
MICHAEL ROITZSCH

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

RESOURCE
MANAGEMENT

TU Dresden MOS: Resource Management

AGENDA

done: time, drivers

today: misc. resources
architectures for resource management
solutions for specific resources
capabilities to manage resource access

upcoming: applications, legacy support

2

TU Dresden MOS: Resource Management

KERNEL
RESOURCES

3

TU Dresden MOS: Resource Management

PROBLEM
kernel needs memory for its abstractions

tasks: page tables
threads: kernel-TCB
capability tables
IPC wait queues
mapping database

kernel memory is limited

opens the possibility of DoS attacks
4

TU Dresden MOS: Resource Management

IDEA
memory management policy should not
be in the kernel

account all memory to the application it is
needed for (directly or indirectly)

kernel provides memory control
mechanism

exception for bootstrapping:
initial kernel memory is managed by
kernel

5

TU Dresden MOS: Resource Management

SOLUTION
untyped memory in seL4

all physical memory unused after
bootstrap is represented by untyped
memory capabilities

can be granted, split or retyped

restricted to powers of 2 (see flexpages)

initial resource manager gets all (see σ0)

user code decides how to use them
6

TU Dresden MOS: Resource Management

SOLUTION
application retype UM to kernel objects

TCB, endpoint, CNode, VNode, frame, interrupt
all kernel bookkeeping for the object uses
the underlying physical memory
no implicit memory allocation by the kernel

retyping and splitting is remembered in
capability derivation tree

revoking recursively destroys all derived
capabilities and kernel objects

7

TU Dresden MOS: Resource Management

PRINCIPLE

8

separate enforcement and
management

TU Dresden MOS: Resource Management

ARCHITECTURES

9

TU Dresden MOS: Resource Management

SPECTRUM

10

high-level resource abstractions
implicit management

low-level resource abstractions
explicit management

m
on

ol
ith

re
so

ur
ce

co

nt
ai

ne
rs

ex
ok

er
ne

l

m
ul

tis
er

ve
r

TU Dresden MOS: Resource Management

MONOLITHS
enforcement and management implicitly
tied to process abstraction

resource containers were proposed to
make resource management explicit

bags of resources assigned to subsystems
11

isolation accounting
process

protection domain resource container

TU Dresden MOS: Resource Management

EXOKERNEL

12

Exokernel

Library OS

Application

Enforcement

Management

TU Dresden MOS: Resource Management

DESIGN
provide primitives at the lowest possible
level necessary for protection

use physical names wherever possible

resource management primitives:
explicit allocation
exposed revocation
protected sharing
ownership tracking

13

TU Dresden MOS: Resource Management

CONSEQUENCES
applications can use their own library OS

library OS’es cannot trust each other

no global management for resources

think of a file system
kernel manages disk block ownership
each library OS comes with its own
filesystem implementation

one partition per application?
14

TU Dresden MOS: Resource Management

SHARING
invariants in shared resources must be
maintained

4 mechanisms provided by the exokernel
software regions for sub-page memory
protection, allows to share state
capabilities for access control
critical sections
wakeup predicates: code downloaded into
the kernel for arbitrary checks

15

TU Dresden MOS: Resource Management

MULTISERVER

16

Low-Level
Resource
Manager

ApplicationHigher-Level
Resource
Manager

Client-Libs
L4 Microkernel

works on monolithic kernels too

TU Dresden MOS: Resource Management

LEVELS
different abstraction levels for resources

17

basic resources memory, CPU,
IO-ports, interrupts

hardware block device, framebuffer,
network card

compound
resources

file, GUI window,
TCP session

TU Dresden MOS: Resource Management

HIERARCHIES
applications can access resource on the
abstraction level they need

servers implementing a resource can use
other, lower-level resources

isolation allows managers to provide real-
time guarantees for their specific
resource

DROPS:
Dresden Real-time OPerating System

18

TU Dresden MOS: Resource Management

EXAMPLES

19

TU Dresden MOS: Resource Management

ANKH
driver for physical
network card

built with DDE using
Linux 2.6 drivers

provides multiple
virtual network cards

implements a simple
virtual bridge

20

Ankh

lwip

wget

TU Dresden MOS: Resource Management

wget

LWIP

light-weight IP Stack

TCP/IP, UDP, ICMP

21

Ankh

lwip

TU Dresden MOS: Resource Management

WGET

clients can use
standard BSD socket
interface

22

Ankh

lwip

wget

TU Dresden MOS: Resource Management

BLOCK SERVER
IDE driver to access
hard disks

includes disk
request scheduling

based on DDE

provides block device

ongoing work on
USB block devices

23

Windhoek

Filesystem

L4Re VFS

TU Dresden MOS: Resource Management

L4Re VFS

FILESYSTEM

no real one
implemented yet

we have a tmpfs
using RAM as
backing store

VPFS: securely reuse
a Linux filesystem

24

Windhoek

Filesystem

TU Dresden MOS: Resource Management

L4RE VFS

hierarchical name
space

connects subtrees to
different backend
servers

aka mounting

25

Windhoek

Filesystem

L4Re VFS

TU Dresden MOS: Resource Management

MAG
multiplexes the
frame buffer

no virtual desktops,
but window
merging

details in the
legacy / security
lectures

26

mag

DOpE

Terminal

TU Dresden MOS: Resource Management

Terminal

DOPE

widget drawing
server

handles mouse and
keyboard input

can also operate on
raw framebuffer

real-time capable

27

mag

DOpE

TU Dresden MOS: Resource Management

TERMINAL
DOpE client
providing a terminal
window

VT100 emulation

can support readline
applications

shell
python

28

mag

DOpE

Terminal

TU Dresden MOS: Resource Management

RESOURCE ACCESS

29

TU Dresden MOS: Resource Management

EXAMPLE

30

Service

Manager

Worker A Worker B

TU Dresden MOS: Resource Management

GOOGLE CHROME
separate processes

chrome parent
sandboxes for tabs

implementation on
Linux: glorious mix
of chroot(), clone()
and setuid()

there must be a
better way…

31

TU Dresden MOS: Resource Management

TWO WORLDS

32

POSIX POLA

operations
allowed by default

nothing allowed
by default

some limited
restrictions apply

every right must
be granted

ambient authority explicit authority

TU Dresden MOS: Resource Management

L4RE

33

L4Re — the L4 Runtime Environment
set of libraries and system services on

top of the Fiasco.OC microkernel

TU Dresden MOS: Resource Management

CAPABILITIES
Fiasco.OC and L4Re form an
object-capability system

actors in the system are objects
objects have local state and behavior

capabilities are references to objects
any object interaction requires a capability
unseparable and unforgeable combination
of reference and access right

34

TU Dresden MOS: Resource Management

CAPABILITIES

35

Fiasco.OC

Task A

A B C D E

Task B
Ca

pa
bi

lit
y

Ta
bl

e 1
2
3
4
5 Ca

pa
bi

lit
y

Ta
bl

e1
2
3
4
5

TU Dresden MOS: Resource Management

HOW TO USE?
invocation of any object requires a
capability to that object

no global names

no sophisticated rights representation
beyond capability ownership

just four rights bits on objects

C++ language integration

capabilities passed as message payload
36

TU Dresden MOS: Resource Management

CAP TRANSFER

37

X

Task A Task B

1 2 3 4 5 1 2 3 4 5

TU Dresden MOS: Resource Management

EXAMPLE

38

Manager

Service

Worker A Worker B

TU Dresden MOS: Resource Management

EXAMPLE

39

Manager

Service

Worker A Worker B

mag

TU Dresden MOS: Resource Management

mag

MAG
factory for new
framebuffer sessions

session object
backing store memory
view: visible rectangle
on the backing store
metadata, refresh method

How does it appear on
the screen?

40

Factory S S

Manager

TU Dresden MOS: Resource Management

mag

MAG
hardware framebuffer is
memory with side effect

all memory is initially
mapped to the root task

framebuffer driver
find framebuffer memory
wrap in FB-interface

same interface as mag’s
41

Factory S S

Memory

moe

fb-drv

TU Dresden MOS: Resource Management

INTERFACES
virtualizable interfaces

L4Re uses one interface per resource
independent of the implementation
servers can (re-)implement any interface

the kernel is a special server: provides
low-level objects that need CPU privileges

minimal policy
userland servers can augment

42

TU Dresden MOS: Resource Management

EXAMPLES

43

fb-drv

mag

kernel

balancer

Graphics Thread scheduling

pong multithreaded
application

TU Dresden MOS: Resource Management

CONCLUSION

all services provided as objects

uniform access control with capabilities

invocation is the only system call

virtualizable: all interfaces can be
interposed

resource refinement and multiplexing
transparent to clients

44

TU Dresden MOS: Resource Management

SUMMARY
kernel resource management

basic resource management concepts
resource containers
exokernel
multiserver

management details for specific resources

object capabilities and
virtualizable interfaces

45

