
MICHAEL ROITZSCH

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

REAL-TIME

TU Dresden MOS: Real-Time

OVERVIEW

2

TU Dresden MOS: Real-Time

SO FAR

talked about in-kernel building blocks:

threads

memory

IPC

drivers will enable access to a wide range
of non-kernel resources

need to manage resources

3

TU Dresden MOS: Real-Time

COURSE EIP

Basic Abstractions

System Services

Applications

4

TU Dresden MOS: Real-Time

RESOURCES

Disk Bandwidth

Network I/O

Files

TCP/IP Sessions

ThreadsMemory

Semaphores

Communication Rights

Windows

5

TU Dresden MOS: Real-Time

COMPARISON
Memory Time

discrete, limited continuous, infinite

hidden in the system user-perceivable

managed by pager managed by scheduler

page-granular partitions arbitrary granularity

all pages are of equal value value depends on workload

active policy decisions, 
passive enforcement

active policy decisions, 
active enforcement

hierarchical management Fiasco: flattened in-kernel view

6

TU Dresden MOS: Real-Time

REAL-TIME

7

TU Dresden MOS: Real-Time

DEFINITION

a real-time system denotes a system,
whose correctness depends on the timely
delivery of results

“it matters, when a result is produced”

real-time denotes a predictable relation
between system progress and wall-clock
time

8

TU Dresden

benign failures

complex

MOS: Real-Time

focused 
catastrophic failures

EXAMPLES

engine control in a car

break-by-wire

avionics

railway control

set-top box media player

mobile stack in your cell phone

9

TU Dresden MOS: Real-Time

TOPICS

① Predictability

② Guarantees

③ Enforcement

10

TU Dresden MOS: Real-Time

PREDICTABILITY

11

TU Dresden MOS: Real-Time

ENEMIES
gap between worst and average case

memory caches, disk caches, TLBs

“smart” hardware

system management mode

disk request reordering

cross-talk from resource sharing

servers showing O(n) behavior

SMP

external influences: interrupts
12

TU Dresden MOS: Real-Time

CROSSCUTTING

Kernel

System Services

Applications

Hardware

Realtim
e

13

TU Dresden MOS: Real-Time

CUSTOM RTOS

small real-time executives tailor-made for
specific applications

fixed workload known a priori

pre-calculated time-driven schedule

used on small embedded controllers

benign hardware

14

TU Dresden MOS: Real-Time

RTLINUX
full Linux kernel and real-time processes
run side-by-side

small real-time executive underneath
supports scheduling and IPC

real-time processes implemented as
kernel modules

all of this runs in kernel mode

no isolation
15

TU Dresden MOS: Real-Time

XNU
the kernel used in macOS and iOS

offers a real-time priority band above the
priority of kernel threads

interface: “I need X time with a Y period.”

threads exceeding their assignment will
be demoted

all drivers need to handle interrupts
correctly

16

Hexley DarwinOS Mascot Copyright 2000 by Jon Hooper.

All Rights Reserved.

TU Dresden MOS: Real-Time

FIASCO
static thread priorities

O(1) complexity for most system calls

fully preemptible in kernel mode

bounded interrupt latency

lock-free synchronization

uses atomic operations

wait-free synchronization

locking with helping instead of blocking

17

TU Dresden MOS: Real-Time

BE AFRAID

Non-Real-Time Kernel

Real-Time Middleware

Applications

“real-time” architecture for those afraid of
touching the OS

example: Real-Time Java

18

TU Dresden MOS: Real-Time

RESOURCES
a real-time kernel alone is not enough

microkernel solution: temporal isolation

eliminates cross-talk through system calls

interrupt handling controlled by scheduler

user-level servers as resource managers

implement real-time views on specific
resources

real-time is not only about CPU
19

TU Dresden MOS: Real-Time

GUARANTEES

20

TU Dresden MOS: Real-Time

PROBLEM

worst case execution time (WCET) largely
exceeds average case

offering guarantees for the worst case will
waste lots of resources

missing some deadlines can be tolerated
with the firm and soft real-time flavors

21

TU Dresden MOS: Real-Time

MOTIVATION
desktop real-time

there are no hard real-time applications
on desktops

there is a lot of firm and soft real-time

low-latency audio processing

smooth video playback

desktop effects

user interface responsiveness

22

TU Dresden MOS: Real-Time

H.264 DECODING

0

5

10

15

0 5 10 15 20 25 30ms

WCET

23

TU Dresden MOS: Real-Time

KEY IDEA
guarantees even slightly below 100% of
WCET can dramatically reduce resource
allocation

unused reservations will be used by
others at runtime

use probabilistic planning to model the
actual execution

quality q: fraction of deadlines to be met

24

TU Dresden MOS: Real-Time

KEY IDEA

WCET

25

TU Dresden MOS: Real-Time

RESERVATION

preemptible (CPU) as well as for nonpreemptible (disk) re-
sources. Furthermore, we also included empirical execution
time distributions. Three main conclusions should be em-
phasized here.

• All the experiments show the compliance of the re-
quested qualities with the achieved qualities.

• The approach enables to provide statistical guarantees
and to control the behavior of firm applications even
under overload.

• QAS can clearly admit a higher load than an admission
based on WCET with negligible loss of quality.

The costs for these advantages are comparatively low. The
numerical complexity of the admission control (which can
be done offline) is dominated by the convolution of the dis-
cretized execution time distributions. The highest complex-
ity is that for the admission in case of nonpreemptible re-
sources; their complexity is O(s · v3) (s: total number of
optional parts, v: common number of values of the ran-
dom variables) [10, 11]. On the other hand, the scheduler
only manages the ready queue based on fixed priorities. So
online-overhead is negligible, independent of the type of re-
sources and the type of periods.

In case of arbitrary periods however, the computation of
the reservation time is very expensive with increasing costs
for larger task sets because the hyperperiod explodes for
task sets with close-by period lengths (like 503 and 510)
and all periods must be considered. Looking for a way to
overcome this difficulty, we propose a new admission con-
trol approach, which differs from QAS in three respects:
priority assignment, interpretation of the reservation time,
and as a consequence, a very low-cost admission algorithm.

4. Quality-Rate-Monotonic Scheduling

We will first explain our new approach, followed by an
investigation of the admission performance and overhead.

4.1. The QRMS Approach

QRMS is simple but still effective. We abandon the ex-
act modeling of the scheduling behavior in favor of apply-
ing the well-known results from rate-monotonic scheduling
theory. Therefore, we choose another priority assignment
policy and a simpler way to compute the reservation times:

• Priorities are assigned to tasks (this means mandatory
and optional parts of a task have the same priority) ac-
cording to RMS.

• All parts of a job are assigned a common reservation
time.

1a 1b 1c

Figure 2. Reservation times of optional parts

Figure 3. Overlapping periods

 a) QAS b) QRMS

Figure 4. Admission with QAS vs. QRMS

Figure 5.

aborted part of J

di

Ti

Tj

dj

t

p.d.f.

q

r

d

… J

e t

p.d.f.

q

r

d
e

… J

p.d.f.

q

r

t d

… J

e

X1 X2 X3 Y1 Y2 Y3

d 0

r1
r2 r

Y2 aborted

X1 X2 Y1 Y2

0 d

r1

r2

X1 Y1 X2 Y2

0 d

r1 r2

lost for admission available for admission

Xi Yi Yi Yi Yi

0 di

 r

(a) QAS

1a 1b 1c

Figure 2. Reservation times of optional parts

Figure 3. Overlapping periods

 a) QAS b) QRMS

Figure 4. Admission with QAS vs. QRMS

Figure 5.

aborted part of J

di

Ti

Tj

dj

t

p.d.f.

q

r

d

… J

e t

p.d.f.

q

r

d
e

… J

p.d.f.

q

r

t d

… J

e

X1 X2 X3 Y1 Y2 Y3

d 0

r1
r2 r

Y2 aborted

X1 X2 Y1 Y2

0 d

r1

r2

X1 Y1 X2 Y2

0 d

r1 r2

lost for admission available for admission

Xi Yi Yi Yi Yi

0 di

 r

(b) QRMS

1a 1b 1c

Figure 2. Reservation times of optional parts

Figure 3. Overlapping periods

 a) QAS b) QRMS

Figure 4. Admission with QAS vs. QRMS

Figure 5.

aborted part of J

di

Ti

Tj

dj

t

p.d.f.

q

r

d

… J

e t

p.d.f.

q

r

d
e

… J

p.d.f.

q

r

t d

… J

e

X1 X2 X3 Y1 Y2 Y3

d 0

r1
r2 r

Y2 aborted

X1 X2 Y1 Y2

0 d

r1

r2

X1 Y1 X2 Y2

0 d

r1 r2

lost for admission available for admission

Xi Yi Yi Yi Yi

0 di

 r

Figure 4. Admission with QAS vs. QRMS

• In the admission, the reservation time is regarded as a
constant execution time.

Consequently, tasks are independent during admission, an
important advantage to drastically decrease the admission
overhead. Figure 4 illustrates the modified priority assign-
ment and the notion of reservation times for two tasks T1,
T2 with uniform periods of length d.

The approach uses the task model given in Definition 1.
To derive the reservation times, we consider preemptible
resources first. We have to use Equation (8). Due to the
laws of probability calculus, we can compute the expected
value of Ai as

EAi =
mi�

k=1

P(Ai ⇥ k), i = 1, . . . , n (9)

The number Ai of completed parts of task Ti within a
period does no longer depend on the reservation times of
other tasks. Obviously, it holds (see Figure (5)):

P(Ai(r) ⇥ k) = P(Xi + k · Yi � r), k = 1, . . . ,mi

(10)
Thus:

r�
i = min(r ⇤ R |

mi�

k=1

P(Xi + k · Yi � r) ⇥ qimi) . (11)

The final formula respects the fact that r�
i may be shorter

than the WCET wi of the mandatory part and includes the
constraint that jobs are aborted at the end of their period:

ri = max(r�
i, wi) i = 1, . . . , n (12)

We check ri � di for all i in a first admission step. Then
the final admission test can be done using the Liu/Layland-
criterion or time demand analysis [13]. In case of nonpre-
emptible resources, r�

i is computed as above, but the admis-
sion must include the WCET wO,i of an optional part:

ri = max(r�
i + wO,i, wi) (13)

to fully understand this (or not): 
see real-time systems lecture

good for microkernel: reservation can be
calculated by a userland service

kernel just needs to support static priorities

preemptible (CPU) as well as for nonpreemptible (disk) re-
sources. Furthermore, we also included empirical execution
time distributions. Three main conclusions should be em-
phasized here.

• All the experiments show the compliance of the re-
quested qualities with the achieved qualities.

• The approach enables to provide statistical guarantees
and to control the behavior of firm applications even
under overload.

• QAS can clearly admit a higher load than an admission
based on WCET with negligible loss of quality.

The costs for these advantages are comparatively low. The
numerical complexity of the admission control (which can
be done offline) is dominated by the convolution of the dis-
cretized execution time distributions. The highest complex-
ity is that for the admission in case of nonpreemptible re-
sources; their complexity is O(s · v3) (s: total number of
optional parts, v: common number of values of the ran-
dom variables) [10, 11]. On the other hand, the scheduler
only manages the ready queue based on fixed priorities. So
online-overhead is negligible, independent of the type of re-
sources and the type of periods.

In case of arbitrary periods however, the computation of
the reservation time is very expensive with increasing costs
for larger task sets because the hyperperiod explodes for
task sets with close-by period lengths (like 503 and 510)
and all periods must be considered. Looking for a way to
overcome this difficulty, we propose a new admission con-
trol approach, which differs from QAS in three respects:
priority assignment, interpretation of the reservation time,
and as a consequence, a very low-cost admission algorithm.

4. Quality-Rate-Monotonic Scheduling

We will first explain our new approach, followed by an
investigation of the admission performance and overhead.

4.1. The QRMS Approach

QRMS is simple but still effective. We abandon the ex-
act modeling of the scheduling behavior in favor of apply-
ing the well-known results from rate-monotonic scheduling
theory. Therefore, we choose another priority assignment
policy and a simpler way to compute the reservation times:

• Priorities are assigned to tasks (this means mandatory
and optional parts of a task have the same priority) ac-
cording to RMS.

• All parts of a job are assigned a common reservation
time.

1a 1b 1c

Figure 2. Reservation times of optional parts

Figure 3. Overlapping periods

 a) QAS b) QRMS

Figure 4. Admission with QAS vs. QRMS

Figure 5.

aborted part of J

di

Ti

Tj

dj

t

p.d.f.

q

r

d

… J

e t

p.d.f.

q

r

d
e

… J

p.d.f.

q

r

t d

… J

e

X1 X2 X3 Y1 Y2 Y3

d 0

r1
r2 r

Y2 aborted

X1 X2 Y1 Y2

0 d

r1

r2

X1 Y1 X2 Y2

0 d

r1 r2

lost for admission available for admission

Xi Yi Yi Yi Yi

0 di

 r

(a) QAS

1a 1b 1c

Figure 2. Reservation times of optional parts

Figure 3. Overlapping periods

 a) QAS b) QRMS

Figure 4. Admission with QAS vs. QRMS

Figure 5.

aborted part of J

di

Ti

Tj

dj

t

p.d.f.

q

r

d

… J

e t

p.d.f.

q

r

d
e

… J

p.d.f.

q

r

t d

… J

e

X1 X2 X3 Y1 Y2 Y3

d 0

r1
r2 r

Y2 aborted

X1 X2 Y1 Y2

0 d

r1

r2

X1 Y1 X2 Y2

0 d

r1 r2

lost for admission available for admission

Xi Yi Yi Yi Yi

0 di

 r

(b) QRMS

1a 1b 1c

Figure 2. Reservation times of optional parts

Figure 3. Overlapping periods

 a) QAS b) QRMS

Figure 4. Admission with QAS vs. QRMS

Figure 5.

aborted part of J

di

Ti

Tj

dj

t

p.d.f.

q

r

d

… J

e t

p.d.f.

q

r

d
e

… J

p.d.f.

q

r

t d

… J

e

X1 X2 X3 Y1 Y2 Y3

d 0

r1
r2 r

Y2 aborted

X1 X2 Y1 Y2

0 d

r1

r2

X1 Y1 X2 Y2

0 d

r1 r2

lost for admission available for admission

Xi Yi Yi Yi Yi

0 di

 r

Figure 4. Admission with QAS vs. QRMS

• In the admission, the reservation time is regarded as a
constant execution time.

Consequently, tasks are independent during admission, an
important advantage to drastically decrease the admission
overhead. Figure 4 illustrates the modified priority assign-
ment and the notion of reservation times for two tasks T1,
T2 with uniform periods of length d.

The approach uses the task model given in Definition 1.
To derive the reservation times, we consider preemptible
resources first. We have to use Equation (8). Due to the
laws of probability calculus, we can compute the expected
value of Ai as

EAi =
mi�

k=1

P(Ai ⌅ k), i = 1, . . . , n (9)

The number Ai of completed parts of task Ti within a
period does no longer depend on the reservation times of
other tasks. Obviously, it holds (see Figure (5)):

P(Ai(r) ⌅ k) = P(Xi + k · Yi ⇤ r), k = 1, . . . ,mi

(10)
Thus:

r�
i = min(r ⇧ R | 1

mi

mi�

k=1

P(Xi +k ·Yi ⇤ r) ⌅ qi) . (11)

The final formula respects the fact that r�
i may be shorter

than the WCET wi of the mandatory part and includes the
constraint that jobs are aborted at the end of their period:

ri = max(r�
i, wi) i = 1, . . . , n (12)

We check ri ⇤ di for all i in a first admission step. Then
the final admission test can be done using the Liu/Layland-
criterion or time demand analysis [13]. In case of nonpre-
emptible resources, r�

i is computed as above, but the admis-
sion must include the WCET wO,i of an optional part:

ri = max(r�
i + wO,i, wi) (13)

26

TU Dresden MOS: Real-Time

SCHEDULING
scheduling = admission + enforcement

admission = scheduling analysis

verifies the feasibility of client requests

formal task model

calculates task parameters

can reject requests

enforcement

executing the schedule

preempt when reservation expires

27

TU Dresden MOS: Real-Time

ENFORCEMENT

28

TU Dresden MOS: Real-Time

DISPATCHER
executed at specific events

enforces task parameters by preemption

e.g. on deadline overrun

picks the next thread

static priorities (e.g. RMS, DMS)

dynamic priorities (e.g. EDF)

seems simple…

29

TU Dresden MOS: Real-Time

PROBLEM
high priority thread calls low priority
service, medium priority thread interferes:

Thread 1

Thread 2

Thread 3

Priority

1 waits for 3

3 waits for 2

= 1 waits for 2

✔

✔

✘ Priority Inversion
30

TU Dresden MOS: Real-Time

SOLUTION
priority inheritance, priority ceiling

nice mechanism for this in Fiasco, NOVA: 
timeslice donation

split thread control block

execution context: holds CPU state

scheduling context: time and priority

on IPC-caused thread switch, only the
execution context is switched

31

TU Dresden MOS: Real-Time

DONATING CALL

Thread 1

Thread 2

Thread 3

Priority

IPC receiver runs on the sender’s
scheduling context

priority inversion problem solved with
priority inheritance

32

TU Dresden MOS: Real-Time

ACCOUNTING
servers run on their clients’ time slice

when the server executes on behalf of a
client, the client pays with its own time

this allows for servers with no scheduling
context

server has no time or priority on its own

can only execute on client’s time

relieves scheduler from dealing with
servers

33

TU Dresden MOS: Real-Time

OPEN ISSUES
servers could be malicious, so you need
timeouts to get your time back

now, malicious clients can call the server
with a very short timeout

on what time will the server do cleanup?

donation does not work across CPUs

would thwart admission; one CPU cannot
execute on behalf of another

migrate servers or clients?
34

TU Dresden MOS: Real-Time

OPTIMIZATION

35

TU Dresden MOS: Real-Time

SEMAPHORES

IPC only in the contention case

optimized for low contention

bad for producer-consumer problems

Thread 1

Thread 2

Semaphore
Thread

down

down

enqueue
and block

up

dequeue
and unblock

up

36

TU Dresden MOS: Real-Time

SEMAPHORES

reduce from 2 IPCs to one

how to protect the short critical section?

spinlocks suffer lockholder preemption

Thread 1

Thread 2

down

down enqueue
and block

up

dequeue
and signal

up

37

TU Dresden MOS: Real-Time

IDEA
allow threads to have short periods
where they are never preempted

like a low cost global system lock

like a userland flavor of disabling interrupts

delayed preemption

threads set “don’t preempt” flag in UTCB

very low cost

not a lock, no lockholder preemption

38

TU Dresden MOS: Real-Time

PROBLEMS
unbounded delay

kernel honors the delayed preemption flag
only for a fixed maximum delay

what delay is useful?

delay affects all threads

effect can be limited to a priority band

must be included in real-time analysis

does not work across multiple CPUs
39

TU Dresden MOS: Real-Time

SUMMARY
managing time is necessary

we interact with the system based on time

real-time is a cross-cutting concern

heavy-math admission in userland, 
simple priorities in the kernel

priority inheritance by timeslice donation

synchronisation, delayed preemption

next week: drivers
40

