
Virtualization
MOS WS 2019/20

Goals
• Give you an overview about:

• Virtualization and VMs in General

• Hardware Virtualization on x86

• Our research regarding Virtualization

Goals
• Give you an overview about:

• Virtualization and VMs in General

• Hardware Virtualization on x86

• Our research regarding Virtualization

• Not in this lecture:

• Lots and lots of Details

• Language Runtimes

• How to use Xen/KVM/…

History

„Virtualization has finally arrived. Dismissed for a number of
years as merely academic curiosities, they are now seen as
cost-effective techniques for organising computer system
resources to provide extraordinary system flexibility and
support for certain unique applications.“

History

„Virtualization has finally arrived. Dismissed for a number of
years as merely academic curiosities, they are now seen as
cost-effective techniques for organising computer system
resources to provide extraordinary system flexibility and
support for certain unique applications.“

Popek & Goldberg, 1974

History

Erik Pitti, CC-BY, www.flickr.com/people/24205142@N00

http://www.flickr.com/people/24205142@N00

History
• Pioneered with IBM’s CP/CMS in ~1967 running on  

System/360 and System/370

• CP: Control Program (provided S/360 VMs)

• Memory Protection between VMs

• Preemptive scheduling

• CMS: Cambridge Monitor System (later Conversational
Monitor System) – Single User OS

• At the time more flexible & efficient than time-sharing multi-
user systems!

History

History
• Gave rise to IBM’s VM line of OSs:

• First release: 1972

• Latest release: z/VM 6.4, Nov. 11th, 2016

History
• Gave rise to IBM’s VM line of OSs:

• First release: 1972

• Latest release: z/VM 6.4, Nov. 11th, 2016

• Applications:

• Consolidation (improve server utilization)

• Isolation (incompatibility or security reasons)

• Reuse (legacy software)

• Development

… but was confined to the mainframe-world for a long time!

Why?

Imagine you want to write an operating system, that is:

• Secure

• Trustworthy

• Small

• Fast

• Fancy

but, …

Why?

Users expect to run their favourite software („legacy“):

• Browsers

• Word

• iTunes

• Certified Business Applications

• Gaming (Windows/DirectX to DOS)

Porting/Rewriting is not an option!

Why?

„By virtualizing a commodity OS […] we gain support for
legacy applications, and devices we don’t want to write
drivers for.“

„All this allows the research community to finally escape the
straitjacket of POSIX or Windows compatibility […]“

Roscoe, Elphinstone, and Heiser, 2007

What is Virtualization?

What is Virtualization?
„being such in essence or effect though not formally
recognized or admitted“

Merriam-Webster Dictionary

What is Virtualization?
„being such in essence or effect though not formally
recognized or admitted“

Merriam-Webster Dictionary

„[…] an efficient, isolated duplicate of the real machine.“

Popek & Goldberg, 1974

What is Virtualization?
„being such in essence or effect though not formally
recognized or admitted“

Merriam-Webster Dictionary

„[…] an efficient, isolated duplicate of the real machine.“

Popek & Goldberg, 1974

„All problems in computer science can be solved by another
level of indirection.“

David Wheeler

(except too many levels of indirection …)

What is Virtualization?
Suppose you develop on your x86-based workstation running
a system Host, a system Guest which is supposed to run on
ARM-based phones.

An emulator for G running H precisely emulates G’s:

• CPU

• Memory (subsystem)

• I/O devices

Ideally, programs running on the emulated G exhibit the same
behaviour, except for timing, as when run on a real system G.

What is Virtualization?

The emulator:

• interprets every instruction in software as it is executed,

• prevents G to access H’s resources directly,

• maps G’s devices onto H’s devices,

• may run multiple times on H.

What is Virtualization?

Emulation:

• Different Instruction Sets

• Different Hardware Devices

➡ Emulation can be slow & and complex, depending on
fidelity.

What is Virtualization?

• What if H=G?

• Interpreting/Emulating every instruction unnecessary?

• Faster?

How?

• Guest runs as normal user process

How?

• Guest runs as normal user process

• It’s not just instructions! We need to emulate virtual
hardware. The software providing the illusion of a real
machine is the Virtual Machine Monitor (VMM)

How?

Suppose our ISA has an instruction, OUT, that writes to a
device in kernel mode.

But we’re running (virtualized) in user space … ?

How?

Suppose our ISA has an instruction, OUT, that writes to a
device in kernel mode.

But we’re running (virtualized) in user space … ?

• Just do nothing?

How?

Suppose our ISA has an instruction, OUT, that writes to a
device in kernel mode.

But we’re running (virtualized) in user space … ?

• Just do nothing?

• Trap to kernel mode

How?

Suppose our ISA has an instruction, OUT, that writes to a
device in kernel mode.

But we’re running (virtualized) in user space … ?

• Just do nothing? Otherwise, devices can’t be (easily) virtualized

• Trap to kernel mode

How?
VMM needs to handle:

• Address Space changes

• Device accesses

• System calls

• …

These already trap to the host kernel (SIGSEGV).

How?

Easy, right?

• push %cs pushes CS register onto stack

How?

Easy, right?

• push %cs pushes CS register onto stack

• CS register contains current privilege level

How?

Easy, right?

• push %cs pushes CS register onto stack

• CS register contains current privilege level

➡ Virtual Guest in Ring 3 can detect it is not in Ring 0!

How?

Easy, right?

• push %cs pushes CS register onto stack

• CS register contains current privilege level

➡ Virtual Guest in Ring 3 can detect it is not in Ring 0!

➡ Our VM is not a duplicate of a real machine, hence not
a VM at all ☹

Virtualizability
… is a property of the ISA. Instructions are divided into two
classes:

Virtualizability
… is a property of the ISA. Instructions are divided into two
classes:

• Privileged Instructions

• cause a trap in user mode

Virtualizability
… is a property of the ISA. Instructions are divided into two
classes:

• Privileged Instructions

• cause a trap in user mode

• Sensitive instructions

Virtualizability
… is a property of the ISA. Instructions are divided into two
classes:

• Privileged Instructions

• cause a trap in user mode

• Sensitive instructions

• Behaviour depends on or changes the processor’s
configuration or mode

Virtualizability
An ISA is virtualizable, i.e. a VMM can be written, if all

sensitive instructions are privileged.

• Execute guest in user/unprivileged mode

Virtualizability
An ISA is virtualizable, i.e. a VMM can be written, if all

sensitive instructions are privileged.

• Execute guest in user/unprivileged mode

• Emulate instructions that cause traps (Trap & Emulate)

Virtualizability
An ISA is virtualizable, i.e. a VMM can be written, if all

sensitive instructions are privileged.

• Execute guest in user/unprivileged mode

• Emulate instructions that cause traps (Trap & Emulate)

➡ „Formal Requirements for Virtualizable Third-
Generation Architectures“ 
Popek & Goldberg, 1974 

http://portal.acm.org/citation.cfm?id=361073

Where to put the VMM?

Type-1 Hypervisor

• „Bare-metal“ Hypervisors

• No OS-Overhead

• Complete Control over Host ressources

• High maintenance

• Examples: Xen, VMWare ESXi

Type-1 Hypervisor

Type-2 Hypervisor

• „Hosted“ Hypervisor

• Doesn’t re-invent the wheel

• Performance tradeoff

• Requires Host-OS support for CPU’s virt features

• Examples: KVM, VMware Server/Workstation,
VirtualBox, …

Type-2 Hypervisor

Alternative:
Paravirtualisation

Too complicated? Just „port“ the Guest OS to the interface of your choice!

• Better performance

• Simplify VMM

• Maintenance

• Source of Guest OS required

• Tradeoff: Paravirtualized drivers for I/O performance (KVM virtio,
VMware)

• Examples: Usermode Linux, Xen/XenoLinux, DragonFlyBSD,
VKERNEL, L4Linux

Virtualized ABI!
Why deal with the Guest OS-kernel at all? Re-implement it’s interface!

• Example: Wine virtualises Windows ABI

• Run unmodified Windows binaries

• Windows API calls are mapped to Host-OS’s (Linux, MacOS,
BSD, …) equivalents

• Huge moving target / maintenance effort!

• API-Virtualization: Re-compile Windows applications from
source; link against winelib

Recap: Virtualization
• Classification

• Target? Hardware, OS ABI/API, …

• Modified Guest? Paravirtualization

• Emulation/Virtualization: Interpret all Instructions?

• Popek & Goldberg: „A VM is an efficient, isolated duplicate of
real machine“

• Hypervisors: Type 1 (bare-metal, kernel) & 
Type 2 (hosted, application on conventional OS)

Virtualizing x86
• x86 originally not virtualizable (push, pushf/popf, … 17 instructions on the

Pentium)

• Trapping is expensive!

Virtualizing x86
• x86 originally not virtualizable (push, pushf/popf, … 17 instructions on the

Pentium)

• Trapping is expensive!

• First commercial virtualisation solution for x86: VMware Workstation (~1999)

• Translate problematic instructions to calls into the VMM on the fly (Binary
re-writing)

• Can avoid traps for privileged instructions

• Performance good, but complex runtime translation engine; only
common guests (commercially) supported.

• Examples: KQemu, VirtualBox, Valgrind

Hardware Support
• „Hardware-assisted Virtualization“

• CPU virtualization:

• All guest instructions are virtualizable

• Processor provides virtual CPU mode, including kernel
mode

Hardware Support
• „Hardware-assisted Virtualization“

• CPU virtualization:

• All guest instructions are virtualizable

• Processor provides virtual CPU mode, including kernel
mode

• Memory Virtualization

• Typically, VMs have very few (if any) VM-exits for CPU/
memory virtualization

Hardware Support
• Late P4 introduced hardware support in 2004: Intel VT

(AMD-V similar)

• root/non-root mode duplicate x86 protection rings

• Root mode runs HV, non-root mode runs Guest

Hardware Support
• Late P4 introduced hardware support in 2004: Intel VT

(AMD-V similar)

• root/non-root mode duplicate x86 protection rings

• Root mode runs HV, non-root mode runs Guest

• Everything Intel VT cannot handle traps to root mode

• Special memory regions (VMCS/VMCB) holds guest state

• Reduces Software complexity

Instruction Emulation
• Running 16-bit Code (BIOS/Boot loaders)

• Not in AMD-V/latest Intel VT

• Handling memory-mapped I/O

• Realized as non-present page

• Page fault

• Emulate offending instruction

• …

MMU Virtualization
• Early versions of VT do not virtualise the MMU; VMM has

to handle guest virtual memory!

• Four different types of addresses (Host/Guest x Physical/
Virtual): hPA, hVA, gPA, gVA

• hVA -> hPA and gVA -> gPA mapped by page tables

• Mapping from Guest-Physical to Host-Virtual usually
simple (identity or constant offset)

MMU Virtualization

• MMU not virtualized; can handle only one page table

• Hypervisor must maintain a page table, that

• Maps from Guest Virtual to Host Physical  
(„merging“ guest and host page table)

• Must be adapted on VM layout changes

Memory VirtualizationVirtualization on x86

MOS - Virtualization slide 42

Memory VirtualizationVirtualization on x86

MOS - Virtualization slide 42

Memory VirtualizationVirtualization on x86

MOS - Virtualization slide 42

Shadow Paging

Shadow Paging

• Update or re-creation on

• Guest Page Table modification

• Guest Address Space switch

➡ Significant Overhead; certain workloads are penalised

➡ Hardware Support!

MMU Virtualization

Intel Nehalem (EPT) and AMD Barcelona (Nested Paging)
introduce hardware support for MMU virtualisation. The
CPU can handle Guest and Host page table at the same
time, which can reduce VM Exits by two orders of
magnitude but introduces measurable constant overhead
(<1%).

Recap: Address Translation

Guest Address Translation

2D Page Table Walk!

2D Page Table Walk!

2D Page Table Walk!

2D Page Table Walk!

vTLB vs. Nested Paging

Arm
• Virtualisation Support since Cortex A15 (~2010)

• New processor mode „HYP“ (PL2/EL2) – different to x86

• Nested paging from the start

• No processor-defined state layout (VMCS/VMCB)

➡ Hypervisor saves/restores all registers

• Interrupt Controller (GIC) and Generic Timer have built-in
virtualisation support

Recap: Microkernels
• Small is beautiful: Small TCB; Security & Safety, Application-

specific TCBs

• Real-time, Multi-server, Modular Frameworks, Fault containment

• L4Re: OS Framework

• L4Re Microkernel

• L4RE User-level  
infrastructure

• … includes virtualisation

Apply Microkernel
Principles to Virtualisation

„Hypervisor“ and „VMM“ do not need to be synonymous!

Apply Microkernel
Principles to Virtualisation

„Hypervisor“ and „VMM“ do not need to be synonymous!

Hypervisor:

• Kernel-part

• Provides & ensures isolation

• Mechanism, no policy!

Apply Microkernel
Principles to Virtualisation

„Hypervisor“ and „VMM“ do not need to be synonymous!

Hypervisor:

• Kernel-part

• Provides & ensures isolation

• Mechanism, no policy!

Virtual Machine Monitor:

• User space-part

• Platform & device emulation

• Design options!

VMM Design Options
• Typical: One VMM per VM (multi-VM VMMs possible)

• Application-specific: simple vs. feature-rich

• VMM is an untrusted user application

• Border between guest and 
VMM is not the only one

VM A
Guest OS

VM B
Guest OS

VMM A VMM B

L4Re Microkernel / Hypervisor

L4Re: uvmm

• VMM for Arm, MIPS, and x86

• Small

• Uses virtio for Guests

• Mainly Linux as Guest OS, but other Guests on request

• Runs (unmodified) Arm Linux

L4Re: KVM/L4

• Complex and feature-rich VMM

• Uses L4Linux to run KVM + Qemu

• x86

• Runs Windows

• Used in production

Qemu VM
Guest OS

L4Linux w/ KVM

L4Re Microkernel / Hypervisor

Paravirt Example: L4Linux
• Paravirtualized Linux on top of L4Re; presented at SOSP’97

• Regard „L4Re“ as new hardware platform and implement

• Syscall interface (kernel entry, signal delivery, copy from/
to userspace)

• Hardware Access (CPU state/features, MMU, interrupts,
MMIO & port I/O)

• Linux 4.19; x86 32 & 64; Arm 32, (64 in the pipeline),
commercial use

Example: L4Linux
Native Linux

MOS - Virtualization slide 53

Paravirt Example: L4Linux

Example: L4Linux
Native Linux

MOS - Virtualization slide 53

Example: L4Linux

MOS - Virtualization slide 55

Paravirt Example: L4Linux

Software Abstractions

• Interface between kernel/hypervisor and user-level/VMM

• Requirements:

• Asynchronous execution model of OS kernels

• Hardware-assisted + paravirtualization

• Nicely integrate into system

vCPU
• „Legacy“ (synchronous) L4 Thread:

• Executes ^ Waits for {Events, Messages, IRQs}

➡ Hard to map OS kernel onto

• vCPU:

• Interruptible Thread

• Similar to how a processor works: Executes and get interrupts

L4Re threads can become a vCPU!

vCPU Details
• vCPU is a thread; every thread can become a vCPU

• Interrupt-style execution

• Events transition the execution to user-defined entry points

• Virtual interrupt flag (Interrupts disabled == normal thread)

• Virtual User Mode

• A vCPU can switch to a different L4 task (address space) for execution

• Returns to „home task“/kernel for any received event

• State save area: Memory area to hold CPU & message state

vCPU
Example: L4Linux

Lackorzynski˙virtualprocessors
MOS - Virtualization slide 62

Paravirt: Challenges
• Fundamental problem: Mapping 3 logical levels of

privilege (Linux App, Linux Kernel, L4Re Microkernel/
Hypervisor) onto 2 levels the platform provides (User/
Kernel mode)

• CPU: Run Linux Kernel + App 
in microkernel user land

• Memory: Linux kernel 
manages memory for 
Linux Apps

L4Linux
Kernel

Linux App

Linux App

L4Re Microkernel /
Hypervisor

L4Linux: Performance

• 1997 publication reported <5% overhead

• Events need to be bounced through the micro kernel

• Native: 2 privilege leves, 0 AS switches

• L4Linux: 4 privilege levels, 2 AS switches

➡ Hardware-assisted Virtualization

Hardware-assisted
Virtualisation

• Intel: VT-x, AMD: SVM, Arm: VE, MIPS: VZ

• Nicely integrates into vCPU abstraction

• Save state area (x86: VMCS/VMCB, Arm/MIPS:
hypervisor-mode state & interrupt controller state)

• Memory: nested paging by L4::Task/L4::VM

Device Access
• Options: Exclusive vs Sharing

• Exclusive: Pass-through

• Sharing: Microkernel Service / Driver + Guest Interface (VirtIO)

• Pass through resources:

• MMIO (direct mapping)

• Interrupts via Microkernel/Hypervisor

• Direct guest-delivered interrupts on some recent hardware

IOMMU
• Important hardware building block

• MMU for devices

• Indirection & Protection

• Guest can use gPA (instead of hPA) to program DMA

• Prevent DMA attacks by evil guests, evil devices, evil
firmware, … Limit device accessibility to memory

• Programmed by assigning L4::Task to device

VirtIO

• Common standard for virtual devices

• Defines common data structures

• Wide range of Support (Linux, *BSD, Windows, QNX, …)

• Optimised for virtualisation setups, but can also be used
for hardware devices

Research
• Research Path: Real-time, Security, HPC

• Realtime

• Combining Realtime & non-realtime in a single system

• Fully preemptive kernel, Realtime services + drivers

• Security: Capability System

• HPC: Scalability, OS-noise/Execution variability

• Decoupling: Use VMs to provide REE, while painting predictability for
specific tasks from within those VMs

• Scheduling multiple VMs with realtime constraints

References
• „Hype and Virtue“, Roscoe, Elphinstone, and Heiser, 2007 http://dl.acm.org/

citation.cfm?id=1361397.1361401

• „Formal Requirements for Virtualizable Third Generation Architectures“,
Popek and Goldberg, 1974, 
http://doi.acm.org/10.1145/361011.361073

• „Survey of Virtual Machine Research“, Goldberg, 1974, 
http://dx.doi.org/10.1109/MC.1974.6323581

• „NOVA: A Microhypervisor-based Secure Virtualization Architecture“,
Steinberg and Kauer, 2010, 
http://www.hypervisor.de/eurosys2010.pdf

• „Virtual Processors as Kernel Interface“, Lackorzynski, Warg, and Peter,
2012, https://www.osadl.org/fileadmin/dam/rtlws/12/Lackorzynski.pdf

http://dl.acm.org/citation.cfm?id=1361397.1361401
http://dl.acm.org/citation.cfm?id=1361397.1361401
http://doi.acm.org/10.1145/361011.361073
http://dx.doi.org/10.1109/MC.1974.6323581
http://www.hypervisor.de/eurosys2010.pdf
https://www.osadl.org/fileadmin/dam/rtlws/12/Lackorzynski.pdf

References
• „Binary Translation Using Peephole Superoptimizers“, Bansal and Aiken,

2008, 
http://dl.acm.org/citation.cfm?id=1855741.1855754

• „Virtual machine monitors: current technology and future trends“,
Rosenblum and Garfinkel, 2005, 
http://xenon.stanford.edu/~talg/papers/COMPUTER05/virtual-future-
computer05.pdf

• „The Turtles Project: Design and Implementation of Nested Virtualization“,
Ben-Yehuda, Day, et al., 2010, 
https://www.usenix.org/conference/osdi10/turtles-project-design-and-
implementation-nested-virtualization

• „The Evolution of an x86 Virtual Machine Monitor“, Agesen et al., 2010, 
http://doi.acm.org/10.1145/1899928.1899930

http://dl.acm.org/citation.cfm?id=1855741.1855754
http://xenon.stanford.edu/~talg/papers/COMPUTER05/virtual-future-computer05.pdf
http://xenon.stanford.edu/~talg/papers/COMPUTER05/virtual-future-computer05.pdf
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
http://doi.acm.org/10.1145/1899928.1899930

References

• „The performance of µ-kernel-based systems“, Härtig et
al., 1997, http://dl.acm.org/citation.cfm?id=266660

• „Pre-Virtualization: Slashing the Cost of Virtualization“,
LeVasseur et al, 2005, http://www.l4ka.org/downloads/
publ_2005_levasseur-ua_cost-of-virtualization.pdf

• „Lightweight Virtualization on Microkernel-based
Systems“, Liebergeld, 2010, http://os.inf.tu-dresden.de/
papers_ps/liebergeld-diplom.pdf

http://dl.acm.org/citation.cfm?id=266660
http://www.l4ka.org/downloads/publ_2005_levasseur-ua_cost-of-virtualization.pdf
http://www.l4ka.org/downloads/publ_2005_levasseur-ua_cost-of-virtualization.pdf
http://www.l4ka.org/downloads/publ_2005_levasseur-ua_cost-of-virtualization.pdf
http://os.inf.tu-dresden.de/papers_ps/liebergeld-diplom.pdf
http://os.inf.tu-dresden.de/papers_ps/liebergeld-diplom.pdf
http://os.inf.tu-dresden.de/papers_ps/liebergeld-diplom.pdf

VMM
• Instruction Emulator

• Timers: PIT, RTC, HPET, PMTimer

• Interrupt Controller: PIC, LAPIC, IOAPIC

• PCI host bridge

• keyboard, mouse, VGA

• Network

• SATA or IDE disk controller

• …

VMM
VMM needs to emulate (parts of) BIOS/EFI (mostly for boot
loaders + early platform discovery):

• Memory layout

• Screen output

• Keyboard

• Disk access

• ACPI tables

