
Faculty of Computer Science Institute of System Architecture, Operating Systems Group

CARSTEN WEINHOLD

EXERCISE:
L4 BOOTCAMP

TU Dresden Getting Started

AGENDA

2

■ first contact with a microkernel OS

■ talk about system booting

■ getting to know QEMU

■ compile Fiasco

■ compile minimal system environment

■ the usual „Hello World“

■ look at source and config, play with it

TU Dresden Getting Started

QEMU
■ developing your own kernel usually

requires a dedicated machine

■ we will use a virtual machine

■ QEMU is open-source, provides a virtual
machine by binary translation

■ it emulates a complete x86 PC

■ ... many other system architectures, too

■ our QEMU will boot from an ISO image
3

TU Dresden Getting Started

BOOTING

4

TU Dresden Getting Started

BIOS

5

■ Basic Input Output System

■ fixed entry point after
„power on“ and „reset“

■ initializes the CPU in 16-bit
real-mode

■ detects, checks, and initial-
izes platform hardware
(RAM, PCI, ATA, …)

■ finds the boot device BIOS

TU Dresden Getting Started

EFI
■ Extensible Firmware

Interface
■ plug-ins for new hardware

■ no legacy PC-AT boot
(no A20 gate)

■ built-in boot manager
■ more than four partitions,

no 2TB limit
■ boot from peripherals (USB)

6

EFI

TU Dresden Getting Started

BOOT SECTOR
■ first sector on boot disk

■ 512 bytes

■ contains first boot loader
stage and partition table

■ BIOS loads code into RAM
and executes it

■ problem: How to find and
boot an OS in 512 bytes?

7

BIOS

TU Dresden Getting Started

MEMORY

8

BIOSPhysical Memory

Boot Code

BIOS, Video RAM

TU Dresden Getting Started

GRUB
■ popular boot loader

■ used by most (all?) Linux
distributions

■ uses a two-stage-approach
■ first stage fits in one sector
■ has hard-wired sectors of

second stage files
■ second stage can read

common file systems
9

BIOS

Boot Loader

TU Dresden Getting Started

GRUB
■ second stage loads a

menu.lst config file to
present a boot menu

■ from there, you can load
your kernel

■ supports loading
multiple modules

■ files can also be
retrieved from network

10

BIOS

Boot Loader

TU Dresden Getting Started

GRUB
■ switches CPU to 32-bit

protected mode
■ loads and interprets the

„kernel“ binary
■ loads additional modules

into memory
■ sets up multiboot info

structure
■ starts the kernel

11

BIOS

Boot Loader

TU Dresden Getting Started

MEM LAYOUT

12

BIOS

Boot Loader

Physical Memory

Grub

Multiboot Info

BIOS, Video RAM
Kernel Binary

Module
Module
Module
Module

TU Dresden Getting Started

BOOTSTRAP

13

■ our modules are ELF files:
executable and linkable
format

■ contain multiple sections
■ code, data, BSS

■ bootstrap interprets the
ELF modules

■ copies sections to final lo-
cation in physical memory BIOS

Boot Loader

Bootstrap

TU Dresden Getting Started

BOOTSTRAP
■ actual L4 kernel is the first

of the modules
■ must know about the other

modules
■ bootstrap sets up a kernel

info page
■ contains entry point + stack

pointer of sigma0 and moe

■ passes control to the kernel
14

BIOS

Boot Loader

Bootstrap

TU Dresden Getting Started

MEM LAYOUT

15

BIOS

Boot Loader

Physical Memory

Bootstrap

Kernel

Multiboot Info

BIOS, Video RAM

Module

Code
Data

Code
Data

TU Dresden Getting Started

KERNEL LOADER
■ initial kernel code

■ basic CPU setup

■ detecting CPU features

■ setup various CPU-tables

■ sets up basic page table

■ enables virtual memory
mode

■ runs the actual kernel code
16

BIOS

Boot Loader

Bootstrap

Kernel Loader

TU Dresden Getting Started

MEM LAYOUT

17

BIOS

Boot Loader

Virtual Memory

Kernel

Kernel Memory

Bootstrap

Kernel Loader

Physical Memory
1:1 mapped

TU Dresden Getting Started

FIASCO
■ sets up kernel structures

■ sets up scheduling timer

■ starts first pager

■ starts first task

■ starts scheduling

■ scheduler hands control to
userland for the first time

18

BIOS

Boot Loader

Bootstrap

Kernel Loader

Kernel

TU Dresden Getting Started

SIGMA0
■ is first pager in the system

■ initially receives a 1:1 map-
ping of physical memory

■ … and other platform-level
resources (I/O ports)

■ sigma0 is the root of the
pager hierarchy

■ pager for moe
19

BIOS

Boot Loader

Bootstrap

Kernel Loader

Kernel

σ0

TU Dresden Getting Started

MOE
■ manages initial resources

■ namespace

■ memory

■ VESA framebuffer

■ provides logging facility

■ mini-filesystem for read-
only access to boot-
modules

20

BIOS

Boot Loader

Bootstrap

Kernel Loader

Kernel

Moeσ0

TU Dresden Getting Started

NED
■ script-driven loader for

further programs

■ startup-scripts written in Lua

■ additional software can be
loaded by retrieving
binaries via disk or network

■ ned injects common
service code into every task

21

BIOS

Boot Loader

Bootstrap

Kernel Loader

Kernel

Ned

Moeσ0

Setup

• download the source tarball from
https://os.inf.tu-dresden.de/Studium/KMB/
WS2023/Exercise1.tar.bz2

• unpack the tarball
• it comes with a working directory
• cd in there and have a look around

https://os.inf.tu-dresden.de/Studium/KMB/WS2023/Exercise1.tar.bz2
https://os.inf.tu-dresden.de/Studium/KMB/WS2023/Exercise1.tar.bz2

Compiling the System

• initialize the environment with make setup in
the toplevel directory you unpacked

• run make within the toplevel directory

Test-Driving QEMU

• create a bootable ISO image
• the iso subdirectory is for the ISO’s content
• run isocreator from src/l4/tool/bin on

this directory
• your ISO will contain a minimal grub installation
• launch QEMU with the resulting ISO:
qemu-system-x86_64 -m 512 -cdrom boot.iso

Booting Fiasco

• copy some files to the ISO directory
• fiasco from the Fiasco build directory
obj/fiasco/amd64/

• bootstrap from
obj/l4/amd64/bin/amd64_gen/

• sigma0, moe , l4re and ned from
obj/l4/amd64/bin/amd64_gen/l4f/

Booting Fiasco

• edit iso/boot/grub/menu.lst:
title Getting Started  
kernel /bootstrap -serial  
modaddr 0x2000000  
module /fiasco  
module /sigma0  
module /moe  
module /l4re  
module /ned

• rebuild the ISO and run qemu

Preparing for Hello

• create the file hello.lua in the iso directory
with this content:  
local L4 = require("L4");  
L4.default_loader:start({},  
"rom/hello");

• pass ned this new startup script
• add this line to menu.lst:
module /hello.lua

• pass rom/hello.lua as parameter to moe
• load the future hello module in menu.lst

Exercise 1: Hello World

• create a directory for your hello-project
• create a Makefile with the following content:
PKGDIR ?= .  
L4DIR ?= absolute path to L4 source tree 
OBJ_BASE = absolute path to L4 build tree 
TARGET = hello  
SRC_C = hello.c  
include $(L4DIR)/mk/prog.mk

• fill in hello.c and compile with make
• run in qemu

Exercise 2: Ackermann Function

• write a program that spawns six threads
• you can use pthreads in our system
• add the line
REQUIRES_LIBS = libpthread  
to your Makefile

• each thread should calculate one value
a(3,0..5) of the Ackermann function:

• a(0,m)	 = m+1
• a(n,0)	= a(n-1,1)
• a(n,m)	 = a(n-1,a(n,m-1))

