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ISOLATION
■ Isolation in commodity OSes for PCs: 
■ Based on user accounts 

■ Same privileges for all apps 

■ No isolation within applications 

■ Permissive interfaces (e.g., ptrace to 
manipulate other address spaces)
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KERNEL ATTACK VECTOR
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ISOLATION
■ Isolation in commodity OSes for PCs: 
■ Based on user accounts 

■ Same privileges for all apps 

■ No isolation within applications 

■ Permissive interfaces (e.g., ptrace to 
manipulate other address spaces) 

■ Efforts to restrict privileges: 
■ SELinux, AppArmor, Seatbelt, ... 

■ Linux containers, ...
8
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HARDWARE ISOLATION

■ Separate computers 

■ Applications and data 
physically isolated 

■ Effective, but ... 
■ Higher costs 

■ Needs more space 

■ Inconvenient 

■ Exposed to network

9
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VM-BASED ISOLATION
■ Multiple VMs, OSes 

■ Isolation enforced by 
virtualization layer 

■ Saves space, energy, 
maintenance effort 

■ But still ... 
■ Switching between 

VMs is inconvenient 

■ Even more code
10
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WHAT IS THE PROBLEM?

■ Huge code bases remain 

■ Applications still the same 

■ Many targets to attack: 
■ Applications, libraries, commodity OSes 

■ Virus scanner, firewall, ... 

■ Virtualization layer 

■ High overhead for many VMs

11
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ARCHITECTURES
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SECURITY GOALS

■ Protect the user’s data 

■ Secure applications that process data 

■ Acknowledge different kinds of trust, e.g.: 
■ Application A trusted to handle its own 

data, but not the files of application B 

■ OS trusted to store data, but not to see it 

■ Identify and secure TCB: the Trusted 
Computing Base

13
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APPROACH
■ To improve security: Reduce size of TCB 

= smaller attack surface 

■ First (incomplete) idea: 
■ Remove huge legacy OS from TCB 

■ Port application to microkernel-based 
multi-server OS 

■ Remove unneeded libc backends, etc. 

■ Possible approaches discussed in lecture 
on „Legacy Reuse“
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NIZZA ARCHITECTURE
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Nizza architecture: fundamental 
concepts: 
■ Strong isolation 

■ Application-specific TCBs 

■ Legacy reuse 

■ Trusted wrappers 

■ Trusted computing



TU Dresden Security Architectures

APP-SPECIFIC TCB
■ Reflects Principle of Least Privilege 

■ TCB of an application includes only 
components its security relies upon 

■ TCB does not include unrelated 
applications, services, libraries
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APP-SPECIFIC TCB
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APP-SPECIFIC TCB
■ Reflects Principle of Least Privilege 

■ TCB of an application includes only 
components its security relies upon 

■ TCB does not include unrelated 
applications, services, libraries 

■ Mechanisms: 
■ Address spaces + IPC control for isolation 

■ Well-defined interfaces

19
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SPLITTING 
COMPONENTS
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SPLIT APPS
■ Problems with porting applications: 
■ Dependencies need to be satisfied 

■ Can be complex, require lots of code 

■ Stripped down applications may lack 
functionality / usability 

■ Better idea: split application 
■ Make only security-critical parts run on 

microkernel-based OS 
■ Parts of application removed from TCB

21
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EXAMPLE 1: EMAIL
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Digitally signed e-mails, what’s critical? 
■ Handling of signature keys 

■ Requesting passphrase to unlock 
signature key 

■ Presenting e-mail message: 
■ Before sending: „What You See Is What 

You Sign“ 

■ After receiving: verify signature, identify 
sender
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STANDARD EMAIL APP
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5.1 Application scenario

For highlighting the benefit of Nitpicker in conjunction
with widely used commodity applications, let us present an
application scenario.

Mail readers such as Mozilla Thunderbird are popular
because of their rich features (e. g., spam filtering, powerful
searching functions) and good usability. This convenience
comes at the cost of an enormous complexity of the appli-
cation and the needed OS support. With regard to the con-
fidentiality of private keys for signing emails, such appli-
cations are a nightmare. For the concrete example of us-
ing Mozilla Thunderbird on the GNU/Linux platform, the
complexity of the Linux kernel, the privileged daemon pro-
cesses, the X window system, Mozilla Thunderbird and
concurrently running user processes of the same user ac-
cumulate to millions of lines of code that potentially put the
secrets of the user at risk.

In fact, only a small fraction of this code—the GNU Pri-
vacy Guard (GnuPG) [4]—actually needs the private keys
for operation. We ported GnuPG to the L4 platform, cre-
ating L4GnuPG, and complemented it with a trusted text
viewer. We interfaced L4GnuPG with Thunderbird by cre-
ating a L4Linux proxy process that redirects Thunderbird’s
calls of GnuPG to L4GnuPG. L4GnuPG uses DOpE as
its widget set, which is running within an isolated address
space. In this scenario, L4GnuPG is the only process in the
whole system that can access the confidential signing key
of the user. Figure 8 presents an overview about the compo-
nents of this scenario. When the user activates the signing
function of Thunderbird, our L4Linux proxy process trans-
fers the email to L4GnuPG. L4GnuPG presents this email
in a DOpE window that is displayed within a correspond-
ing view of Nitpicker. The user can now decide to sign
the email or cancel the operation. If he decides to sign the
email, L4GnuPG requests a pass-phrase, signs the email and
transfers the result to Thunderbird via the L4Linux proxy
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Figure 9. Orphaned area on screen.

process.
In the presented scenario, the confidentiality of the sign-

ing key depends on only 105,000 LOC including L4/Fiasco
(15,000 LOC), trusted L4 services (35,000 LOC) and
L4GnuPG (55,000 LOC). The isolation of the legacy X11
window system and the GUI of the trusted application de-
pends only on the L4/Fiasco kernel and Nitpicker (1,500
LOC). We obtain the powerful features and great usabil-
ity of a commodity application while extremely minimaliz-
ing the trusted computing base (TCB) of a security-sensitive
function with regard to its GUI. The scenario underlines the
biggest strengths of Nitpicker: low complexity and the sup-
port of legacy graphical user interfaces.

5.2 Current limitations

After presenting the strengths of Nitpicker, we review
the limits of our current implementation.

Nitpicker attaches exactly one label to each view. There
are view layouts that leave orphaned areas unlabeled on
screen (Figure 9). Although the dimming technique in
X-ray mode prevents confusion about the focused view, a
shading policy as described in [12] could be deployed to
encounter such cases by blanking out orphaned areas. This
will be implemented in a future version.

Nitpicker performs graphical output via software graph-
ics routines. Making hardware-accelerated graphics usable
by Nitpicker and untrusted clients at the same time is a chal-
lenging problem and will be an object of our future work.

6 Related work

This section complements Section 3 with related work
about techniques and approaches that inspired the design of
Nitpicker.

J. Epstein addressed the problem of expressive and
unique labeling of windows for the Trusted X11 in [12].
Beside estimating different labeling techniques for mark-
ing classified information, he introduces a technique to de-
tect and blank out orphaned window areas. The dimming
of non-focused windows was inspired by Apple’s Exposé
feature in Mac OS X. J. Shapiro described the dimming

Image source: [5]
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5.1 Application scenario

For highlighting the benefit of Nitpicker in conjunction
with widely used commodity applications, let us present an
application scenario.

Mail readers such as Mozilla Thunderbird are popular
because of their rich features (e. g., spam filtering, powerful
searching functions) and good usability. This convenience
comes at the cost of an enormous complexity of the appli-
cation and the needed OS support. With regard to the con-
fidentiality of private keys for signing emails, such appli-
cations are a nightmare. For the concrete example of us-
ing Mozilla Thunderbird on the GNU/Linux platform, the
complexity of the Linux kernel, the privileged daemon pro-
cesses, the X window system, Mozilla Thunderbird and
concurrently running user processes of the same user ac-
cumulate to millions of lines of code that potentially put the
secrets of the user at risk.

In fact, only a small fraction of this code—the GNU Pri-
vacy Guard (GnuPG) [4]—actually needs the private keys
for operation. We ported GnuPG to the L4 platform, cre-
ating L4GnuPG, and complemented it with a trusted text
viewer. We interfaced L4GnuPG with Thunderbird by cre-
ating a L4Linux proxy process that redirects Thunderbird’s
calls of GnuPG to L4GnuPG. L4GnuPG uses DOpE as
its widget set, which is running within an isolated address
space. In this scenario, L4GnuPG is the only process in the
whole system that can access the confidential signing key
of the user. Figure 8 presents an overview about the compo-
nents of this scenario. When the user activates the signing
function of Thunderbird, our L4Linux proxy process trans-
fers the email to L4GnuPG. L4GnuPG presents this email
in a DOpE window that is displayed within a correspond-
ing view of Nitpicker. The user can now decide to sign
the email or cancel the operation. If he decides to sign the
email, L4GnuPG requests a pass-phrase, signs the email and
transfers the result to Thunderbird via the L4Linux proxy
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process.
In the presented scenario, the confidentiality of the sign-

ing key depends on only 105,000 LOC including L4/Fiasco
(15,000 LOC), trusted L4 services (35,000 LOC) and
L4GnuPG (55,000 LOC). The isolation of the legacy X11
window system and the GUI of the trusted application de-
pends only on the L4/Fiasco kernel and Nitpicker (1,500
LOC). We obtain the powerful features and great usabil-
ity of a commodity application while extremely minimaliz-
ing the trusted computing base (TCB) of a security-sensitive
function with regard to its GUI. The scenario underlines the
biggest strengths of Nitpicker: low complexity and the sup-
port of legacy graphical user interfaces.

5.2 Current limitations

After presenting the strengths of Nitpicker, we review
the limits of our current implementation.

Nitpicker attaches exactly one label to each view. There
are view layouts that leave orphaned areas unlabeled on
screen (Figure 9). Although the dimming technique in
X-ray mode prevents confusion about the focused view, a
shading policy as described in [12] could be deployed to
encounter such cases by blanking out orphaned areas. This
will be implemented in a future version.

Nitpicker performs graphical output via software graph-
ics routines. Making hardware-accelerated graphics usable
by Nitpicker and untrusted clients at the same time is a chal-
lenging problem and will be an object of our future work.

6 Related work

This section complements Section 3 with related work
about techniques and approaches that inspired the design of
Nitpicker.

J. Epstein addressed the problem of expressive and
unique labeling of windows for the Trusted X11 in [12].
Beside estimating different labeling techniques for mark-
ing classified information, he introduces a technique to de-
tect and blank out orphaned window areas. The dimming
of non-focused windows was inspired by Apple’s Exposé
feature in Mac OS X. J. Shapiro described the dimming
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TCB REDUCTION
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■ 1,500,000+ SLOC no longer in TCB: 
■ Linux kernel, drivers, X-Server 

■ C and GUI libraries, Thunderbird, … 

■ TCB size reduced to ~150,000 SLOC: 
■ GNU Privacy Guard, e-mail viewer 

■ Basic L4 system 

■ At least 10 times less code in TCB
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SPLITTING THE OS

■ Splitting works for applications 

■ What about the complex and useful 
infrastructure of commodity OSes? 
■ Drivers (see previous lectures) 

■ Protocol stacks (e.g., TCP/IP) 

■ File systems 

■ Starting point: Virtualized commodity OS
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SIMPLE REUSE
■ Run legacy OS in VM 

■ Reuse service: net, files, ... 

■ Legacy infrastructure isolated 
from applications 

■ But: 
■ Applications still depend on 

legacy services ... in TCB? 

■ Interfaces reused, security 
issues as well?

27
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COMPLEXITY + BUGS
■ Network and file system stacks are 

virtually essential subsystems 

■ Generally well tested 

■ Ready for production use  

■ ... but not bug free [1,2]: 
■ Linux file systems (UFS, ISO 9660, Ext3, 

SquashFS, ...): bug hunt of just 1 month 
yielded 14 exploitable flaws 

■ WiFi drivers: remotely exploitable [11]
28
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REUSE + TRUST
■ Complex protocol stacks should not be 

part of TCB (for confidentiality + integrity) 

■ Reuse untrusted infrastructure through 
Trusted Wrapper: 
■ Add security around existing APIs 
■ Cryptography 
■ Additional checks (may require copy of critical 

data, if original data cannot be trusted) 

■ General idea similar to TLS, VPN
29
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EXAMPLE 2: VPN
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CASE STUDY: SINA BOX

■ SINA box used by German „BSI“: 

■ VPN gateway 

■ Implements IPSec & PKI 

■ Intrusion detection & 
response 

■ Used for secure access to 
government networks, 
e.g., in German embassies

31

Image source: 
http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/

http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/
http://www.secunet.com/de/das-unternehmen/presse/bilddatenbank/
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SINA BOX
■ Differently trusted network interfaces: 
■ Red:  plaintext, no protection 

■ Black: encryption + authentication codes 

■ VPN Software: 
■ Based on minimized and hardened Linux 

■ Runs only from read-only storage
32
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OS COMPLEXITY

■ Linux is complex! 

■ SLOC for Linux 2.6.18: 
■ Architecture specific:   817,880 

■ x86 specific:      55,463 

■ Drivers:        2,365,256 

■ Common:       1,800,587 

■ Typical config:      ~ 2,000,000 

■ Minimized & hardened:  ~ 500,000
33

Released date: 
20 Sep 2006
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OS COMPLEXITY

■ Linux is even more complex in 2024! 

■ SLOC for Linux 6.7.1: 
■ Architecture specific:   1,729,519 

■ x86 specific:      316,544 

■ Drivers:        17,771,667 

■ fs/btrfs:        106,335 

34
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MIKRO-SINA

■ Research project „Mikro-SINA“ 

■ Goals: 
■ Reduce TCB of VPN gateway software 

■ Enable high-level evaluation for high 
assurance scenarios 

■ Ensure confidentiality and integrity of 
sensitive data within the VPN 

■ Exploit microkernel architecture

35
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IPSEC BASICS

■ Protocol suite for securing IP-
based communication 

■ Authentication header (AH) 
■ Integrity 
■ Authentication 

■ Encapsulating Security Payload 
(ESP) 
■ Confidentiality 

■ Key management / exchange
36
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L4Linux

IPSEC IN L4LINUX

■ IPSec is security critical component 

■ ... but is integrated into Linux kernel

37
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L4Linux

IPSEC „VIADUCT“
■ Idea: Isolate IPSec in „Viaduct“ 

■ IPSec packets sent/received through 
TUN/TAP device

38
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FRAGMENTATION
■ Problem: Routers can fragment IPSec 

packets on the way 

■ Let L4Linux reassemble them
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CONFIDENTIALITY
■ Untrusted L4Linux instances must not see 

both plaintext and encrypted data 

■ Dedicated L4Linux for black/red networks

40
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MIKRO-SINA

■ Result: Trusted Wrapper for VPN 

■ Small TCB (see [6] for details): 
■ 5,000 SLOC for „Viaduct“ 

■ Fine grain isolation  
■ Principle of least privilege 

■ Extensive reuse of legacy code: 
■ Drivers 

■ IP stack
41
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EXAMPLE 3: STORAGE
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How to provide secure and 
reliable storage for trusted 
applications?
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Linux Kernel 

TCB

VIRTUAL PRIVATE...
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Microkernel

App

VPFS: Confidentiality, Integrity, Availability

See [3] for details
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VPFS STACK
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Isolate applications and their private storage: configure communication 
capabilities such that each application can access its private instance of 
the secure file system exclusively

x
x
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SECURITY GOALS
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■ Confidentiality: only authorized 
applications can access file system, all 
untrusted software cannot get any 
useful information 

■ Integrity: all data and meta data is 
correct, complete, and up to date; 
otherwise report integrity error 

■ Recoverability: damaged data in 
untrusted file system can be recovered 
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POPULAR SOLUTIONS
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CFS    Cryptographic File System for UNIX 
EFS    Microsoft Encrypting File System 
ecryptfs Linux kernel support + tools 
EncFS   Based on FUSE

File-level protection

Volume-level protection

TrueCrypt, Filevault 2 
dm_crypt 
Bitlocker 
Encrypted volumes in smartphones, etc.Storage Device
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App
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DESIGN OPTIONS

■ First end of design space: 
Protect at block layer 
■ Transparent encryption of all 

data and metadata 

■ Block-level integrity ??? 

■ Most parts of file system stack 
are part of TCB 

■ Attack surface still big

47
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DESIGN OPTIONS
■ Second end of design space: 

Protect individual files 
■ Stacked file system 

■ Encrypt all data and some 
metadata (directories, ...) 

■ More flexibility for integrity 

■ Most parts of file system stack 
not part of TCB 

■ Ideal for trusted wrapper
48
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TRUSTED WRAPPER

49

File / Naming 
Abstraction

Disk Driver

Block Layer

File System

Buffer Cache

Persistency + 
AES / SHA-1

Buffer Cache

VFS

VPFS Helper

Critical 
App

Trusted (TCB) Untrusted

open, read, 
write, mmap, 

readdir, ...

alloc/free blocks, 
B+-trees, redundancy, 

consistency, ...

read/write blocks, 
partition tables, ...

SATA, command 
queuing, write 

barriers, power, ...

open, read, write, 
mmap, (readdir), ...



TU Dresden Security Architectures

VPFS APPROACH
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■ Encrypted files in commodity file system 

■ Merkle hash tree to detect tampering
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VPFS APPROACH

■ Trusted part of VPFS enforces security: 
■ Encryption / decryption on the fly 

■ Plaintext only in trusted buffer cache  

■ Files in untrusted commodity file system 
store encrypted blocks 

■ Hash tree protects integrity of complete 
file system 

■ Single hash of root node stored securely

51
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MULTIPLE FILES
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EXTENSIVE REUSE
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■ VPFS reuses Linux file system stack: 
■ Drivers, block device layer 

■ Optimizations (buffer cache, read ahead, 
write batching, ...) 

■ Allocate / free disk storage for files 

■ Cooperation: proxy driver in L4Linux
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VPFS 
Helper

VPFS 
Core 

VPFS PROXY DRIVER
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L4Linux 
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L4Linux 
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SHM Buffer
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SHM Buffer

SHM Buffer

Dataspace

Notify Drv 
(chardev)

Wait+Signal: read+write

Shared memory + Signaling: 

• Trigger Linux Irq, then 
unblock read() on chardev 

• Call write() on chardev, 
then trigger L4 App‘s Irq

• Encrypted blocks transferred 
via shared memory

SHM buffer: mmap
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VPFS SUMMARY
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■ Trusted wrappers for file systems work! 

■ VPFS is general purpose file system 

■ Significant reduction in code size: 
■ Untrusted Linux file system stack 

comprises 50,000+ SLOC 

■ VPFS adds 4,000 to 4,600 SLOC to 
application TCB [3] 

■ jVPFS adds another 350 SLOC for secure 
journaling to protect against crashes [4]
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SUMMARY
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■ Secure reuse of untrusted legacy 
infrastructure 

■ Split apps + OS services for smaller TCB 

■ Nizza secure system architecture: 
■ Strong isolation 

■ Application-specific TCBs 

■ Legacy Reuse 

■ Trusted Wrapper
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BRIEFLY: 
HARDWARE ISOLATION
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APPLE SECURE ENCLAVE
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Source: Apple Support Documentation 
https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web

Apple devices have "Secure Enclave 
Processor (SEP)" running a 
dedicated service OS fully isolated 
from from the application 
processor hardware.

The SEP runs sepOS: 

"The Secure Enclave firmware is 
based on a version of the L4 
microkernel customized by Apple."
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SNEAK PEEK: M3
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SNEAK PEEK: M3
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SNEAK PEEK: M3
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SNEAK PEEK: M3
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