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AGENDA
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■ first contact with a microkernel OS 

■ talk about system booting 

■ getting to know QEMU 

■ compile Fiasco 

■ compile minimal system environment 

■ the usual „Hello World“ 

■ look at source and config, play with it
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QEMU
■ developing your own kernel usually 

requires a dedicated machine 

■ we will use a virtual machine 

■ QEMU is open-source, provides a virtual 
machine by binary translation 

■ it emulates a complete x86 PC 

■ ... many other system architectures, too 

■ our QEMU will boot from an ISO image
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BOOTING
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BIOS
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■ Basic Input Output System 

■ fixed entry point after 
„power on“ and „reset“ 

■ initializes the CPU in 16-bit 
real-mode 

■ detects, checks, and initial-
izes platform hardware 
(RAM, PCI, ATA, …) 

■ finds the boot device BIOS
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EFI
■ Extensible Firmware 

Interface 
■ plug-ins for new hardware 

■ no legacy PC-AT boot 
(no A20 gate) 

■ built-in boot manager 
■ more than four partitions, 

no 2TB limit 
■ boot from peripherals (USB)
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EFI
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BOOT SECTOR
■ first sector on boot disk 

■ 512 bytes 

■ contains first boot loader 
stage and partition table 

■ BIOS loads code into RAM 
and executes it 

■ problem: How to find and 
boot an OS in 512 bytes?
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BIOS
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MEMORY 
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BIOSPhysical Memory

Boot Code

BIOS, Video RAM
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GRUB
■ popular boot loader 

■ used by most (all?) Linux 
distributions 

■ uses a two-stage-approach 
■ first stage fits in one sector 
■ has hard-wired sectors of 

second stage files 
■ second stage can read 

common file systems
9

BIOS

Boot Loader



TU Dresden Getting Started

GRUB
■ second stage loads a 

menu.lst config file to 
present a boot menu 

■ from there, you can load 
your kernel 

■ supports loading 
multiple modules 

■ files can also be 
retrieved from network
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GRUB
■ switches CPU to 32-bit 

protected mode 
■ loads and interprets the 

„kernel“ binary 
■ loads additional modules 

into memory 
■ sets up multiboot info 

structure 
■ starts the kernel
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MEM LAYOUT
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BOOTSTRAP
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■ our modules are ELF files: 
executable and linkable 
format 

■ contain multiple sections 
■ code, data, BSS 

■ bootstrap interprets the 
ELF modules 

■ copies sections to final lo-
cation in physical memory BIOS

Boot Loader

Bootstrap
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BOOTSTRAP
■ actual L4 kernel is the first 

of the modules 
■ must know about the other 

modules 
■ bootstrap sets up a kernel 

info page 
■ contains entry point + stack 

pointer of sigma0 and moe 

■ passes control to the kernel
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MEM LAYOUT

15

BIOS

Boot Loader

Physical Memory

Bootstrap

Kernel

Multiboot Info

BIOS, Video RAM

Module

Code
Data

Code
Data



TU Dresden Getting Started

KERNEL LOADER
■ initial kernel code 

■ basic CPU setup 

■ detecting CPU features 

■ setup various CPU-tables 

■ sets up basic page table 

■ enables virtual memory 
mode 

■ runs the actual kernel code
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MEM LAYOUT
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FIASCO
■ sets up kernel structures 

■ sets up scheduling timer 

■ starts first pager 

■ starts first task 

■ starts scheduling 

■ scheduler hands control to 
userland for the first time
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SIGMA0
■ is first pager in the system 

■ initially receives a 1:1 map-
ping of physical memory 

■ … and other platform-level 
resources (I/O ports) 

■ sigma0 is the root of the 
pager hierarchy 

■ pager for moe
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MOE
■ manages initial resources 

■ namespace 

■ memory 

■ VESA framebuffer 

■ provides logging facility 

■ mini-filesystem for read-
only access to boot-
modules

20

BIOS

Boot Loader

Bootstrap

Kernel Loader

Kernel

Moeσ0



TU Dresden Getting Started

NED
■ script-driven loader for 

further programs 

■ startup-scripts written in Lua 

■ additional software can be 
loaded by retrieving 
binaries via disk or network 

■ ned injects common 
service code into every task
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Setup

• download the source tarball from 
https://os.inf.tu-dresden.de/Studium/KMB/
WS2023/Exercise1.tar.bz2 

• unpack the tarball 
• it comes with a working directory 
• cd in there and have a look around

https://os.inf.tu-dresden.de/Studium/KMB/WS2023/Exercise1.tar.bz2
https://os.inf.tu-dresden.de/Studium/KMB/WS2023/Exercise1.tar.bz2


Compiling the System

• initialize the environment with make setup in 
the toplevel directory you unpacked  

• run make within the toplevel directory



Test-Driving QEMU

• create a bootable ISO image 
• the iso subdirectory is for the ISO’s content 
• run isocreator from src/l4/tool/bin on 

this directory 
• your ISO will contain a minimal grub installation 
• launch QEMU with the resulting ISO: 
qemu-system-x86_64 -m 512 -cdrom boot.iso



Booting Fiasco

• copy some files to the ISO directory 
• fiasco from the Fiasco build directory 
obj/fiasco/amd64/ 

• bootstrap from 
obj/l4/amd64/bin/amd64_gen/ 

• sigma0, moe , l4re and ned from 
obj/l4/amd64/bin/amd64_gen/l4f/



Booting Fiasco

• edit iso/boot/grub/menu.lst: 
title Getting Started  
kernel /bootstrap -serial  
modaddr 0x2000000  
module /fiasco  
module /sigma0  
module /moe  
module /l4re  
module /ned

• rebuild the ISO and run qemu



Preparing for Hello

• create the file hello.lua in the iso directory 
with this content:  
local L4 = require("L4");  
L4.default_loader:start({},  
"rom/hello");

• pass ned this new startup script 
• add this line to menu.lst: 
module /hello.lua 

• pass rom/hello.lua as parameter to moe
• load the future hello module in menu.lst



Exercise 1: Hello World

• create a directory for your hello-project 
• create a Makefile with the following content: 
PKGDIR ?= .  
L4DIR ?= absolute path to L4 source tree 
OBJ_BASE  = absolute path to L4 build tree 
TARGET  = hello  
SRC_C  = hello.c  
include $(L4DIR)/mk/prog.mk

• fill in hello.c and compile with make 
• run in qemu



Exercise 2: Ackermann Function

• write a program that spawns six threads 
• you can use pthreads in our system 
• add the line 
REQUIRES_LIBS = libpthread  
to your Makefile 

• each thread should calculate one value 
a(3,0..5) of the Ackermann function: 

• a(0,m)	 = m+1 
• a(n,0)	= a(n-1,1) 
• a(n,m)	 = a(n-1,a(n,m-1))


