduce resource 
allocation


unused reservations will be used by 
others at runtime


use probabilistic planning to model the 
actual execution


quality q: fraction of deadlines to be met

24



TU Dresden MOS: Real-Time

KEY IDEA

WCET
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RESERVATION

preemptible (CPU) as well as for nonpreemptible (disk) re-
sources. Furthermore, we also included empirical execution
time distributions. Three main conclusions should be em-
phasized here.

• All the experiments show the compliance of the re-
quested qualities with the achieved qualities.

• The approach enables to provide statistical guarantees
and to control the behavior of firm applications even
under overload.

• QAS can clearly admit a higher load than an admission
based on WCET with negligible loss of quality.

The costs for these advantages are comparatively low. The
numerical complexity of the admission control (which can
be done offline) is dominated by the convolution of the dis-
cretized execution time distributions. The highest complex-
ity is that for the admission in case of nonpreemptible re-
sources; their complexity is O(s · v3) (s: total number of
optional parts, v: common number of values of the ran-
dom variables) [10, 11]. On the other hand, the scheduler
only manages the ready queue based on fixed priorities. So
online-overhead is negligible, independent of the type of re-
sources and the type of periods.

In case of arbitrary periods however, the computation of
the reservation time is very expensive with increasing costs
for larger task sets because the hyperperiod explodes for
task sets with close-by period lengths (like 503 and 510)
and all periods must be considered. Looking for a way to
overcome this difficulty, we propose a new admission con-
trol approach, which differs from QAS in three respects:
priority assignment, interpretation of the reservation time,
and as a consequence, a very low-cost admission algorithm.

4. Quality-Rate-Monotonic Scheduling

We will first explain our new approach, followed by an
investigation of the admission performance and overhead.

4.1. The QRMS Approach

QRMS is simple but still effective. We abandon the ex-
act modeling of the scheduling behavior in favor of apply-
ing the well-known results from rate-monotonic scheduling
theory. Therefore, we choose another priority assignment
policy and a simpler way to compute the reservation times:

• Priorities are assigned to tasks (this means mandatory
and optional parts of a task have the same priority) ac-
cording to RMS.

• All parts of a job are assigned a common reservation
time.
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Figure 4. Admission with QAS vs. QRMS 
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(b) QRMS
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Figure 4. Admission with QAS vs. QRMS

• In the admission, the reservation time is regarded as a
constant execution time.

Consequently, tasks are independent during admission, an
important advantage to drastically decrease the admission
overhead. Figure 4 illustrates the modified priority assign-
ment and the notion of reservation times for two tasks T1,
T2 with uniform periods of length d.

The approach uses the task model given in Definition 1.
To derive the reservation times, we consider preemptible
resources first. We have to use Equation (8). Due to the
laws of probability calculus, we can compute the expected
value of Ai as

EAi =
mi�

k=1

P(Ai ⇥ k), i = 1, . . . , n (9)

The number Ai of completed parts of task Ti within a
period does no longer depend on the reservation times of
other tasks. Obviously, it holds (see Figure (5)):

P(Ai(r) ⇥ k) = P(Xi + k · Yi � r), k = 1, . . . ,mi

(10)
Thus:

r�
i = min(r ⇤ R |

mi�

k=1

P(Xi + k · Yi � r) ⇥ qimi) . (11)

The final formula respects the fact that r�
i may be shorter

than the WCET wi of the mandatory part and includes the
constraint that jobs are aborted at the end of their period:

ri = max(r�
i, wi) i = 1, . . . , n (12)

We check ri � di for all i in a first admission step. Then
the final admission test can be done using the Liu/Layland-
criterion or time demand analysis [13]. In case of nonpre-
emptible resources, r�

i is computed as above, but the admis-
sion must include the WCET wO,i of an optional part:

ri = max(r�
i + wO,i, wi) (13)

to fully understand this (or not): 
see real-time systems lecture


good for microkernel: reservation can be 
calculated by a userland service


kernel just needs to support static priorities

preemptible (CPU) as well as for nonpreemptible (disk) re-
sources. Furthermore, we also included empirical execution
time distributions. Three main conclusions should be em-
phasized here.

• All the experiments show the compliance of the re-
quested qualities with the achieved qualities.

• The approach enables to provide statistical guarantees
and to control the behavior of firm applications even
under overload.

• QAS can clearly admit a higher load than an admission
based on WCET with negligible loss of quality.

The costs for these advantages are comparatively low. The
numerical complexity of the admission control (which can
be done offline) is dominated by the convolution of the dis-
cretized execution time distributions. The highest complex-
ity is that for the admission in case of nonpreemptible re-
sources; their complexity is O(s · v3) (s: total number of
optional parts, v: common number of values of the ran-
dom variables) [10, 11]. On the other hand, the scheduler
only manages the ready queue based on fixed priorities. So
online-overhead is negligible, independent of the type of re-
sources and the type of periods.

In case of arbitrary periods however, the computation of
the reservation time is very expensive with increasing costs
for larger task sets because the hyperperiod explodes for
task sets with close-by period lengths (like 503 and 510)
and all periods must be considered. Looking for a way to
overcome this difficulty, we propose a new admission con-
trol approach, which differs from QAS in three respects:
priority assignment, interpretation of the reservation time,
and as a consequence, a very low-cost admission algorithm.

4. Quality-Rate-Monotonic Scheduling

We will first explain our new approach, followed by an
investigation of the admission performance and overhead.

4.1. The QRMS Approach

QRMS is simple but still effective. We abandon the ex-
act modeling of the scheduling behavior in favor of apply-
ing the well-known results from rate-monotonic scheduling
theory. Therefore, we choose another priority assignment
policy and a simpler way to compute the reservation times:

• Priorities are assigned to tasks (this means mandatory
and optional parts of a task have the same priority) ac-
cording to RMS.

• All parts of a job are assigned a common reservation
time.
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(b) QRMS
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Figure 4. Admission with QAS vs. QRMS

• In the admission, the reservation time is regarded as a
constant execution time.

Consequently, tasks are independent during admission, an
important advantage to drastically decrease the admission
overhead. Figure 4 illustrates the modified priority assign-
ment and the notion of reservation times for two tasks T1,
T2 with uniform periods of length d.

The approach uses the task model given in Definition 1.
To derive the reservation times, we consider preemptible
resources first. We have to use Equation (8). Due to the
laws of probability calculus, we can compute the expected
value of Ai as

EAi =
mi�

k=1

P(Ai ⌅ k), i = 1, . . . , n (9)

The number Ai of completed parts of task Ti within a
period does no longer depend on the reservation times of
other tasks. Obviously, it holds (see Figure (5)):

P(Ai(r) ⌅ k) = P(Xi + k · Yi ⇤ r), k = 1, . . . ,mi

(10)
Thus:

r�
i = min(r ⇧ R | 1

mi

mi�

k=1

P(Xi +k ·Yi ⇤ r) ⌅ qi) . (11)

The final formula respects the fact that r�
i may be shorter

than the WCET wi of the mandatory part and includes the
constraint that jobs are aborted at the end of their period:

ri = max(r�
i, wi) i = 1, . . . , n (12)

We check ri ⇤ di for all i in a first admission step. Then
the final admission test can be done using the Liu/Layland-
criterion or time demand analysis [13]. In case of nonpre-
emptible resources, r�

i is computed as above, but the admis-
sion must include the WCET wO,i of an optional part:

ri = max(r�
i + wO,i, wi) (13)
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SCHEDULING
scheduling = admission + enforcement

admission = scheduling analysis


verifies the feasibility of client requests

formal task model

calculates task parameters

can reject requests


enforcement

executing the schedule

preempt when reservation expires

27
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ENFORCEMENT

28
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DISPATCHER
executed at specific events


enforces task parameters by preemption

e.g. on deadline overrun


picks the next thread

static priorities (e.g. RMS, DMS)

dynamic priorities (e.g. EDF)


seems simple…
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PROBLEM
high priority thread calls low priority 
service, medium priority thread interferes:

Thread 1

Thread 2

Thread 3

Priority

1 waits for 3

3 waits for 2

= 1 waits for 2

✔

✔

✘ Priority Inversion
30
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SOLUTION
priority inheritance, priority ceiling


nice mechanism for this in Fiasco, NOVA: 
timeslice donation


split thread control block

execution context: holds CPU state

scheduling context: time and priority


on IPC-caused thread switch, only the 
execution context is switched
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DONATING CALL

Thread 1

Thread 2

Thread 3

Priority

IPC receiver runs on the sender’s 
scheduling context


priority inversion problem solved with 
priority inheritance
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ACCOUNTING
servers run on their clients’ time slice


when the server executes on behalf of a 
client, the client pays with its own time


this allows for servers with no scheduling 
context


server has no time or priority on its own

can only execute on client’s time

relieves scheduler from dealing with 
servers

33
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OPEN ISSUES
servers could be malicious, so you need 
timeouts to get your time back


now, malicious clients can call the server 
with a very short timeout


on what time will the server do cleanup?


donation does not work across CPUs

would thwart admission; one CPU cannot 
execute on behalf of another


migrate servers or clients?
34
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OPTIMIZATION
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SEMAPHORES

IPC only in the contention case


optimized for low contention


bad for producer-consumer problems

Thread 1

Thread 2

Semaphore 
Thread

down

down

enqueue 
and block

up

dequeue 
and unblock

up
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SEMAPHORES

reduce from 2 IPCs to one


how to protect the short critical section?


spinlocks suffer lockholder preemption

Thread 1

Thread 2

down

down enqueue 
and block

up

dequeue 
and signal

up
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IDEA
allow threads to have short periods 
where they are never preempted


like a low cost global system lock

like a userland flavor of disabling interrupts


delayed preemption


threads set “don’t preempt” flag in UTCB

very low cost

not a lock, no lockholder preemption
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PROBLEMS
unbounded delay


kernel honors the delayed preemption flag 
only for a fixed maximum delay

what delay is useful?


delay affects all threads

effect can be limited to a priority band

must be included in real-time analysis


does not work across multiple CPUs
39
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SUMMARY
managing time is necessary


we interact with the system based on time


real-time is a cross-cutting concern


heavy-math admission in userland, 
simple priorities in the kernel


priority inheritance by timeslice donation


synchronisation, delayed preemption


next week: drivers
40


