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Goals

* Give you an overview about:
e Virtualization and VMs in General
 Hardware Virtualization on x86
* QOur research regarding Virtualization
e Not in this lecture:
e Lots and lots of Detalils
e | anguage Runtimes

e How to use Xen/KVM/...
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years as merely academic curiosities, they are now seen as
cost-effective techniques for organising computer system
resources to provide extraordinary system flexibility and
support for certain unigue applications.
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,Virtualization has finally arrived. Dismissed for a number of
years as merely academic curiosities, they are now seen as
cost-effective techniques for organising computer system
resources to provide extraordinary system flexibility and
support for certain unigue applications.

Popek & Goldberg, 1974



Erik Pitti, CC-BY, www.flickr.com/people/24205142@N00



http://www.flickr.com/people/24205142@N00

History

Pioneered with IBM’s CP/CMS in ~1967 running on
System/360 and System/370

CP: Control Program (provided S/360 VMs)

e Memory Protection between VMs

* Preemptive scheduling

CMS: Cambridge Monitor System (later Conversational
Monitor System) — Single User OS

At the time more flexible & efficient than time-sharing muilti-
user systems!
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History

 Gave rise to IBM’s VM line of OSs:

* First release: 1972

e | atest release: z/VM 6.4, Nov. 11th, 2016
* Applications:

e Consolidation (improve server utilization)

e |solation (incompatibility or security reasons)

* Reuse (legacy software)
e Development

... but was confined to the mainframe-world for a long time!



Why?

Imagine you want to write an operating system, that is:
e Secure
e TJrustworthy
e Small
e Fast
e Fancy

but, ...



Why?

Users expect to run their favourite software (,,legacy®):
e Browsers
e Word
e [Tunes
e Certified Business Applications
e Gaming (Windows/DirectX to DOS)

Porting/Rewriting is not an option!



Why?

,BY virtualizing a commodity OS [...] we gain support for
legacy applications, and devices we don’t want to write

drivers for."“

»All this allows the research community to finally escape the
straitjacket of POSIX or Windows compatibility [...]"

Roscoe, Elphinstone, and Heiser, 2007
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What is Virtualization?

,oeing such in essence or effect though not formally
recognized or admitted”
Merriam-Webster Dictionary

.|...] an efficient, isolated duplicate of the real machine.

Popek & Goldberg, 1974

,All problems in computer science can be solved by another
level of indirection.”
David Wheeler

(except too many levels of indirection ...)



What is Virtualization?

Suppose you develop on your x86-based workstation running
a system Host, a system Guest which is supposed to run on
ARM-based phones.

An emulator for G running H precisely emulates G’s:
e CPU
e Memory (subsystem)

e |/O devices

ldeally, programs running on the emulated G exhibit the same
behaviour, except for timing, as when run on a real system G.



What is Virtualization?

The emulator:
e interprets every instruction in software as it is executed,
e prevents G to access H’s resources directly,
e maps G’s devices onto H’s devices,

e may run multiple times on H.



What is Virtualization?

Emulation:
e Different Instruction Sets
o Different Hardware Devices

= Fmulation can be slow & and complex, depending on
fidelity.



What is Virtualization?

e What if H=G?
e Interpreting/Emulating every instruction unnecessary?

e Faster?



How?

e (Guest runs as normal user process



How?

e (Guest runs as normal user process

* |t’s not just instructions! We need to emulate virtual
hardware. The software providing the illusion of a real
machine is the Virtual Machine Monitor (VMM)
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How?

Suppose our ISA has an instruction, OUT, that writes to a
device in kernel mode.

But we’re running (virtualized) in user space ... ?

o Justdo-nothing? Otherwise, devices can’t be (easily) virtualized

* Jrap to kernel mode



How?

VMM needs to handle:
e Address Space changes
e Device accesses

e System calls

These already trap to the host kernel (SIGSEGV).



How?

Easy, right?

e push %cs pushes CS register onto stack
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How?

Easy, right?
e push %cs pushes CS register onto stack
e CS register contains current privilege level
= \/irtual Guest in Ring 3 can detect it is not in Ring 0!

= Our VM is not a duplicate of a real machine, hence not
a VM at all &
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Virtualizability

... IS a property of the ISA. Instructions are divided into two
classes:

e Privileged Instructions
e cause a trap in user mode
e Sensitive instructions

e Behaviour depends on or changes the processor’s
configuration or mode
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sensitive instructions are privileged.

e EXxecute guest in user/unprivileged mode
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Virtualizability

An ISA is virtualizable, i.e. a VMM can be written, if all
sensitive instructions are privileged.

e EXxecute guest in user/unprivileged mode
* Emulate instructions that cause traps (Trap & Emulate)

g ,Formal Requirements for Virtualizable Third-
Generation Architectures”

Popek & Goldberg, 1974
http://portal.acm.org/citation.cfm?id=361073



Where to put the VMM?




Type-1 Hypervisor

Hardware

T1 Hypervisor

Virtual Hardware Virtual Hardware

Kemel B

POSIX API POSIX API
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Type-1 Hypervisor

Virtual Hardware
| |

Kemel B

Virtual Hardware
,Bare-metal” Hypervisors
Kermel A

No OS-Overhead sl

Application

Complete Control over Host ressources

POSIX API POSIX API

High maintenance

Examples: Xen, VMWare ESXi



Type-2 Hypervisor

SIX API

Hardware

POSIX API

T2 Hypervisor

Virtual Hardware

Win32 API

il

A

I

POSIX API

T2 Hypervisor

Virtual Hardware

Win32 API

B



Type-2 Hypervisor

Hardware

Kemel

,Hosted" HyperViSOr POSIX API POSIX AP POSIX AP
§ W | T2 Hypervis:] T2 Hypewl;’
Doesn’t re-invent the wheel
Kernel A Kemel B
Performance tradeoftf
-

Requires Host-OS support for CPU’s virt features

Examples: KVM, VMware Server/Workstation,
VirtualBox, ...



Alternative:
Paravirtualisation

Too complicated? Just ,port” the Guest OS to the interface of your choicel!
e Better performance
e Simplify VMM
 Maintenance
e Source of Guest OS required

* Tradeoff: Paravirtualized drivers for I/O performance (KVM virtio,
VMware)

e Examples: Usermode Linux, Xen/XenoLinux, DragonFlyBSD,
VKERNEL, L4Linux



Virtualized ABI!

Why deal with the Guest OS-kernel at all? Re-implement it’s interface!
e Example: Wine virtualises Windows ABI
* Run unmodified Windows binaries

* Windows API calls are mapped to Host-OS’s (Linux, MacOS,
BSD, ...) equivalents

* Huge moving target / maintenance effort!

* API-Virtualization: Re-compile Windows applications from
source; link against winelib



Recap: Virtualization

e (Classification
 Target? Hardware, OS ABI/API, ...
 Modified Guest? Paravirtualization
e Emulation/Virtualization: Interpret all Instructions?

e Popek & Goldberg: ,,A VM is an efficient, isolated duplicate of
real machine”

e Hypervisors: Type 1 (bare-metal, kernel) &
Type 2 (hosted, application on conventional OS)



Virtualizing x86

e Xx86 originally not virtualizable (push, pushf/popf, ... 17 instructions on the
Pentium)

e Trapping is expensive!



Virtualizing x86

e Xx86 originally not virtualizable (push, pushf/popf, ... 17 instructions on the
Pentium)

e Trapping is expensive!
e First commercial virtualisation solution for x86: VMware Workstation (~1999)

* Translate problematic instructions to calls into the VMM on the fly (Binary
re-writing)

e Can avoid traps for privileged instructions

 Performance good, but complex runtime translation engine; only
common guests (commercially) supported.

e Examples: KQemu, VirtualBox, Valgrind



Hardware Support

e .Hardware-assisted Virtualization®
 CPU virtualization:
e All guest instructions are virtualizable

* Processor provides virtual CPU mode, including kernel
mode



Hardware Support

,Hardware-assisted Virtualization®
CPU virtualization:
e All guest instructions are virtualizable

* Processor provides virtual CPU mode, including kernel
mode

Memory Virtualization

Typically, VMs have very few (if any) VM-exits for CPU/
memory virtualization



Hardware Support

e | ate P4 introduced hardware support in 2004: Intel V'
(AMD-V similar)

e root/non-root mode duplicate x86 protection rings

e Root mode runs HV, non-root mode runs Guest

VM




Hardware Support

Late P4 introduced hardware support in 2004: Intel V'
(AMD-V similar)

root/non-root mode duplicate x86 protection rings

Root mode runs HV, non-root mode runs Guest

Everything Intel VT cannot handle traps to root mode
Special memory regions (VMCS/VMCB) holds guest state

Reduces Software complexity



Instruction Emulation

e Running 16-bit Code (BIOS/Boot loaders)
* Not in AMD-V/latest Intel VT

e Handling memory-mapped I/0
 Realized as non-present page
 Page fault

 Emulate offending instruction



MMU Virtualization

Early versions of VT do not virtualise the MMU; VMM has
to handle guest virtual memory!

Four different types of addresses (Host/Guest x Physical/
Virtual): hPA, hVA, gPA, gVA

hVA -> hPA and gVA -> gPA mapped by page tables

Mapping from Guest-Physical to Host-Virtual usually
simple (identity or constant offset)



MMU Virtualization

e MMU not virtualized; can handle only one page table
e Hypervisor must maintain a page table, that

e Maps from Guest Virtual to Host Physical
(,merging“ guest and host page table)

e Must be adapted on VM layout changes



Memory Virtualization

guest virtual address

guest

|| page table
guest physical address




Memory Virtualization

guest virtual address

guest
|| page table

guest physical address

host virtual address

host
page table

host physical address




Memory Virtualization

guest virtual address

guest
|| page table

guest physical address shadow
[| page table

host virtual address

host
[| page table

host physical address




Shadow Paging

: execute guest code
trap to VMM on page fault

SW page table walk
VMM (on guest page tables)

yes, host related page fault

mapping found? no, guest related

page fault

find host physical addr.

\ inject page fault

. setup shadow page table

resume guest




Shadow Paging

e Update or re-creation on
e (Guest Page Table modification
e (Guest Address Space switch
= Significant Overhead; certain workloads are penalised

= Hardware Support!



MMU Virtualization

Intel Nehalem (EPT) and AMD Barcelona (Nested Paging)
introduce hardware support for MMU virtualisation. The
CPU can handle Guest and Host page table at the same
time, which can reduce VM Exits by two orders of
magnitude but introduces measurable constant overhead

(<1%).




Recap: Address Translation

63

48 47 39 38 30 29 21 20 12 17 0
Leveld | Level3 | Level2 | Levell | Offset
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Guest Address Translation

63

|

| Neste
walk

48 47 39 38 30 29 21 20 1217 0

Leveld | Level3 | Level2 | Levell | Offset
physical
page
- PML4 | —{ PDE | —1 Addr.

> PTE F
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2D Page Table Walk!

gVA gC'R3 Nested Page Table >
[47:39]
[38:30]
Guest
Page
[29:21] i
[20:12] v
[11:0]




2D Page Table Walk!

gVA Nested Page Table

gCR3 >

[47:391 Y gPA hPA hPA hPA hPA | gPA
— () —ﬁ—@—%ﬂ e
|

[38:30]

Guest
Page

[29:21] Tahle

[20:12] v

[11:0]



2D Page Table Walk!

gVA Nested Page Table

gCR3 >

[47:39] Y gPA hPA hPA hPA hPA | gPA
_)‘.“’:;g?‘_?'— . — s =

v
[38:301, .

Guest
Page

[29:21]: Table

[20:12]: +

[11:0] :



2D Page Table Walk!

gVA Nested Page Table

gCR3 >

[47:39]1 Y, gPA hPA hPA hPA hPA gPA
_’:'-1'z:x:"i~.-- . — . =

Guest
Page
Table




vILB vs. Nested Paging

Event Shadow Paging  Nested Paging
vIT'LB Fill 181,966,391
Guest Page Fault 13,987,802
CR Read/Write 3,000,321
vI'LB Flush 2,328,044
INVLPG 537,270
Hardware Interrupts 239,142 174,558
Port 1/0 723,274 610,589
Memory-Mapped 1/0 75,151 76,285
HLT 4,027 3,738
Interrupt Window 3,371 2,171
Sum 202,864,793 867,341
Runtime (seconds) 645 470
Exit /s 314,519 1,845

Steinberg and Kauer 2010



Arm

Virtualisation Support since Cortex A15 (~2010)
New processor mode ,,HYP* (PL2/EL2) — different to x86
Nested paging from the start

No processor-defined state layout (VMCS/VMCB)

= Hypervisor saves/restores all registers

Interrupt Controller (GIC) and Generic Timer have built-in
virtualisation support



Recap: Microkernels

e Small is beautiful: Small TCB; Security & Safety, Application-
specific TCBs

e Real-time, Multi-server, Modular Frameworks, Fault containment

e L4Re: OS Framework

Isolated domains

e L4Re Microkernel o || M

Driver ||MicroApp ||MicroApp

e L4RE User-level Virtual Machine [l Virtual Machine [ Virtual Machine ll € L4Re Runtime Environment
infrastructure

C L4Re Microkernel & Hypervisor Privileged

e ... Includes virtualisation [
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Apply Microkernel
Principles to Virtualisation

,Hypervisor® and ,VMM" do not need to be synonymous!

Hypervisor:
 Kernel-part
e Provides & ensures isolation

* Mechanism, no policy!

Virtual Machine Monitor:
e User space-part
e Platform & device emulation

* Design options!



VMM Design Options

Typical: One VMM per VM (multi-VM VMMSs possible)
Application-specific: simple vs. feature-rich
VMM is an untrusted user application

Border between guest and o S
VMM is not the only one Guest OS Guest OS

L4Re Microkernel / Hypervisor




L4Re: uvmm

VMM for Arm, MIPS, and x86

Small

Uses virtio for Guests

Mainly Linux as Guest OS, but other Guests on request

Runs (unmodified) Arm Linux



L4Re: KVM/L4

Complex and feature-rich VMM
Uses L4Linux to run KVM + Qemu

X860

VM
Guest OS

Qemu

Runs Windows

Used in production
L4Re Microkernel / Hypervisor




Paravirt Example: L4Linux

* Paravirtualized Linux on top of L4Re; presented at SOSP’97

e Regard ,L4Re" as new hardware platform and implement

e Syscall interface (kernel entry, signal delivery, copy from/
to userspace)

» Hardware Access (CPU state/features, MMU, interrupts,
MMIO & port 1/0)

e Linux 4.19; x86 32 & 64; Arm 32, (64 in the pipeline),
commercial use



Paravirt Example: L4Linux

‘ Application Application Application ‘ Application

System-Call Interface

Linux File Systems Networking Processes Memory
Kernel VFS Sockets Scheduling Management
File System Impl. Protocols IPC Page allocation
Arch- Adcgress s_|:r>]aces
Ind. Device Drivers it RIpAINK

Hardware Access

Hardware
CPU, Memory, PCI, Devices




Paravirt Example: L4Linux

L4 Task L4 Task L4 Task L4 Task

Application Application Application Application

L4 Task

Arch-
Depend.

System-Call Interface

Linux File Systems Networking Processes Memory
Kernel VFS Sockets Scheduling Management
File System Impl. Protocols IPC Page allocation
Address spaces
Arch- .
Ind. Device Drivers Swapping

Depend.

‘ sigma0 ‘ L410 ‘ Console ‘ moe

Hardware




Software Abstractions

e Interface between kernel/hypervisor and user-level/VMM
e Requirements:

e Asynchronous execution model of OS kernels

e Hardware-assisted + paravirtualization

e Nicely integrate into system



vCPU

e .Legacy” (synchronous) L4 Thread:
e Executes M Waits for {Events, Messages, IRQs}
= Hard to map OS kernel onto
e vCPU:
* |nterruptible Thread
* Similar to how a processor works: Executes and get interrupts

L4Re threads can become a vCPU!



vCPU Detalls

vCPU is a thread; every thread can become a vCPU
Interrupt-style execution
e Events transition the execution to user-defined entry points
e Virtual interrupt flag (Interrupts disabled == normal thread)
Virtual User Mode
e A vCPU can switch to a different L4 task (address space) for execution
* Returns to ,home task“/kernel for any received event

State save area: Memory area to hold CPU & message state



vCPU

L4Linux| |L4Linux| |L4Linux L4Linux| |L4Linux| |L4Linux
a) Procsess Pro;ess Pro;ess b) Process| |Process| |Process
L4Linux Kernel s s L4Linux Kernel
Microkernel Microkernel
e e T T T T T T T T e T T \'
. Legend s Thread @ VCPU 1
I
A e e e e e e e e e e e e e e e e e e e M e M M M M J
FIGURE 3: (a) L4Linuzx implemented

with threads and (b) L4Linux implemented
with vCPUs.



Paravirt: Challenges

e Fundamental problem: Mapping 3 logical levels of
privilege (Linux App, Linux Kernel, L4Re Microkernel/
Hypervisor) onto 2 levels the platform provides (User/
Kernel mode)

e CPU: Run Linux Kernel + App
In microkernel user land

LsLinux ~ Linux App

e Memory: Linux kernel Kernel

manages memory for
Linux Apps L4Re Microkernel /

Linux App

Hypervisor



L4LIinux: Performance

e 1997 publication reported <5% overhead

e Events need to be bounced through the micro kernel
e Native: 2 privilege leves, 0 AS switches
e L4Linux: 4 privilege levels, 2 AS switches

= Hardware-assisted Virtualization



Hardware-assisted
Virtualisation

Intel: VT-x, AMD: SVM, Arm: VE, MIPS: VZ
Nicely integrates into vCPU abstraction

Save state area (x86: VMCS/VMCB, Arm/MIPS:
hypervisor-mode state & interrupt controller state)

Memory: nested paging by L4::Task/L4::VM



Device Access

e Options: Exclusive vs Sharing

e Exclusive: Pass-through

e Sharing: Microkernel Service / Driver + Guest Interface (VirtlO)
e Pass through resources:

e MMIO (direct mapping)

e |nterrupts via Microkernel/Hypervisor

e Direct guest-delivered interrupts on some recent hardware



|IOMMU

Important hardware building block

MMU for devices

Indirection & Protection

e (Guest can use gPA (instead of hPA) to program DMA

e Prevent DMA attacks by evil guests, evil devices, evil
firmware, ... Limit device accessibility to memory

Programmed by assigning L4::Task to device



VirtiO

Common standard for virtual devices
Defines common data structures
Wide range of Support (Linux, *BSD, Windows, QNX, ...)

Optimised for virtualisation setups, but can also be used
for hardware devices



Research

Research Path: Real-time, Security, HPC
Realtime
e Combining Realtime & non-realtime in a single system
e Fully preemptive kernel, Realtime services + drivers
Security: Capability System
HPC: Scalability, OS-noise/Execution variability

Decoupling: Use VMs to provide REE, while painting predictability for
specific tasks from within those VMs

Scheduling multiple VMs with realtime constraints
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VMM

Instruction Emulator

Timers: PIT, RTC, HPET, PMTimer
Interrupt Controller: PIC, LAPIC, IOAPIC
PCI host bridge

keyboard, mouse, VGA

Network

SATA or IDE disk controller



VMM

VMM needs to emulate (parts of) BIOS/EFI (mostly for boot
loaders + early platform discovery):

e Memory layout
e Screen output
e Keyboard
 Disk access

o ACPI tables



