
Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

MICROKERNEL-BASED
OPERATING SYSTEMS
Dependable Operating Systems
https://tud.de/inf/os/studium/vorlesungen/mos

HORST SCHIRMEIER

based on material by
Maksym Planeta and Björn Döbel

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 2

Murphy’s Law

“If there's more than one way to do a job, and one
of those ways will result in disaster, then somebody
will do it that way.”

– Edward Murphy jr.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 3

Goal of this Lecture
● Operating systems in critical environments

– Safety
– Security
– Performance

● Focus in this lecture: Safety
Alexander Migl – Own work, CC BY-SA 4.0

NASA/CIL/Chris Meaney – Public domain

https://commons.wikimedia.org/w/index.php?curid=82017610
https://svs.gsfc.nasa.gov/12833

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 4

Agenda
● Dependability: Attributes, Threats and Means
● Software Faults

– Empirical Study: Linux
– MISRA C/C++ and Safe Languages
– Compartmentalization and Redundancy
– Software Verification

● Hardware Faults
– Coarse- and Fine-grained Redundant Multithreading

● Summary

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 5

Agenda
● Dependability: Attributes, Threats and Means
● Software Faults

– Empirical Study: Linux
– MISRA C/C++ and Safe Languages
– Compartmentalization and Redundancy
– Software Verification

● Hardware Faults
– Coarse- and Fine-grained Redundant Multithreading

● Summary

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 6

Dependability: Attributes
● Availability: readiness for correct service
● Reliability: continuity of correct service
● Safety: absence of catastrophic consequences (on the user(s) and the environment)
● Integrity: absence of improper system alterations
● Maintainability: ability to undergo modifications and repairs

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts and taxonomy of dependable and
secure computing. IEEE Transactions on Dependable and Secure Computing, 2004, 1. Jg., Nr. 1, S. 11-33.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 7

Dependability: Threats
● Chain of dependability threats: fault, error, failure

H. Schirmeier. Efficient Fault-Injection-based Assessment of Software-Implemented Hardware Fault Tolerance. Dissertation,
Technische Universität Dortmund, July 2016.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 8

Dependability: Fault Categories
● Software faults (a.k.a. bugs)

– Defects in design or implementation
– Toolchain (e.g., compiler) bugs

● Hardware faults
– transient: soft errors
– intermittent
– permanent

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 9

Dependability: Means
● Fault prevention (or fault avoidance): preemptive measures

– e.g. better shielding
● Fault tolerance: avoid service failures in the presence of faults

– add redundancy, e.g. ECC memory, variable duplication, …
● Fault removal: reduces the number and severity of faults.

– at development time (hardening system components) or runtime (replace faulty components)
● Fault forecasting: estimates the present number, the future incidence, and the

expected consequences of faults.
– e.g. using fault-injection (FI) experiments

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic concepts and taxonomy of dependable and
secure computing. IEEE Transactions on Dependable and Secure Computing, 2004, 1. Jg., Nr. 1, S. 11-33.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 10

Agenda
● Dependability: Attributes, Threats and Means
● Software Faults

– Empirical Study: Linux
– MISRA C/C++ and Safe Languages
– Compartmentalization and Redundancy
– Software Verification

● Hardware Faults
– Coarse- and Fine-grained Redundant Multithreading

● Summary

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 11

Software Faults in Operating Systems: Linux
● 2001: Chou et al.’s classic study of software faults in Linux 1.0–2.4
● Approach:

– Automated bug detection using static analysis (today: proprietary Coverity tool)

– Target: several Linux-kernel versions (1.0–2.4)
● Analysis:

– Where are the bugs?
– What bug types do exist?
– How long do they persist?
– Do bugs cluster in certain locations?

A. Chou, J. Yang, B. Chelf, S. Hallem, D. Engler. An empirical study of operating systems errors. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP), Oct. 2001, pp. 73-88.

https://www.coverity.com/

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 12

Software Faults in Operating Systems: Linux
● 2011: Revalidation by N. Palix et al.
● Approach:

– Target: newer Linux-kernel versions (2.6.0–2.6.33, 2003–2010)
● Analysis:

– Impact of 10 years of code-quality improvement efforts?

Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and Gilles Muller. Faults in Linux: Ten Years Later.
SIGPLAN Not. 46, 3 (March 2011), 305–318.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 13

Linux: Faults per Subdirectory (Chou 2001)

A. Chou, J. Yang, B. Chelf, S. Hallem, D. Engler. An empirical study of operating systems errors. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP), Oct. 2001, pp. 73-88.

Number of faults per directory in Linux

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 14

Linux: Lines of Code

Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and Gilles Muller. Faults in Linux: Ten Years Later.
SIGPLAN Not. 46, 3 (March 2011), 305–318.

Linux directory sizes (in MLOC)

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 15

Linux: Fault Rate per Subdirectory (Chou 2001)

A. Chou, J. Yang, B. Chelf, S. Hallem, D. Engler. An empirical study of operating systems errors. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP), Oct. 2001, pp. 73-88.

Per-directory rate of faults, normalized to average

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 16

Linux: Fault Rate per Subdirectory (Palix 2011)

Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and Gilles Muller. Faults in Linux: Ten Years Later.
SIGPLAN Not. 46, 3 (March 2011), 305–318.

Per-directory rate of faults, normalized to average

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 17

Linux: Bug Lifetimes (Palix 2011)

Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and Gilles Muller. Faults in Linux: Ten Years Later.
SIGPLAN Not. 46, 3 (March 2011), 305–318.

… per directory … per finding and fixing difficulty,
and impact likelihood

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 18

Means: Software Engineering
● Quality Assurance, e.g. manual testing, automated testing, fuzzing
● Continuous Integration
● Static analysis
● Using safer languages
● Guidelines, best practices, etc.

– Examples: MISRA C++, C++ Guideline Support Library

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 19

Example: MISRA C++
● Rule 0-1-7

– The value returned by a function having a non-void return type that is not an overloaded operator
shall always be used.

● Rule 3-9-3
– The underlying bit representations of floating-point values shall not be used.

● Rule 6-4-6
– The final clause of a switch statement shall be the default-clause.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 20

MISRA C++: Rule 3-4-1
● (Required) An identifier declared to be an object or type shall be defined in a block

that minimizes its visibility.

Rationale
Defining variables in the minimum block scope possible reduces the visibility of
those variables and therefore reduces the possibility that these identifiers will be
used accidentally. A corollary of this is that global objects (including singleton
function objects) shall be used in more than one function.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 21

MISRA C++: Rule 3-4-1 – Example

● Definition of j should be moved into the inner block
 → Reduce the chance to incorrectly use j later within f()

void f(int32_t k)

{

 int32_t j = k * k; // Non-compliant

 if (k > 8) {

 int32_t i = k; // Compliant

 std::cout << i << j << std::endl;

 }

}

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 22

MISRA C++: Rule 8-18-2
● The result of an assignment operator should not be used.

if ((x = y) == 0) { // Non-compliant

 // …

}

x = y;

if (y == 0) { // Compliant

 // …

}

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 23

Means: Safe(r) Programming Languages
● Garbage collection (Go)
● Memory safety (Rust)
● No unused variables (Go, Rust)
● Check error return codes (Go, Rust)
● No uninitialized memory (Go, Rust)
● …

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 24

Biscuit: A Monolithic Kernel written in Go
● High-level features: closures, channels, garbage collection
● Development effort: 28k lines in Go and 1.5k lines in assembly
● Implemented drivers: AHCI SATA disk controllers and Intel 82599-based Ethernet

controllers
● Out of 64 CVE-listed Linux kernel bugs, ≈40 would be alleviated by Go
● 5–15% slower, up to 600µs latencies for GC

Cody Cutler, M. Frans Kaashoek, and Robert T. Morris. The benefits and costs of writing a POSIX kernel in a high-level language. In:
OSDI. Oct. 2018.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 25

Tock: An Embedded OS implemented in Rust
● Compiler-enforced rules:

– Several immutable XOR one mutable reference
– No null pointers
– No reading undefined memory
– etc.

● Unsafe code is annotated
● Memory or synchronization problems are impossible in safe code
● Performance like in C or C++ code
● Some software patterns don’t work well with (safe) Rust

Amit Levy et al. ‘Multiprogramming a 64kb computer safely and efficiently.’ In: SOSP. 2017.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 26

Rust for Linux
● Linux: Historically implemented in C and assembler
● Rust for Linux project (since 2020): Add Rust as a programming language

– 2023: first driver accepted
– Since then, more drivers +

FS implementations

H. Li, L. Guo, Y. Yang, S. Wang, and M. Xu. An Empirical Study of Rust-for-Linux: The Success, Dissatisfaction, and Compromise. In
USENIX Annual Technical Conference (ATC), 2024 (pp. 425-443).

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 28

Means: Software Architecture
● Means:

– Compartmentalization
– Redundancy
– Hardening

● Address hardware faults
● Recovery:

– Rollback: return to a previous state
● Transactions
● Checkpoint/Restart

– Roll-forward: everything else
● Error correcting codes
● Triple modular redundancy + majority voting

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 29

MINIX 3: A Fault-tolerant OS

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 30

MINIX 3: Fault Tolerance
● Address Space Isolation

– Applications only access private memory
– Faults do not spread to other components

● User-level OS services
– Principle of Least Privilege
– Fine-grained control over resource access (e.g., DMA only for specific drivers)

● Small components
– Easy to replace (“micro-reboot”)

Jorrit N Herder et al. Fault isolation for device drivers. In: DSN. 2009, pp. 33–42.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 31

MINIX 3: Fault Detection
● Fault model: transient errors caused by software bugs

– Fix: Component restart
● Reincarnation server monitors components

– Program termination (crash)
– CPU exception (e.g., division by zero)
– Heartbeat messages

● Users may also indicate that something is wrong

Jorrit N Herder et al. Fault isolation for device drivers. In: DSN. 2009, pp. 33–42.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 32

MINIX 3: Repair
● Restarting a component is insufficient:

– Applications may depend on restarted component
– After restart, component state is lost

● MINIX 3: explicit mechanisms
– Reincarnation server signals applications about restart
– Applications store state at data-store server
– In any case: program interaction needed

● Restarted app: store/recover state
● User apps: recover server connection

Jorrit N Herder et al. Fault isolation for device drivers. In: DSN. 2009, pp. 33–42.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 33

L4ReAnimator: Restart on L4Re
● L4Re Applications

– Loader component: ned
– Detects application termination: parent signal
– Restart: re-execute Lua init script (or parts of it)
– Problem after restart: capabilities

● No single component knows everyone owning a capability to an object
● MINIX 3 store/recover-state signals won’t work

Dirk Vogt, Björn Döbel, and Adam Lackorzynski. Stay strong, stay safe: Enhancing reliability of a secure operating system. In:
Workshop on Isolation and Integration for Dependable Systems. 2010, pp. 1–10.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 34

L4ReAnimator: Lazy recovery
● Only the application itself can detect that a capability vanished

– Kernel raises Capability fault
● Application must re-obtain the capability:

– Execute app-specific capability fault handler
– Create new communication channel
– Restore session state

● Programming model:
– Capfault handler provided by server implementer
– Handling transparent for application developer
– Semi-transparency

Dirk Vogt, Björn Döbel, and Adam Lackorzynski. Stay strong, stay safe: Enhancing reliability of a secure operating system. In:
Workshop on Isolation and Integration for Dependable Systems. 2010, pp. 1–10.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 41

Means: Software Verification
● Combines software engineering and software architectures
● Define good and bad states
● Define axioms (e.g. initial state is good)

● Prove bad states (e.g. null-pointer dereference) are unreachable
● Special theorem-prover languages

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 42

seL4: Formal verification of an OS kernel
● seL4: https://sel4.systems/
● Formally verify that system adheres to specification
● Microkernel design allows to separate components easier

 → Verification process becomes easier

Gerwin Klein et al. seL4: Formal verification of an OS kernel. In: SOSP. 2009, pp. 207–220.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 43

seL4: Formal verification of an OS kernel

Gerwin Klein et al. seL4: Formal verification of an OS kernel. In: SOSP. 2009, pp. 207–220.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 44

seL4: Summary
● Assumes correctness of compiler, assembly code, and hardware
● DMA over IOMMU
● Architectures: arm, x86
● Virtualization
● Future: Verification on multicores

Gerwin Klein et al. seL4: Formal verification of an OS kernel. In: SOSP. 2009, pp. 207–220.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 45

Agenda
● Dependability: Attributes, Threats and Means
● Software Faults

– Empirical Study: Linux
– MISRA C/C++ and Safe Languages
– Compartmentalization and Redundancy
– Software Verification

● Hardware Faults
– Coarse- and Fine-grained Redundant Multithreading

● Summary

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 46

Transient Hardware Faults
● Radiation-induced soft errors

– Mainly an issue in avionics+space?
● DRAM errors in large data centers

– Google: >2% failing DRAM DIMMs per year [Schroeder2009]
– ECC insufficient [Hwang2012]

● Decreasing transistor sizes higher fault rate in CPU functional units [Dixit2011]→

[Schroeder2009] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM errors in the wild: a large-scale field study. In:
SIGMETRICS/Performance. 2009, pp. 193–204.
[Hwang2012] Andy A Hwang, Ioan A Stefanovici, and Bianca Schroeder. Cosmic rays don’t strike twice. In: ASPLOS. 2012, pp. 111–122.
[Dixit2011] Anand Dixit and Alan Wood. The impact of new technology on soft error rates. In: International Reliability Physics Symposium. 2011, 5B–4.
[Lovellette2002] Michael N. Lovellette, K. S. Wood, D. L. Wood, Jim H. Beall, Philip P. Shirvani,Namsuk Oh, and Edward J. McCluskey. Strategies for fault-
tolerant, space-based computing: Lessons learned from the ARGOS testbed. In Proceedings of the 2002 IEEE Aerospace Conference, pages 5–2109–5–
2119. IEEE Computer Society Press, 2002.

[Lovellette2002]

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 47

Romain: Transparent Replication as OS Service

Björn Döbel and Hermann Härtig. Can we put concurrency back into redundant multithreading? In: EMSOFT. 2014, pp. 1–10.
Björn Döbel, Hermann Härtig, and Michael Engel. Operating system support for redundant multithreading. In: EMSOFT. 2012, pp. 83–92.

Reliable Computing Base (RCB)

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 48

Romain: Structure

Replica Replica Replica

Resource
Manager

System-Call
Proxy=

Master

Björn Döbel and Hermann Härtig. Can we put concurrency back into redundant multithreading? In: EMSOFT. 2014, pp. 1–10.
Björn Döbel, Hermann Härtig, and Michael Engel. Operating system support for redundant multithreading. In: EMSOFT. 2012, pp. 83–92.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 52

Romain: Performance (replicated SPEC CPU 2006)

Björn Döbel. Operating System Support for Redundant Multithreading. Dissertation. TU Dresden, 2014.

Sources of overhead: System-call interception (esp. memory allocation), cache effects

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 53

Romain: Error Coverage

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 54

Romain: Error Coverage

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 55

Romain: Summary
● Faults: CPU and memory bit-flips
● Best-effort resilience
● Triple modular redundancy (TMR) with small increase in makespan
● Multithreading support with deterministic multithreading

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 56

HAFT: Hardware-Assisted Fault Tolerance
● Fault model: CPU single-event upsets (SEU)
● Instruction-level redundancy for fault detection
● Hardware transaction memory for fault recovery
● Best-effort fault tolerance
● Improve efficiency through instruction-level parallelism (ILP) and compiler

optimizations

Dmitrii Kuvaiskii et al. HAFT: hardware-assisted fault tolerance. In: Proceedings of the Eleventh European Conference on Computer Systems (EuroSys ’16).
London, United Kingdom: ACM, Apr. 18, 2016, pp. 1–17.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 57

HAFT: Hardware-Assisted Fault Tolerance

Dmitrii Kuvaiskii et al. HAFT: hardware-assisted fault tolerance. In: Proceedings of the Eleventh European Conference on Computer Systems (EuroSys ’16).
London, United Kingdom: ACM, Apr. 18, 2016, pp. 1–17.

Native DMR TMR HAFT

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 58

HAFT: Performance

Dmitrii Kuvaiskii et al. HAFT: hardware-assisted fault tolerance. In: Proceedings of the Eleventh European Conference on Computer Systems (EuroSys ’16).
London, United Kingdom: ACM, Apr. 18, 2016, pp. 1–17.

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 59

Comparison: Romain vs. HAFT

Romain HAFT
Granularity Syscall Instruction

Parallelism Thread-level Instruction-level

Runtime overhead ~10% ~100%

Resource overhead ~210% ~100%

Fault model CPU & (some) memory CPU

Implementation OS Compiler & CPU Features

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 60

Agenda
● Dependability: Attributes, Threats and Means
● Software Faults

– Empirical Study: Linux
– MISRA C/C++ and Safe Languages
– Compartmentalization and Redundancy
– Software Verification

● Hardware Faults
– Coarse- and Fine-grained Redundant Multithreading

● Summary

2025-02-04 Microkernel-based Operating Systems: 13 – Fault-Tolerant Operating Systems 61

Summary
● Dependability: robust development practices + reliability techniques

● Do not let failures propagate

● Prevent the worst-case failure mode: silent data corruptions (SDC)

● Fail fast!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

