
Department of Computer Science Institute of System Architecture, Operating Systems Group

CARSTEN WEINHOLD

SECURITY
ARCHITECTURES

TU Dresden Security Architectures

CLASSICAL
ARCHITECTURES

2

TU Dresden Security Architectures

ISOLATION
■ Isolation in commodity OSes for PCs:
■ Based on user accounts

■ Same privileges for all apps

■ No isolation within applications

■ Permissive interfaces (e.g., ptrace to
manipulate other address spaces)

3

TU Dresden Security Architectures

KERNEL ATTACK VECTOR

4

Commodity
OS Kernel

App A

USB
WiFi

IP Stack

File System

Disk

Syscalls

App B

Storage

App C App DApp B

TU Dresden Security Architectures

KERNEL ATTACK VECTOR

5

Commodity
OS Kernel

App A

Disk

Syscalls

App B

Storage

App C App D

USB
WiFi

IP Stack

File System

TU Dresden Security Architectures

KERNEL ATTACK VECTOR

6

Commodity
OS Kernel

App A

Disk

Syscalls

App B

Storage

App C App D

USB
WiFi

IP Stack

File System

TU Dresden Security Architectures

KERNEL ATTACK VECTOR

7

Commodity
OS Kernel

App A

Disk

Syscalls

App B

Storage

App C App D

USB
WiFi

IP Stack

File System

TU Dresden Security Architectures

ISOLATION
■ Isolation in commodity OSes for PCs:
■ Based on user accounts

■ Same privileges for all apps

■ No isolation within applications

■ Permissive interfaces (e.g., ptrace to
manipulate other address spaces)

■ Efforts to restrict privileges:
■ SELinux, AppArmor, Seatbelt, ...

■ Linux containers, ...
8

TU Dresden Security Architectures

HARDWARE ISOLATION

■ Separate computers

■ Applications and data
physically isolated

■ Effective, but ...
■ Higher costs

■ Needs more space

■ Inconvenient

■ Exposed to network

9

OS OS

Hardware

App

Hardware

App

PC 1 PC 2

TU Dresden Security Architectures

VM-BASED ISOLATION
■ Multiple VMs, OSes

■ Isolation enforced by
virtualization layer

■ Saves space, energy,
maintenance effort

■ But still ...
■ Switching between

VMs is inconvenient

■ Even more code
10

Virtualization Layer

Hardware

VM 1 VM 2

App

App

OS OS

TU Dresden Security Architectures

WHAT IS THE PROBLEM?

■ Huge code bases remain

■ Applications still the same

■ Many targets to attack:
■ Applications, libraries, commodity OSes

■ Virus scanner, firewall, ...

■ Virtualization layer

■ High overhead for many VMs

11

TU Dresden Security Architectures

SECURITY
ARCHITECTURES

12

TU Dresden Security Architectures

SECURITY GOALS

■ Protect the user’s data

■ Secure applications that process data

■ Acknowledge different kinds of trust, e.g.:
■ Application A trusted to handle its own

data, but not the files of application B

■ OS trusted to store data, but not to see it

■ Identify and secure TCB: the Trusted
Computing Base

13

TU Dresden Security Architectures

APPROACH
■ To improve security: Reduce size of TCB

= smaller attack surface

■ First (incomplete) idea:
■ Remove huge legacy OS from TCB

■ Port application to microkernel-based
multi-server OS

■ Remove unneeded libc backends, etc.

■ Possible approaches discussed in lecture
on „Legacy Reuse“

14

TU Dresden Security Architectures

Loader

15

Microkernel

GUINames User
Auth

Storage I/O

Legacy OS

Legacy
App

Signing
App

E-Commerce
App

Banking
App

NIZZA ARCHITECTURE

TU Dresden Security Architectures

NIZZA ARCHITECTURE

16

Nizza architecture: fundamental
concepts:
■ Strong isolation

■ Application-specific TCBs

■ Legacy reuse

■ Trusted wrappers

■ Trusted computing

TU Dresden Security Architectures

APP-SPECIFIC TCB
■ Reflects Principle of Least Privilege

■ TCB of an application includes only
components its security relies upon

■ TCB does not include unrelated
applications, services, libraries

17

TU Dresden Security Architectures

APP-SPECIFIC TCB

18

Key Mgmt

IP Stack

Virtual
Ethernet

Network
App

Loader

Microkernel

GUINames User
Auth

Storage I/O

Legacy OS

Legacy
App Signing

App

TU Dresden Security Architectures

APP-SPECIFIC TCB
■ Reflects Principle of Least Privilege

■ TCB of an application includes only
components its security relies upon

■ TCB does not include unrelated
applications, services, libraries

■ Mechanisms:
■ Address spaces + IPC control for isolation

■ Well-defined interfaces

19

TU Dresden Security Architectures

SPLITTING
COMPONENTS

20

TU Dresden Security Architectures

SPLIT APPS
■ Problems with porting applications:
■ Dependencies need to be satisfied

■ Can be complex, require lots of code

■ Stripped down applications may lack
functionality / usability

■ Better idea: split application
■ Make only security-critical parts run on

microkernel-based OS
■ Parts of application removed from TCB

21

TU Dresden Security Architectures

EXAMPLE 1: EMAIL

22

Digitally signed e-mails, what’s critical?
■ Handling of signature keys

■ Requesting passphrase to unlock
signature key

■ Presenting e-mail message:
■ Before sending: „What You See Is What

You Sign“

■ After receiving: verify signature, identify
sender

TU Dresden Security Architectures

STANDARD EMAIL APP

23

Nitpicker

DOpE

L4Linux

Mozilla
Thunderbird

X Window System

GnuPG
Proxy

L4GnuPG

Video Device Input DevicesHardware

Trusted

computing

base

Figure 8. Application scenario.

5.1 Application scenario

For highlighting the benefit of Nitpicker in conjunction
with widely used commodity applications, let us present an
application scenario.

Mail readers such as Mozilla Thunderbird are popular
because of their rich features (e. g., spam filtering, powerful
searching functions) and good usability. This convenience
comes at the cost of an enormous complexity of the appli-
cation and the needed OS support. With regard to the con-
fidentiality of private keys for signing emails, such appli-
cations are a nightmare. For the concrete example of us-
ing Mozilla Thunderbird on the GNU/Linux platform, the
complexity of the Linux kernel, the privileged daemon pro-
cesses, the X window system, Mozilla Thunderbird and
concurrently running user processes of the same user ac-
cumulate to millions of lines of code that potentially put the
secrets of the user at risk.

In fact, only a small fraction of this code—the GNU Pri-
vacy Guard (GnuPG) [4]—actually needs the private keys
for operation. We ported GnuPG to the L4 platform, cre-
ating L4GnuPG, and complemented it with a trusted text
viewer. We interfaced L4GnuPG with Thunderbird by cre-
ating a L4Linux proxy process that redirects Thunderbird’s
calls of GnuPG to L4GnuPG. L4GnuPG uses DOpE as
its widget set, which is running within an isolated address
space. In this scenario, L4GnuPG is the only process in the
whole system that can access the confidential signing key
of the user. Figure 8 presents an overview about the compo-
nents of this scenario. When the user activates the signing
function of Thunderbird, our L4Linux proxy process trans-
fers the email to L4GnuPG. L4GnuPG presents this email
in a DOpE window that is displayed within a correspond-
ing view of Nitpicker. The user can now decide to sign
the email or cancel the operation. If he decides to sign the
email, L4GnuPG requests a pass-phrase, signs the email and
transfers the result to Thunderbird via the L4Linux proxy

Mozilla

Terminal

orphaned

area

Terminal

Mozilla

Terminal

Mozilla

Figure 9. Orphaned area on screen.

process.
In the presented scenario, the confidentiality of the sign-

ing key depends on only 105,000 LOC including L4/Fiasco
(15,000 LOC), trusted L4 services (35,000 LOC) and
L4GnuPG (55,000 LOC). The isolation of the legacy X11
window system and the GUI of the trusted application de-
pends only on the L4/Fiasco kernel and Nitpicker (1,500
LOC). We obtain the powerful features and great usabil-
ity of a commodity application while extremely minimaliz-
ing the trusted computing base (TCB) of a security-sensitive
function with regard to its GUI. The scenario underlines the
biggest strengths of Nitpicker: low complexity and the sup-
port of legacy graphical user interfaces.

5.2 Current limitations

After presenting the strengths of Nitpicker, we review
the limits of our current implementation.

Nitpicker attaches exactly one label to each view. There
are view layouts that leave orphaned areas unlabeled on
screen (Figure 9). Although the dimming technique in
X-ray mode prevents confusion about the focused view, a
shading policy as described in [12] could be deployed to
encounter such cases by blanking out orphaned areas. This
will be implemented in a future version.

Nitpicker performs graphical output via software graph-
ics routines. Making hardware-accelerated graphics usable
by Nitpicker and untrusted clients at the same time is a chal-
lenging problem and will be an object of our future work.

6 Related work

This section complements Section 3 with related work
about techniques and approaches that inspired the design of
Nitpicker.

J. Epstein addressed the problem of expressive and
unique labeling of windows for the Trusted X11 in [12].
Beside estimating different labeling techniques for mark-
ing classified information, he introduces a technique to de-
tect and blank out orphaned window areas. The dimming
of non-focused windows was inspired by Apple’s Exposé
feature in Mac OS X. J. Shapiro described the dimming

Image source: [5]

TU Dresden Security Architectures

SPLIT EMAIL APP

24

Nitpicker

DOpE

L4Linux

Mozilla
Thunderbird

X Window System

GnuPG
Proxy

L4GnuPG

Video Device Input DevicesHardware

Trusted

computing

base

Figure 8. Application scenario.

5.1 Application scenario

For highlighting the benefit of Nitpicker in conjunction
with widely used commodity applications, let us present an
application scenario.

Mail readers such as Mozilla Thunderbird are popular
because of their rich features (e. g., spam filtering, powerful
searching functions) and good usability. This convenience
comes at the cost of an enormous complexity of the appli-
cation and the needed OS support. With regard to the con-
fidentiality of private keys for signing emails, such appli-
cations are a nightmare. For the concrete example of us-
ing Mozilla Thunderbird on the GNU/Linux platform, the
complexity of the Linux kernel, the privileged daemon pro-
cesses, the X window system, Mozilla Thunderbird and
concurrently running user processes of the same user ac-
cumulate to millions of lines of code that potentially put the
secrets of the user at risk.

In fact, only a small fraction of this code—the GNU Pri-
vacy Guard (GnuPG) [4]—actually needs the private keys
for operation. We ported GnuPG to the L4 platform, cre-
ating L4GnuPG, and complemented it with a trusted text
viewer. We interfaced L4GnuPG with Thunderbird by cre-
ating a L4Linux proxy process that redirects Thunderbird’s
calls of GnuPG to L4GnuPG. L4GnuPG uses DOpE as
its widget set, which is running within an isolated address
space. In this scenario, L4GnuPG is the only process in the
whole system that can access the confidential signing key
of the user. Figure 8 presents an overview about the compo-
nents of this scenario. When the user activates the signing
function of Thunderbird, our L4Linux proxy process trans-
fers the email to L4GnuPG. L4GnuPG presents this email
in a DOpE window that is displayed within a correspond-
ing view of Nitpicker. The user can now decide to sign
the email or cancel the operation. If he decides to sign the
email, L4GnuPG requests a pass-phrase, signs the email and
transfers the result to Thunderbird via the L4Linux proxy

Mozilla

Terminal

orphaned

area

Terminal

Mozilla

Terminal

Mozilla

Figure 9. Orphaned area on screen.

process.
In the presented scenario, the confidentiality of the sign-

ing key depends on only 105,000 LOC including L4/Fiasco
(15,000 LOC), trusted L4 services (35,000 LOC) and
L4GnuPG (55,000 LOC). The isolation of the legacy X11
window system and the GUI of the trusted application de-
pends only on the L4/Fiasco kernel and Nitpicker (1,500
LOC). We obtain the powerful features and great usabil-
ity of a commodity application while extremely minimaliz-
ing the trusted computing base (TCB) of a security-sensitive
function with regard to its GUI. The scenario underlines the
biggest strengths of Nitpicker: low complexity and the sup-
port of legacy graphical user interfaces.

5.2 Current limitations

After presenting the strengths of Nitpicker, we review
the limits of our current implementation.

Nitpicker attaches exactly one label to each view. There
are view layouts that leave orphaned areas unlabeled on
screen (Figure 9). Although the dimming technique in
X-ray mode prevents confusion about the focused view, a
shading policy as described in [12] could be deployed to
encounter such cases by blanking out orphaned areas. This
will be implemented in a future version.

Nitpicker performs graphical output via software graph-
ics routines. Making hardware-accelerated graphics usable
by Nitpicker and untrusted clients at the same time is a chal-
lenging problem and will be an object of our future work.

6 Related work

This section complements Section 3 with related work
about techniques and approaches that inspired the design of
Nitpicker.

J. Epstein addressed the problem of expressive and
unique labeling of windows for the Trusted X11 in [12].
Beside estimating different labeling techniques for mark-
ing classified information, he introduces a technique to de-
tect and blank out orphaned window areas. The dimming
of non-focused windows was inspired by Apple’s Exposé
feature in Mac OS X. J. Shapiro described the dimming

Image source: [5]

TU Dresden Security Architectures

TCB REDUCTION

25

■ 1,500,000+ SLOC no longer in TCB:
■ Linux kernel, drivers, X-Server

■ C and GUI libraries, Thunderbird, …

■ TCB size reduced to ~150,000 SLOC:
■ GNU Privacy Guard, e-mail viewer

■ Basic L4 system

■ At least 10 times less code in TCB

TU Dresden Security Architectures

SPLITTING THE OS

■ Splitting works for applications

■ What about the complex and useful
infrastructure of commodity OSes?
■ Drivers (see previous lectures)

■ Protocol stacks (e.g., TCP/IP)

■ File systems

■ Starting point: Virtualized commodity OS

26

TU Dresden Security Architectures

SIMPLE REUSE
■ Run legacy OS in VM

■ Reuse service: net, files, ...

■ Legacy infrastructure isolated
from applications

■ But:
■ Applications still depend on

legacy services ... in TCB?

■ Interfaces reused, security
issues as well?

27

Basic
Services

Legacy OS

App

Microkernel

TU Dresden Security Architectures

COMPLEXITY + BUGS
■ Network and file system stacks are

virtually essential subsystems

■ Generally well tested

■ Ready for production use

■ ... but not bug free [1,2]:
■ Linux file systems (UFS, ISO 9660, Ext3,

SquashFS, ...): bug hunt of just 1 month
yielded 14 exploitable flaws

■ WiFi drivers: remotely exploitable [11]
28

TU Dresden Security Architectures

REUSE + TRUST
■ Complex protocol stacks should not be

part of TCB (for confidentiality + integrity)

■ Reuse untrusted infrastructure through
Trusted Wrapper:
■ Add security around existing APIs
■ Cryptography
■ Additional checks (may require copy of critical

data, if original data cannot be trusted)

■ General idea similar to TLS, VPN
29

TU Dresden Security Architectures

EXAMPLE 2: VPN

30

Secure NetSecure Net

Confidentiality, Integrity, AvailabilityVPN:

Internet

TU Dresden Security Architectures

CASE STUDY: SINA BOX

■ SINA box used by German „BSI“:

■ VPN gateway

■ Implements IPSec & PKI

■ Intrusion detection &
response

■ Used for secure access to
government networks,
e.g., in German embassies

31

Image source:
http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/

http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/
http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/

TU Dresden Security Architectures

SINA BOX
■ Differently trusted network interfaces:
■ Red: plaintext, no protection

■ Black: encryption + authentication codes

■ VPN Software:
■ Based on minimized and hardened Linux

■ Runs only from read-only storage
32

VPN
Software

Ethernet
(external)

Ethernet
(internal)

Internet

TU Dresden Security Architectures

OS COMPLEXITY

■ Linux is complex!

■ SLOC for Linux 2.6.18:
■ Architecture specific: 817,880

■ x86 specific: 55,463

■ Drivers: 2,365,256

■ Common: 1,800,587

■ Typical config: ~ 2,000,000

■ Minimized & hardened: ~ 500,000
33

Released date:
20 Sep 2006

TU Dresden Security Architectures

OS COMPLEXITY

■ Linux is even more complex in 2024!

■ SLOC for Linux 6.7.1:
■ Architecture specific: 1,729,519

■ x86 specific: 316,544

■ Drivers: 17,771,667

■ fs/btrfs: 106,335

34

TU Dresden Security Architectures

MIKRO-SINA

■ Research project „Mikro-SINA“

■ Goals:
■ Reduce TCB of VPN gateway software

■ Enable high-level evaluation for high
assurance scenarios

■ Ensure confidentiality and integrity of
sensitive data within the VPN

■ Exploit microkernel architecture

35

TU Dresden Security Architectures

IPSEC BASICS

■ Protocol suite for securing IP-
based communication

■ Authentication header (AH)
■ Integrity
■ Authentication

■ Encapsulating Security Payload
(ESP)
■ Confidentiality

■ Key management / exchange
36

Link Layer

IPSec

IP

TCP / UDP

Application

TU Dresden Security Architectures

L4Linux

IPSEC IN L4LINUX

■ IPSec is security critical component

■ ... but is integrated into Linux kernel

37

Microkernel

IP Stack

IPSec

TU Dresden Security Architectures

L4Linux

IPSEC „VIADUCT“
■ Idea: Isolate IPSec in „Viaduct“

■ IPSec packets sent/received through
TUN/TAP device

38

IP Stack

IPSec
„Viaduct“

eth0

tun0

Microkernel

TU Dresden Security Architectures

FRAGMENTATION
■ Problem: Routers can fragment IPSec

packets on the way

■ Let L4Linux reassemble them

39

L4Linux

IP Stack

IPSec
„Viaduct“

eth0

tun0

AH /
ESP

Microkernel

TU Dresden Security Architectures

CONFIDENTIALITY
■ Untrusted L4Linux instances must not see

both plaintext and encrypted data

■ Dedicated L4Linux for black/red networks

40

L4Linux

IP Stack

IPSec
„Viaduct“

eth0

tun0

AH /
ESP

L4Linux

IP Stack
eth1

tun0

Microkernel

TU Dresden Security Architectures

MIKRO-SINA

■ Result: Trusted Wrapper for VPN

■ Small TCB (see [6] for details):
■ 5,000 SLOC for „Viaduct“

■ Fine grain isolation
■ Principle of least privilege

■ Extensive reuse of legacy code:
■ Drivers

■ IP stack
41

TU Dresden Security Architectures

EXAMPLE 3: STORAGE

42

How to provide secure and
reliable storage for trusted
applications?

Loader

Microkernel

GUINames User
Auth

Storage I/O

Legacy OS

Legacy
App

Signing
App

E-Commerce
App

Banking
App

TU Dresden Security Architectures

Linux Kernel

TCB

VIRTUAL PRIVATE...

43

Microkernel

App

VPFS: Confidentiality, Integrity, Availability

See [3] for details

Secure
File System

4,600 SLOC Commodity
File System 50,000+ SLOC

TU Dresden Security Architectures

VPFS STACK

44

Secure File
System Proxy

Commodity
File System

Secure
File System

Secure
File System

Secure File
System Proxy

Secure File
System Proxy

Secure
File System

Signing
App

Office
App

Banking
App

Commodity
File System

Isolate applications and their private storage: configure communication
capabilities such that each application can access its private instance of
the secure file system exclusively

x
x

TU Dresden Security Architectures

SECURITY GOALS

45

■ Confidentiality: only authorized
applications can access file system, all
untrusted software cannot get any
useful information

■ Integrity: all data and meta data is
correct, complete, and up to date;
otherwise report integrity error

■ Recoverability: damaged data in
untrusted file system can be recovered

TU Dresden Security Architectures

POPULAR SOLUTIONS

46

CFS Cryptographic File System for UNIX
EFS Microsoft Encrypting File System
ecryptfs Linux kernel support + tools
EncFS Based on FUSE

File-level protection

Volume-level protection

TrueCrypt, Filevault 2
dm_crypt
Bitlocker
Encrypted volumes in smartphones, etc.Storage Device

Disk Driver

Block Layer

File System

VFS

App

Buffer Cache

TU Dresden Security Architectures

DESIGN OPTIONS

■ First end of design space:
Protect at block layer
■ Transparent encryption of all

data and metadata

■ Block-level integrity ???

■ Most parts of file system stack
are part of TCB

■ Attack surface still big

47

Protection

Disk Driver

Block Layer

File System

VFS

App

Buffer Cache

TU Dresden Security Architectures

DESIGN OPTIONS
■ Second end of design space:

Protect individual files
■ Stacked file system

■ Encrypt all data and some
metadata (directories, ...)

■ More flexibility for integrity

■ Most parts of file system stack
not part of TCB

■ Ideal for trusted wrapper
48

Protection

Disk Driver

Block Layer

File System

VFS

App

Buffer Cache

TU Dresden Security Architectures

TRUSTED WRAPPER

49

File / Naming
Abstraction

Disk Driver

Block Layer

File System

Buffer Cache

Persistency +
AES / SHA-1

Buffer Cache

VFS

VPFS Helper

Critical
App

Trusted (TCB) Untrusted

open, read,
write, mmap,

readdir, ...

alloc/free blocks,
B+-trees, redundancy,

consistency, ...

read/write blocks,
partition tables, ...

SATA, command
queuing, write

barriers, power, ...

open, read, write,
mmap, (readdir), ...

TU Dresden Security Architectures

VPFS APPROACH

50

■ Encrypted files in commodity file system

■ Merkle hash tree to detect tampering

D D D

Virtual Private File System (TCB)

M M M

H

H H

H

Reused Commodity File System (Untrusted)

D D

Sealed
Memory

Hroot

TU Dresden Security Architectures

VPFS APPROACH

■ Trusted part of VPFS enforces security:
■ Encryption / decryption on the fly

■ Plaintext only in trusted buffer cache

■ Files in untrusted commodity file system
store encrypted blocks

■ Hash tree protects integrity of complete
file system

■ Single hash of root node stored securely

51

TU Dresden Security Architectures

MULTIPLE FILES

52

Inode File (w/ per-file hashes)

FileFile File File

Dir

Dir

Dir

Sealed
Memory

Hroot

TU Dresden Security Architectures

EXTENSIVE REUSE

53

■ VPFS reuses Linux file system stack:
■ Drivers, block device layer

■ Optimizations (buffer cache, read ahead,
write batching, ...)

■ Allocate / free disk storage for files

■ Cooperation: proxy driver in L4Linux

TU Dresden Security Architectures

VPFS
Helper

VPFS
Core

VPFS PROXY DRIVER

54

L4Linux
Container

L4Linux
Kernel

SHM Buffer

IRQ Setup

SHM Buffer

SHM Buffer

Dataspace

Notify Drv
(chardev)

Wait+Signal: read+write

Shared memory + Signaling:

• Trigger Linux Irq, then
unblock read() on chardev

• Call write() on chardev,
then trigger L4 App‘s Irq

• Encrypted blocks transferred
via shared memory

SHM buffer: mmap

TU Dresden Security Architectures

VPFS SUMMARY

55

■ Trusted wrappers for file systems work!

■ VPFS is general purpose file system

■ Significant reduction in code size:
■ Untrusted Linux file system stack

comprises 50,000+ SLOC

■ VPFS adds 4,000 to 4,600 SLOC to
application TCB [3]

■ jVPFS adds another 350 SLOC for secure
journaling to protect against crashes [4]

TU Dresden Security Architectures

SUMMARY

56

■ Secure reuse of untrusted legacy
infrastructure

■ Split apps + OS services for smaller TCB

■ Nizza secure system architecture:
■ Strong isolation

■ Application-specific TCBs

■ Legacy Reuse

■ Trusted Wrapper

TU Dresden Security Architectures

BRIEFLY:
HARDWARE ISOLATION

57

TU Dresden Security Architectures

APPLE SECURE ENCLAVE

58

Source: Apple Support Documentation
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web

Apple devices have "Secure Enclave
Processor (SEP)" running a
dedicated service OS fully isolated
from from the application
processor hardware.

The SEP runs sepOS:

"The Secure Enclave firmware is
based on a version of the L4
microkernel customized by Apple."

TU Dresden Security Architectures

SNEAK PEEK: M3

59

Isolation

User tile

TCU

Kernel tile

TCU

User tile

TCU

User tile

TCU

User tile

TCU

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App TCU-based isolation:

Additional protection layer

Only kernel tile can
establish communication
channels

User tiles can only use
established channels

15 / 45

TU Dresden Security Architectures

SNEAK PEEK: M3

60

Isolation

User tile

TCU

Kernel tile

TCU

User tile

TCU

User tile

TCU

User tile

TCU

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App TCU-based isolation:

Additional protection layer

Only kernel tile can
establish communication
channels

User tiles can only use
established channels

15 / 45

TU Dresden Security Architectures

SNEAK PEEK: M3

61

Isolation

User tile

TCU

Kernel tile

TCU

User tile

TCU

User tile

TCU

User tile

TCU

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App TCU-based isolation:

Additional protection layer

Only kernel tile can
establish communication
channels

User tiles can only use
established channels

15 / 45

TU Dresden Security Architectures

SNEAK PEEK: M3

62

Communication

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

TCU

TCU

TCU

TCU TCUMM

S

R

S

R

TCU provides endpoints to:

Issue DMA requests to
memory

Receive messages into a
receive bu�er

Send messages to a
receiving endpoint

Replies for RPC

16 / 45

TU Dresden Security Architectures

SNEAK PEEK: M3

63

Communication

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

TCU

TCU

TCU

TCU TCUMM S

R

S

R

TCU provides endpoints to:

Issue DMA requests to
memory

Receive messages into a
receive bu�er

Send messages to a
receiving endpoint

Replies for RPC

16 / 45

TU Dresden Security Architectures

REFERENCES
■ [1] http://www.heise.de/newsticker/Month-of-Kernel-Bugs-Ein-Zwischenstand--/meldung/81454

■ [2] http://projects.info-pull.com/mokb/

■ [3] Carsten Weinhold and Hermann Härtig, „VPFS: Building a Virtual Private File System with a Small
Trusted Computing Base“, Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems, April 2008, Glasgow, Scotland UK

■ [4] Carsten Weinhold and Hermann Härtig, „jVPFS: Adding Robustness to a Secure Stacked File System with
Untrusted Local Storage Components“, Proceedings of the 2011 USENIX Annual Technical Conference,
Portland, OR, USA, June 2011

■ [5] Norman Feske and Christian Helmuth, „A Nitpicker's guide to a minimal-complexity secure GUI“, ACSAC
'05: Proceedings of the 21st Annual Computer Security Applications Conference, 2005, Washington, DC,
USA

■ [6] Christian Helmuth, Alexander Warg, Norman Feske, „Mikro-SINA - Hands-on Experiences with the Nizza
Security Architecture“, D.A.CH Security 2005, 2005, Darmstadt, Germany

■ [7] http://support.apple.com/kb/HT4013

■ [8] http://support.apple.com/kb/HT3754

■ [9] http://jailbreakme.com

■ [10] Asmussen et al.: „M3: A Hardware/OS Co-Design to Tame Heterogeneous Manycores“, ASPLOS’16

■ [11] Artenstein: „BroadPwn: Remotely Compromising Android and iOS via a Bug in the Broadcom Wi-Fi
Chipset“, https://www.blackhat.com/docs/us-17/thursday/us-17-Artenstein-Broadpwn-Remotely-
Compromising-Android-And-iOS-Via-A-Bug-In-Broadcoms-Wifi-Chipsets-wp.pdf

64

http://www.heise.de/newsticker/Month-of-Kernel-Bugs-Ein-Zwischenstand--/meldung/81454
http://projects.info-pull.com/mokb/
http://projects.info-pull.com/mokb/
http://www.heise.de/newsticker/Month-of-Kernel-Bugs-Ein-Zwischenstand--/meldung/81454
http://projects.info-pull.com/mokb/
https://www.blackhat.com/docs/us-17/thursday/us-17-Artenstein-Broadpwn-Remotely-Compromising-Android-And-iOS-Via-A-Bug-In-Broadcoms-Wifi-Chipsets-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Artenstein-Broadpwn-Remotely-Compromising-Android-And-iOS-Via-A-Bug-In-Broadcoms-Wifi-Chipsets-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Artenstein-Broadpwn-Remotely-Compromising-Android-And-iOS-Via-A-Bug-In-Broadcoms-Wifi-Chipsets-wp.pdf

