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m talked about in-kernel building blocks:
m threads

B memory

m |[PC

m drivers will enable access to a wide range
of non-kernel resources

m need to manage resources
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Applications

System Services

Basic Abstractions
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Disk Bandwidth TCP/IP Sessions

Network 1/0O Windows

Files
Semaphores

M
Smory Threads

Communication Rights
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COMPARISON

Memor Time
Yy

discrete, limited continuous, infinite
hidden in the system user-perceivable
managed by pager managed by scheduler
page-granular partitions arbitrary granularity

all pages are of equal value value depends on workload

active policy decisions, active policy decisions,
passive enforcement active enforcement

hierarchical management  Fiasco: flattened in-kernel view
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REAL-TIME
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m 3 real-time system denotes a system,

whose correctness depends on the timely
delivery of results

m “it matters, when a result is produced”

m real-time denotes a predictable relation

between system progress and wall-clock
time
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EXAMPLES

engine control in a car
break-by-wire

avionics
focused

railway control catastrophic failures

set-top box media player  benign failures
complex

mobile stack in your cell phone
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(1) Predictability
(2 Guarantees

(3) Enforcement
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PREDICTABILITY
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m gap between worst and average case
m memory caches, disk caches, TLBs

m “smart” hardware
m system management mode
m disk request reordering

m cross-talk from resource sharing
m servers showing O(n) behavior
s SMP

m external influences: interrupts
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CROSSCUTTING
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Applications
System Services
Kernel

Hardware
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CUSTOM RTOS

m small real-time executives tailor-made for
specific applications

m fixed workload known a priori
m pre-calculated time-driven schedule
m used on small embedded controllers

m benign hardware
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full Linux kernel and real-time processes
run side-by-side

small real-time executive underneath
supports scheduling and IPC

real-time processes implemented as
kernel modules

all of this runs in kernel mode

no isolation
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the kernel used in macOS and iOS

offers a real-time priority band above the
priority of kernel threads

interface: “l need X time with a Y period.”

threads exceeding their assignment will
be demotea

all drivers need to handle interrupts
correctly
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m static thread priorities
m O(1) complexity for most system calls
m fully preemptible in kernel mode
m bounded interrupt latency
m |ock-free synchronization
m uses atomic operations
m wait-free synchronization

m |ocking with helping instead of blocking
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m “real-time” architecture for those afraid of
touching the OS

m example: Real-Time Java

Applications

Real-Time Middleware

Non-Real-Time Kernel
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m a real-time kernel alone is not enough

m microkernel solution: temporal isolation
m eliminates cross-talk through system calls
m interrupt handling controlled by scheduler

m user-level servers as resource managers

m implement real-time views on specific
resources

= real-time is not only about CPU
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GUARANTEES
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m worst case execution time (WCET) largely
exceeds average case

m offering guarantees for the worst case will
waste lots of resources

m missing some deadlines can be tolerated
with the firm and soft real-time tlavors
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m desktop real-time

m there are no hard real-time applications
on desktops

m thereis a lot of firm and soft real-time

m [ow-latency audio processing
m smooth video playback

m desktop effects

m user interface responsiveness
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guarantees even slightly below 100% of
WCET can dramatically reduce resource
allocation

unused reservations will be used by
others at runtime

use probabilistic planning to model the
actual execution

quality g: fraction of deadlines to be met
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r —mm(TER|—ZPX-I-]€ Y: <r)>q)

ri = max(r;,w;) i=1,...,n
m to fully understand this (or not):
see real-time systems lecture

m good for microkernel: reservation can be
calculated by a userland service

m kernel just needs to support static priorities
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s scheduling = admission + enforcement

m admission = scheduling analysis
m verifies the feasibility of client requests
m formal task model
m calculates task parameters
B can reject requests
m enforcement
m executing the schedule

m preempt when reservation expires
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ENFORCEMENT
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m executed at specific events
m enforces task parameters by preemption
m e.g.on deadline overrun

m picks the next thread
m static priorities (e.g. RMS, DMS)
m dynamic priorities (e.g. EDF)

m seems simple...
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m high priority thread calls low priority
service, medium priority thread interferes:

1 waits for3 ¢/

3 waits for2 ¢/
=1 waitsfor2 X Priority Inversion
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m priority inheritance, priority ceiling

B nice mechanism for this in Fiasco, NOVA:

timeslice donation

m split thread control block

m execution context: holds CPU state

m scheduling context: time and priority

m on IPC-caused thread switch, only the
execution context is switched
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s DONATING CALL

Thread 3 o o

m |PC receiver runs on the sender’s
scheduling context

m priority inversion problem solved with
priority inheritance
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m servers run on their clients’ time slice

m when the server executes on behalf of a
client, the client pays with its own time

m this allows for servers with no scheduling
context

m server has no time or priority on its own
m can only execute on client’s time

m relieves scheduler from dealing with
servers
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m servers could be malicious, so you need
timeouts to get your time back

B now, malicious clients can call the server
with a very short timeout

m on what time will the server do cleanup?

m donation does not work across CPUs

m would thwart admission; one CPU cannot
execute on behalf of another

m migrate servers or clients?
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OPTIMIZATION
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Thread 1

enqueue dequeue

Semaphore and block and unblock

Thread

Thread 2

m |PC only in the contention case
m optimized for low contention

m bad for producer-consumer problems
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dequeue
and signal

down

enqueue

and block

m reduce from 2 IPCs to one

m how to protect the short critical section?

m spinlocks sufter lockholder preemption
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m allow threads to have short periods
where they are never preempted

m |ike a low cost global system lock

m |ike a userland tlavor of disabling interrupts
m delayed preemption
m threads set “"don’t preempt” flag in UTCB

m very low cost

m not a lock, no lockholder preemption
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m unbounded delay

m kernel
only fo

nonors the delayed preemption flag

- a fixed maximum delay

m what delay is useful?

m delay affects all threads

m effect can be limited to a priority band

m must be included in real-time analysis

m does not work across multiple CPUs

TU Dresden
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B managing time Is necessary

m we interact with the system based on time
m real-time is a cross-cutting concern

m heavy-math admission in userland,
simple priorities in the kernel

m priority inheritance by timeslice donation
m synchronisation, delayed preemption

m next week: drivers
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