
Maksym Planeta Björn Döbel

Operating Systems Meet Fault Tolerance
Microkernel-Based Operating Systems // Dresden (online), 16.01.2024

‘ If there is more than one possible outcome of a job or task, and one ofthose outcomes will result in disaster or an undesirable consequence, thensomebody will do it that way.’ Edward Murphy jr.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 2 of 60

Goal of the Lecture

OS in critical environments
• Safety
• Security
• Performance

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 3 of 60

Goal of the Lecture

OS in critical environments
• Safety
• Security
• Performance

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 3 of 60

Dependability1

• AvailabilityAverage fraction of time that a component has been up and running
• ReliabilityProbability that a component has been up and running continuously
• MaintainabilityTime required to repair a faulty component

1Algirdas Aviz, Jean-Claude Laprie, and Brian Randell. Fundamental Concepts ofDependability. 2001, p. 21.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 4 of 60

Textbook terminology

Dependability threats:
• Failure
• Error
• Fault

Dependability means
• Prevention
• Removal
• Forecasting
• Tolerance

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 5 of 60

Resilience

Persistence of dependability when facing changes

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 6 of 60

Dependability vs. Resilience

Technologies for ResilienceEvolvability Assesability Usability Diversity

Dep
end

abi
lity Fault Prevention ✓ ✓Fault Tolerance ✓ ✓ ✓Fault Removal ✓ ✓Fault Forecasting ✓ ✓

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 7 of 60

Dependable Operating Systems

Faults:
• Software (bugs)
• Hardware

Measures:
• Software Engineering
• Software Architectures

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 8 of 60

A Classic Study

• A. Chou et al.: An empirical study of operating system errors, SOSP 2001
• Automated software error detection (today: https://www.coverity.com)
• Target: Linux (1.0 - 2.4)

– Where are the errors?– What error types do exist?– How long do they survive?– Do bugs cluster in certain locations?

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 9 of 60

https://www.coverity.com

Revalidation of Chou’s Results

• N. Palix et al.: Faults in Linux: Ten years later, ASPLOS 2011
• 10 years of work on tools to decrease error counts - has it worked?
• Repeated Chou’s analysis until Linux 2.6.34

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 10 of 60

Linux: Lines of Code

Faults in Linux: Ten Years Later 7

1994
1995

1996
1997

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010

0

2

4

6

8
M

ill
io

n
lin

es
 o

f
co

de Other
Drivers/Staging
Arch
Drivers w/o Staging
File Systems (FS)
Net
Sound

1.0
1.2.0

2.0
2.1.0

2.2.0
2.3.0

2.4.0

2.4.1

2.5.0

2.6.0
2.6.12

2.6.28

Figure 1: Linux directory sizes (in MLOC)

be unrelated. Finally, if both of a pair of reports occur
in the changed part of the code, then their status is con-
sidered to be unknown, and the user must indicate, via
an interface based on the emacs “org” mode, whether
they represent the same fault or unrelated ones. Once
the correlation process is complete, a similar interface
is provided to allow the user to classify each group of
correlated reports as representing either a fault or a false
positive.

Once the fault reports are correlated and assessed
for false positives, we import their histories into the
database, along with the associated notes. The database
also contains information about Linux releases such as
the release date and code size, and information about
Linux files (size, number of modifications between re-
leases) and functions (starting and ending line numbers),
amounting to, in total, 1.5 GB of data. To analyze the col-
lected data, we wrote more than 1 900 lines of PL/pgSQL
and SQL queries that extract and correlate information.

Extending the results to new versions A benefit of
our experimental protocol is that it makes it quite easy
to extend the results to a new version of Linux. When
a new version of Linux is released, it is only necessary
to run the checkers on the new code, and then repeat the
correlation process. As our collected data contains infor-
mation not only about the faults that we have identified,
but also about the false positives, Herodotos automati-
cally annotates both faults and false positives left over
from previous versions as such, leaving only the new
reports to be considered by the user.

3 Evolution of Linux
To give an overview of the software we are studying,
we first consider the evolution in code size of the Linux
kernel between version 1.0, released in March 1994, and

2004 2005 2006 2007 2008 2009 2010

-20

0

20

%
 i

n
c
r
e
a
s
e

Other

Arch

Drivers with Staging

File Systems (FS)

Net

Sound

2.6.2

2.6.5

2.6.10

2.6.13
2.6.14 (ieee802.11, DCCP)

2.6.16 (OCFS2, configfs)
2.6.19 (ecryptfs, jdb2, ext4, GFS2)

2.6.19 (OSS)

2.6.21

2.6.22

2.6.23
(OSS)

2.6.27 (HAL includes)

2.6.27 (HAL includes)

2.6.29 (Btrfs, Staging)
2.6.31

ieee802.11 : new wireless infrastructure

DCCP : Datagram Congestion Control Protocol

OCFS2 : second Oracle Cluster Filesystem

JDB2 : Journaling layer for block devices

GFS2 : Global File System

Btrfs : B-tree file system

Figure 2: Linux directory size increase

version 2.6.33, released in February 2010, as shown in
Figure 1. We give the size of the development versions,
when available, as it is in these versions that new code
is added, and this added code is then maintained in the
subsequent stable versions. Code sizes are computed
using David A. Wheeler’s ’SLOCCount’ (v2.26) [27]
and include only the ANSI C code. The code sizes are
broken down by directory, highlighting the largest di-
rectories: drivers/staging, arch, drivers, fs
(file systems), net, and sound. Drivers/staging
was added in added in Linux 2.6.28 as an incubator
for new drivers that are not yet mature enough to be
used by end users. Code in drivers/staging is
not compiled as part of the default Linux configuration,
and is thus not included in standard Linux distributions.
Sound was added in Linux 2.5.5, and contains sound
drivers that were previously in the drivers directory.
The largest directory is drivers, which has made up
57% of the source code since Linux 2.6.29, excluding
drivers/staging.

For most directories, the code growth has been
roughly linear since Linux 1.0. Some exceptions are
highlighted in Figure 2, which shows the percentage
code size increase in each directory from one version to
the next. We have marked some of the larger increases
and decreases. Many of the increases involve the intro-
duction of new services, such as new file systems. In
Linux 2.6.19 and 2.6.23, old OSS drivers already sup-
ported by ALSA were removed from sound, decreasing
its code size. In Linux 2.6.27, arch was reorganized,
and received some large header files from include,
adding around 180 000 lines of C code to arch. Finally,
staging grew substantially in 2.6.29. All in all, these

RR n° 7357

in
ria

-0
05

09
25

6,
 v

er
si

on
 1

 -
11

 A
ug

 2
01

0

Figure: Linux directory sizes (in MLOC) [19]
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 11 of 60

Faults per Subdirectory (2001)analysis. It is unknown whether this set of bugs is rep-
resentative of all errors. We attempt to compensate for
this by (1) using results from a collection of checkers
that find a variety of different types of errors and (2)
comparing our results with those of manually conducted
studies (§ 8).

The second caveat is that we treat bugs equally.
This paper shows patterns in all bugs. An interesting
improvement would be to find patterns only in impor-
tant bugs. Potential future work could use more so-
phisticated ranking algorithms (as with Intrinsa [11])
or supplement static results with dynamic traces.

The third caveat is that we only check along very
narrow axes. A potential problem is that poor quality
code can masquerade as good code if it does not happen
to contain the errors for which we check. We try to
correct for this problem by examining bugs across time,
presenting distributions, and aggregating samples. One
argument against the possibility of extreme bias is that
bad programmers will be consistently bad. They are not
likely to produce perfectly error-free code on one axis
while busily adding other types of errors. The clustering
results in Section 6 provide some empirical evidence for
this intuition.

A final, related, caveat is that our checks could mis-
represent code quality because they are biased toward
low-level bookkeeping operations. Ideally they could
count the number of times an operation was eliminated,
along with how often it was done correctly (as the notes
do). The result of this low-level focus is that good code
may fare poorly under our metrics. As a concrete exam-
ple, consider several thousand lines of code structured so
that it only performs two potentially failing allocations
but misses a check on one. On the other hand, consider
another several thousand lines of code that perform the
same operation, but have 100 allocation operations that
can fail, 90 of which are checked. By our metrics, the
first code would have a 50% error rate, the second a 10%
error rate, even though the former had an arguably bet-
ter structure.

3 Where Are The Bugs?

Given the set of errors we found using the methodology
of the previous section, we want to answer the following
questions: Where are the errors? Do drivers actually
account for most of the bugs? Can we identify certain
types of functions that have higher error rates?

3.1 Drivers
Figure 3 gives a breakdown of the absolute count of
inspected bugs for Linux 2.4.1. At first glance, our in-
tuitions are confirmed: the vast majority of bugs are in
drivers. This effect is especially dramatic for the Block
and Null checkers. While not always as striking, this
trend holds across all checkers. Drivers account for over
90% of the Block, Free, and Intr bugs, and over 70%
of the Lock, Null, and Var bugs.

Since drivers account for the majority of the code
(over 70% in this release), they should also have the
most bugs. However, this effect is even more pronounced
when we correct for code size. Figure 4 does so by plot-
ting the ratio of the relative error rate for drivers versus
the rest of the kernel using the formula:

err ratedrivers/err ratenon−drivers

����

�� ������������������ ���� 	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�	

��

���� ������������ ����
���
����
���

����

�� �������
�

��

���
�

������
���
��
�

�

!" #$ %& ''
'
((
(

)�))�)
)�))�)
)�))�)
)�)

*�**�*
*�**�*
*�**�*
�+,

-�-.�. /�/0�0 1�12
3�33�33�3
4�44�44�4

556
6

778
8

9�99�9:�::�: ;�;;�;<<
0

20
40
60
80

100
120
140
160
180
200

other arch/i386 net fs drivers

N
um

be
r

of
 E

rr
or

s

Number of Errors per Directory in Linux

 Block
 Free
 Inull
 Intr

 Lock
 Null

 Range
 Var

Figure 3: This graph gives the total number of bugs for
each checker across each main sub-directory in Linux
2.4.1. We combine the kernel, mm, and ipc sub-
directories because they had very few bugs. Most errors
are in the driver directory, which is unsurprising since it
accounts for the most code. Currently we only compile
arch/i386. The Float, Param, Real, and Size checkers
are not shown.

=>=?>?

@>@A>A B>BC>C D>DD>DD>DD>D
D>D
E>EE>EE>EE>E
E>E

F>FG HHHH
H
IIII
I

J>JK>K

LM NO P>PQ>Q R>RR>RR>RR>RSSSS TTTT
TTTT
T

UUUU
UUUU
U

V>VW>W

XY Z>Z[\>\\>\]] ^>^_>_ ````
````
```

aaaa
aaaa
aaa

b>bb>bc>cc>c

d>de f>fg hi jjkk l>ll>l
l>ll>l
l>ll>l
l>ll>l
l>ll>l
l>l

mm
mm
mm
mm
mm
m

n>no>o

p>pq>q rr
rr
rr
rr
r

ss
ss
ss
ss
s

t>tt>tu>uu>u v>vv>vww x>xx>x
x>xx>x
x>x

yy
yy
y

z>zz>z{>{{>{
||}} ~>~�

�>��>��>�
��� �>��>��>��>�

���
���

�>��>��>��>�

�>��>� �� ���� ���� �>��>�
�>�
��
�

0

1

2

3

4

5

6

7

other arch/i386 net fs drivers

R
at

e

Rate of Errors compared to Other Directories

 Block
 Free
 Inull
 Intr

 Lock
 Null

 Range
 Var

Figure 4: This graph shows drivers have an error
rate up to 7 times higher than the rest of the ker-
nel. The arch/i386 directory has a high error rate for
the Null checker because we found 3 identical errors in
arch/i386, and arch/i386 has relatively few notes.

If drivers have a relative error rate (err ratedrivers)
identical to the rest of kernel, the above ratio will be
one. If they have a lower rate, the ratio will be less
than one. The actual ratio, though, is far greater than
one. For four of our checkers, the error rate in driver
code is almost three times greater than the rest of the
kernel. The Lock checker is the most extreme case: the
error rate for drivers is almost seven times higher than
the error rate for the rest of the kernel.

The only checker that has a disproportionate num-
ber of bugs in a different part of the kernel is the Null
checker. We found three identical errors in arch/i386,
and, since there were so few notes in the arch/i386 di-
rectory, the error rate was relatively high.

These graphs show that driver code is the most
buggy, both in terms of absolute number of bugs (as
we would suspect from its size) and in terms of error
rate. There are a few possible explanations for these re-
sults, two of which we list here. First, drivers in Linux
and other systems are developed by a wide range of pro-
grammers who tend to be more familiar with the device

Figure: Number of errors per directory in Linux [4]
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 12 of 60

Fault Rate per Subdirectory (2001)

analysis. It is unknown whether this set of bugs is rep-
resentative of all errors. We attempt to compensate for
this by (1) using results from a collection of checkers
that find a variety of different types of errors and (2)
comparing our results with those of manually conducted
studies (§ 8).

The second caveat is that we treat bugs equally.
This paper shows patterns in all bugs. An interesting
improvement would be to find patterns only in impor-
tant bugs. Potential future work could use more so-
phisticated ranking algorithms (as with Intrinsa [11])
or supplement static results with dynamic traces.

The third caveat is that we only check along very
narrow axes. A potential problem is that poor quality
code can masquerade as good code if it does not happen
to contain the errors for which we check. We try to
correct for this problem by examining bugs across time,
presenting distributions, and aggregating samples. One
argument against the possibility of extreme bias is that
bad programmers will be consistently bad. They are not
likely to produce perfectly error-free code on one axis
while busily adding other types of errors. The clustering
results in Section 6 provide some empirical evidence for
this intuition.

A final, related, caveat is that our checks could mis-
represent code quality because they are biased toward
low-level bookkeeping operations. Ideally they could
count the number of times an operation was eliminated,
along with how often it was done correctly (as the notes
do). The result of this low-level focus is that good code
may fare poorly under our metrics. As a concrete exam-
ple, consider several thousand lines of code structured so
that it only performs two potentially failing allocations
but misses a check on one. On the other hand, consider
another several thousand lines of code that perform the
same operation, but have 100 allocation operations that
can fail, 90 of which are checked. By our metrics, the
first code would have a 50% error rate, the second a 10%
error rate, even though the former had an arguably bet-
ter structure.

3 Where Are The Bugs?

Given the set of errors we found using the methodology
of the previous section, we want to answer the following
questions: Where are the errors? Do drivers actually
account for most of the bugs? Can we identify certain
types of functions that have higher error rates?

3.1 Drivers
Figure 3 gives a breakdown of the absolute count of
inspected bugs for Linux 2.4.1. At first glance, our in-
tuitions are confirmed: the vast majority of bugs are in
drivers. This effect is especially dramatic for the Block
and Null checkers. While not always as striking, this
trend holds across all checkers. Drivers account for over
90% of the Block, Free, and Intr bugs, and over 70%
of the Lock, Null, and Var bugs.

Since drivers account for the majority of the code
(over 70% in this release), they should also have the
most bugs. However, this effect is even more pronounced
when we correct for code size. Figure 4 does so by plot-
ting the ratio of the relative error rate for drivers versus
the rest of the kernel using the formula:

err ratedrivers/err ratenon−drivers

����

�� ������������������ ���� 	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�		�		�		�	
	�	

��

���� ������������ ����
���
����
���

����

�� �������
�

��

���
�

������
���
��
�

�

!" #$ %& ''
'
((
(

)�))�)
)�))�)
)�))�)
)�)

*�**�*
*�**�*
*�**�*
�+,

-�-.�. /�/0�0 1�12
3�33�33�3
4�44�44�4

556
6

778
8

9�99�9:�::�: ;�;;�;<<
0

20
40
60
80

100
120
140
160
180
200

other arch/i386 net fs drivers

N
um

be
r

of
 E

rr
or

s

Number of Errors per Directory in Linux

 Block
 Free
 Inull
 Intr

 Lock
 Null

 Range
 Var

Figure 3: This graph gives the total number of bugs for
each checker across each main sub-directory in Linux
2.4.1. We combine the kernel, mm, and ipc sub-
directories because they had very few bugs. Most errors
are in the driver directory, which is unsurprising since it
accounts for the most code. Currently we only compile
arch/i386. The Float, Param, Real, and Size checkers
are not shown.

=>=?>?

@>@A>A B>BC>C D>DD>DD>DD>D
D>D
E>EE>EE>EE>E
E>E

F>FG HHHH
H
IIII
I

J>JK>K

LM NO P>PQ>Q R>RR>RR>RR>RSSSS TTTT
TTTT
T

UUUU
UUUU
U

V>VW>W

XY Z>Z[\>\\>\]] ^>^_>_ ````
````
```

aaaa
aaaa
aaa

b>bb>bc>cc>c

d>de f>fg hi jjkk l>ll>l
l>ll>l
l>ll>l
l>ll>l
l>ll>l
l>l

mm
mm
mm
mm
mm
m

n>no>o

p>pq>q rr
rr
rr
rr
r

ss
ss
ss
ss
s

t>tt>tu>uu>u v>vv>vww x>xx>x
x>xx>x
x>x

yy
yy
y

z>zz>z{>{{>{
||}} ~>~�

�>��>��>�
��� �>��>��>��>�

���
���

�>��>��>��>�

�>��>� �� ���� ���� �>��>�
�>�
��
�

0

1

2

3

4

5

6

7

other arch/i386 net fs drivers

R
at

e

Rate of Errors compared to Other Directories

 Block
 Free
 Inull
 Intr

 Lock
 Null

 Range
 Var

Figure 4: This graph shows drivers have an error
rate up to 7 times higher than the rest of the ker-
nel. The arch/i386 directory has a high error rate for
the Null checker because we found 3 identical errors in
arch/i386, and arch/i386 has relatively few notes.

If drivers have a relative error rate (err ratedrivers)
identical to the rest of kernel, the above ratio will be
one. If they have a lower rate, the ratio will be less
than one. The actual ratio, though, is far greater than
one. For four of our checkers, the error rate in driver
code is almost three times greater than the rest of the
kernel. The Lock checker is the most extreme case: the
error rate for drivers is almost seven times higher than
the error rate for the rest of the kernel.

The only checker that has a disproportionate num-
ber of bugs in a different part of the kernel is the Null
checker. We found three identical errors in arch/i386,
and, since there were so few notes in the arch/i386 di-
rectory, the error rate was relatively high.

These graphs show that driver code is the most
buggy, both in terms of absolute number of bugs (as
we would suspect from its size) and in terms of error
rate. There are a few possible explanations for these re-
sults, two of which we list here. First, drivers in Linux
and other systems are developed by a wide range of pro-
grammers who tend to be more familiar with the device

Figure: Rate of errors compared to other directories [4]
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 13 of 60

Fault Rate per Subdirectory (2011)

Faults in Linux: Ten Years Later 9

Checker Chou et al. Our resultschecked unchecked
Block 206 87 71
Null 124 267 98
Var 33 69 18
Inull 69 0 N/A
IsNull N/A N/A 36
NullRef N/A N/A 221
Range 54 0 11
Lock 26 0 5
Intr 27 0 2
LockIntr N/A N/A 6
Free 17 0 21
Float 10 15 8
Size 3 0 3

Table 3: Comparative fault count

around 180, 95, and 50 faults, respectively.7 As shown
in Figure 4(a), we also observe that the largest number of
faults is in the drivers directory, with the largest num-
ber of these faults also being in Block, Null, and Inull
(IsNull and NullRef), although in different proportions.
A widely cited result of Chou et al. is that the drivers
directory contains almost 7 times as many of a certain
kind of faults (Lock) as all other directories combined.
As shown in Figure 4(b), we obtain a similar result with
a relative rate of over 8 for Lock in drivers. We fur-
thermore find that the drivers directory has a rate of
Free faults that is almost 8 times that of other directo-
ries. Chou et al. found a fault rate of only around 1.75
times that of other directories in this case. With both
approaches, however, the absolute number of Free faults
is rather small. Like Chou et al., we also observe a high
fault rate in the arch directory for the Null checker,
in both cases about 4.8 times that of other directories.
Finally, unlike Chou et al., we observe a high rate of
Var faults in both arch and other.

4.4 How are faults distributed?
Chou et al. plot numbers of faults against the percentage
of files containing each number of faults and find that
for all of the checkers except Block, the resulting curve
fits a log series distribution, with a θ value of 0.567 and
a degree of confidence (p-value) as measured by the
χ2 test of 0.79 (79%). We observe a θ value of 0.581
and a p-value of 0.81 without Block, and a θ value of
0.631 and a p-value of 0.991 including Block. The latter
degree of confidence is comparable to the highest degree
of confidence observed by Chou et al. for any of the
distributions they considered. We can thus confidently

7These numbers are approximated from the provided graphs.

Drivers Arch FS Net Other

0

50

100

150

#
 o

f
fa

u
lt

s

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Block

Null

Var

IsNull

NullRef

Range

Lock

Intr

LockIntr

Free

Float

Size

(a) Number of faults per directory and category

Drivers Arch FS Net Other

0

5

10

R
e
la

ti
v

e
 f

a
u

lt
 r

a
te

N
o
 d

at
a

N
o
 d

at
a

Z
er

o

Z
er

o
Z

er
o

Z
er

o

Z
er

o
Z

er
o

Z
er

o
Z

er
o

Z
er

o

Z
er

o

Z
er

o
Z

er
o

Z
er

o
Z

er
o

Z
er

o
Z

er
o

Z
er

o

Z
er

o

Z
er

o
Z

er
o

Z
er

o
Z

er
o

Z
er

o
Z

er
o

Block

Null

Var

IsNull

NullRef

Range

Lock

Intr

LockIntr

Free

Size

(b) Rate of faults compared to other directories

Figure 4: Faults in Linux 2.4.1

consider that our faults follow a logarithmic distribution
similar to that found by Chou et al., regardless of any
differences in the checkers.

Chou et al. also find that younger files and larger
functions have a higher fault rate, of up to 3% for the
Null checker. We also find fault rates of around 3% for
the Null checker, for files of all ages and for larger func-
tions. Overall, we find no particular difference between
younger and middle aged files, while the oldest files,
with an average age of over 5 years, have a significantly
lower fault rate. On the other hand, we find a definite
increase in fault rate as function size increases.

4.5 Assessment

In this section, we have seen that our checkers find rather
fewer faults than those of Chou et al. in Linux 2.4.1 code.
Nevertheless, the distribution of these faults among the
various directories is roughly comparable, and thus we
conclude that our checkers are sufficient to provide a
basis for comparison between Linux 2.6 and previous
versions.

5 Linux 2.6 kernels
In this section, we assess the extent to which the trends
observed for Linux 2.4.1 and previous versions continue
to apply in Linux 2.6, and study the points of difficulty
in kernel development today. We consider what has been
the impact of the increasing code size and the addition

RR n° 7357

in
ria

-0
05

09
25

6,
 v

er
si

on
 1

 -
11

 A
ug

 2
01

0 Figure: Rate of errors compared to other directories [19]

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 14 of 60

Bug Lifetimes (2011) [19]

12 Palix, Saha, Thomas, Calvès, Lawall and Muller

Staging Drivers Sound Arch FS Net Other

0

2

4

6

8

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

33.31
Block

Null

Var

IsNull

NullRef

Range

Lock

Intr

LockIntr

Free

Size

Figure 10: Fault rates compared to other directories

2004 2005 2006 2007 2008 2009 2010

1

2

A
ve

ra
ge

 f
au

lt
s

pe
r

fa
ul

ty
 f

ile

Staging
Drivers
Sound
Arch
FS
Net
Other

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

Figure 11: Faults per faulty file per directory

rate as compared to other directories for some fault kinds,
this is more common for staging, arch, and other,
indicating again that the drivers that are intended for use
in the Linux kernel are no longer the main source of
faults.

Finally, in Figure 11, we consider the number of faults
per file that contains at least one fault. The highest av-
erage number of faults per faulty file is for fs in the
versions prior to 2.6.12. In this case, there was a sin-
gle file with many NullRef faults; as many as 45 in
Linux 2.6.11. In later versions, the highest average is
for drivers/staging, for which the average was
over 2 in Linux 2.6.30. At that point, a large number
of drivers had recently been introduced in this directory.
Many of these faults have been corrected and the rate of
entry of new drivers has slowed, and thus the average
has dropped to around 1.5, close to that of other direc-
tories. Sound had a relatively high number of faults
per faulty file starting in Linux 2.6.16 with the intro-
duction of mutex lock; faulty functions often contain
more than one mutex lock, and thus a single omitted
mutex unlock may result in multiple reports.

5.3 How long do Faults Live?
Eliminating a fault in Linux code is a three step process.
First, the fault must be detected, either manually or using
a tool. Then it must be corrected, and a patch submitted
to the appropriate maintainers. Finally, the patch must

be accepted by a hierarchy of maintainers, until it is
integrated into a release by Linus Torvalds. The lifespan
of a fault is an indication of the efficiency of this process.

Fault lifespans Figure 12 presents the average lifes-
pan of faults across Linux 2.6, by directory and by fault
kind. We omit drivers/staging because it was
only introduced recently. Some faults were present be-
fore Linux 2.6.0 and some faults were still present in
Linux 2.6.33. For the average lifespan calculation, in
the former case, we assume that the fault was introduced
in Linux 2.6.0 and in the latter case, we assume that the
fault was eliminated in Linux 2.6.34.

Drivers Sound Arch FS Net Other

0

1

2

Y
e
a
r
s

(a) Per directory

0

1

2

3

Y
e
a
r
s

Find

Fix

Impact

Easy

Easy

Low

Easy

Easy

High

Easy

Hard

Low

Easy

Hard

High

Hard

Easy

High

Hard

Hard

Low

Var

IsNull

Range

Lock

Intr

LockIntr

NullRef

Float
Free

Block

Null

(b) Per finding and fixing difficulty, and impact likelihood

Figure 12: Average fault lifespans (without staging)

The average fault lifespans vary somewhat by direc-
tory. As shown in Figure 12(a), the average lifespan of
faults in the drivers directory is less than the average
lifespan of all faults, and indeed is less than the aver-
age lifespan of faults in the sound, arch, and net
directories. Sound faults now have the longest average
lifespan. Sound used to be part of drivers; it may
be that the sound drivers are no longer benefiting from
the attention that other drivers receive.

For the fault kinds, Figure 12(b) shows that the aver-
age lifespans correspond roughly to our assessment of
the difficulty of finding and fixing the faults and their
likelihood of impact (Table 1). In particular, all of the
fault kinds we have designated as having high impact,
meaning that the fault is likely to have an observable
effect if the containing function is executed, are fixed
relatively quickly. The ease of finding and fixing the
faults has little impact on their lifespan, showing that

INRIA

in
ria

-0
05

09
25

6,
 v

er
si

on
 1

 -
11

 A
ug

 2
01

0

Figure: Per directory

12 Palix, Saha, Thomas, Calvès, Lawall and Muller

Staging Drivers Sound Arch FS Net Other

0

2

4

6

8

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

Z
er
o

33.31
Block

Null

Var

IsNull

NullRef

Range

Lock

Intr

LockIntr

Free

Size

Figure 10: Fault rates compared to other directories

2004 2005 2006 2007 2008 2009 2010

1

2

A
ve

ra
ge

 f
au

lt
s

pe
r

fa
ul

ty
 f

ile

Staging
Drivers
Sound
Arch
FS
Net
Other

2.6.5 2.6.10 2.6.15 2.6.20 2.6.25 2.6.30

Figure 11: Faults per faulty file per directory

rate as compared to other directories for some fault kinds,
this is more common for staging, arch, and other,
indicating again that the drivers that are intended for use
in the Linux kernel are no longer the main source of
faults.

Finally, in Figure 11, we consider the number of faults
per file that contains at least one fault. The highest av-
erage number of faults per faulty file is for fs in the
versions prior to 2.6.12. In this case, there was a sin-
gle file with many NullRef faults; as many as 45 in
Linux 2.6.11. In later versions, the highest average is
for drivers/staging, for which the average was
over 2 in Linux 2.6.30. At that point, a large number
of drivers had recently been introduced in this directory.
Many of these faults have been corrected and the rate of
entry of new drivers has slowed, and thus the average
has dropped to around 1.5, close to that of other direc-
tories. Sound had a relatively high number of faults
per faulty file starting in Linux 2.6.16 with the intro-
duction of mutex lock; faulty functions often contain
more than one mutex lock, and thus a single omitted
mutex unlock may result in multiple reports.

5.3 How long do Faults Live?
Eliminating a fault in Linux code is a three step process.
First, the fault must be detected, either manually or using
a tool. Then it must be corrected, and a patch submitted
to the appropriate maintainers. Finally, the patch must

be accepted by a hierarchy of maintainers, until it is
integrated into a release by Linus Torvalds. The lifespan
of a fault is an indication of the efficiency of this process.

Fault lifespans Figure 12 presents the average lifes-
pan of faults across Linux 2.6, by directory and by fault
kind. We omit drivers/staging because it was
only introduced recently. Some faults were present be-
fore Linux 2.6.0 and some faults were still present in
Linux 2.6.33. For the average lifespan calculation, in
the former case, we assume that the fault was introduced
in Linux 2.6.0 and in the latter case, we assume that the
fault was eliminated in Linux 2.6.34.

Drivers Sound Arch FS Net Other

0

1

2

Y
e
a
r
s

(a) Per directory

0

1

2

3

Y
e
a
r
s

Find

Fix

Impact

Easy

Easy

Low

Easy

Easy

High

Easy

Hard

Low

Easy

Hard

High

Hard

Easy

High

Hard

Hard

Low

Var

IsNull

Range

Lock

Intr

LockIntr

NullRef

Float
Free

Block

Null

(b) Per finding and fixing difficulty, and impact likelihood

Figure 12: Average fault lifespans (without staging)

The average fault lifespans vary somewhat by direc-
tory. As shown in Figure 12(a), the average lifespan of
faults in the drivers directory is less than the average
lifespan of all faults, and indeed is less than the aver-
age lifespan of faults in the sound, arch, and net
directories. Sound faults now have the longest average
lifespan. Sound used to be part of drivers; it may
be that the sound drivers are no longer benefiting from
the attention that other drivers receive.

For the fault kinds, Figure 12(b) shows that the aver-
age lifespans correspond roughly to our assessment of
the difficulty of finding and fixing the faults and their
likelihood of impact (Table 1). In particular, all of the
fault kinds we have designated as having high impact,
meaning that the fault is likely to have an observable
effect if the containing function is executed, are fixed
relatively quickly. The ease of finding and fixing the
faults has little impact on their lifespan, showing that

INRIA

in
ria

-0
05

09
25

6,
 v

er
si

on
 1

 -
11

 A
ug

 2
01

0

Figure: Per finding and fixing difficulty,and impact likelihood

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 15 of 60

Software Engineering Measures

• QAExamples: Manual testing, automated testing, fuzzing
• Continuous Integration
• Static analysis
• Using safer languages
• Guidelines, best practices, etc.Examples: MISRA C++, C++ Guideline Support Library

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 16 of 60

Example: MISRA C++ 2008

Rule 0-1-7
The value returned by a function having a non-void return type that is not anoverloaded operator shall always be used.

Rule 3-9-3
The underlying bit representations of floating-point values shall not be used.
Rule 6-4-6
The final clause of a switch statement shall be the default-clause.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 17 of 60

Example: MISRA C++ 2008

Rule 0-1-7
The value returned by a function having a non-void return type that is not anoverloaded operator shall always be used.
Rule 3-9-3
The underlying bit representations of floating-point values shall not be used.

Rule 6-4-6
The final clause of a switch statement shall be the default-clause.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 17 of 60

Example: MISRA C++ 2008

Rule 0-1-7
The value returned by a function having a non-void return type that is not anoverloaded operator shall always be used.
Rule 3-9-3
The underlying bit representations of floating-point values shall not be used.
Rule 6-4-6
The final clause of a switch statement shall be the default-clause.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 17 of 60

Rule 3-4-1

(Required) An identifier declared to be an object or type shall be defined in ablock that minimizes its visibility.
Rationale
Defining variables in the minimum block scope possible reduces the visibilityof those variables and therefore reduces the possibility that these identifierswill be used accidentally. A corollary of this is that global objects (includingsingleton function objects) shall be used in more than one function.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 18 of 60

Rule 3-4-1: Example

void f (in t32_ t k){ in t32_ t j = k * k ; / / Non−compliant{ in t32_ t i = j ; / / Compliantstd : : cout << i << j << std : : endl ;}}
In the above example, the definition of j could be moved into the sameblock as i, reducing the possibility that j will be incorrectly used later in f.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 19 of 60

Safer languages

• Garbage collection (Go)
• Memory safety (Rust)
• No unused variables (Go, Rust)
• Check error return codes (Go, Rust)
• No uninitialised memory (Go, Rust)
• etc.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 20 of 60

Writing a kernel in a high-level language2
• Biscuit: a monolithic kernel implemented in Go

• High-level features: closures, channels, garbage collection
• Development effort: 28k lines in Go and 1.5k lines in Assembly
• Implemented drivers: AHCI SATA disk controllers and Intel 82599-basedEthernet controllers
• Out of 64 CVE-listed Linux kernel bugs, ≈ 40 would be fully or partiallyalleviated by Go
• 5% to 15% slower, up to 600µs latencies for GC

2Cody Cutler, M. Frans Kaashoek, and Robert T. Morris. ‘The benefits and costs of writing aPOSIX kernel in a high-level language.’ In: OSDI. Oct. 2018. URL:
https://www.usenix.org/conference/osdi18/presentation/cutler.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 21 of 60

https://www.usenix.org/conference/osdi18/presentation/cutler

Writing a kernel in a high-level language2
• Biscuit: a monolithic kernel implemented in Go
• High-level features: closures, channels, garbage collection

• Development effort: 28k lines in Go and 1.5k lines in Assembly
• Implemented drivers: AHCI SATA disk controllers and Intel 82599-basedEthernet controllers
• Out of 64 CVE-listed Linux kernel bugs, ≈ 40 would be fully or partiallyalleviated by Go
• 5% to 15% slower, up to 600µs latencies for GC

2Cody Cutler, M. Frans Kaashoek, and Robert T. Morris. ‘The benefits and costs of writing aPOSIX kernel in a high-level language.’ In: OSDI. Oct. 2018. URL:
https://www.usenix.org/conference/osdi18/presentation/cutler.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 21 of 60

https://www.usenix.org/conference/osdi18/presentation/cutler

Writing a kernel in a high-level language2
• Biscuit: a monolithic kernel implemented in Go
• High-level features: closures, channels, garbage collection
• Development effort: 28k lines in Go and 1.5k lines in Assembly

• Implemented drivers: AHCI SATA disk controllers and Intel 82599-basedEthernet controllers
• Out of 64 CVE-listed Linux kernel bugs, ≈ 40 would be fully or partiallyalleviated by Go
• 5% to 15% slower, up to 600µs latencies for GC

2Cody Cutler, M. Frans Kaashoek, and Robert T. Morris. ‘The benefits and costs of writing aPOSIX kernel in a high-level language.’ In: OSDI. Oct. 2018. URL:
https://www.usenix.org/conference/osdi18/presentation/cutler.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 21 of 60

https://www.usenix.org/conference/osdi18/presentation/cutler

Writing a kernel in a high-level language2
• Biscuit: a monolithic kernel implemented in Go
• High-level features: closures, channels, garbage collection
• Development effort: 28k lines in Go and 1.5k lines in Assembly
• Implemented drivers: AHCI SATA disk controllers and Intel 82599-basedEthernet controllers

• Out of 64 CVE-listed Linux kernel bugs, ≈ 40 would be fully or partiallyalleviated by Go
• 5% to 15% slower, up to 600µs latencies for GC

2Cody Cutler, M. Frans Kaashoek, and Robert T. Morris. ‘The benefits and costs of writing aPOSIX kernel in a high-level language.’ In: OSDI. Oct. 2018. URL:
https://www.usenix.org/conference/osdi18/presentation/cutler.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 21 of 60

https://www.usenix.org/conference/osdi18/presentation/cutler

Writing a kernel in a high-level language2
• Biscuit: a monolithic kernel implemented in Go
• High-level features: closures, channels, garbage collection
• Development effort: 28k lines in Go and 1.5k lines in Assembly
• Implemented drivers: AHCI SATA disk controllers and Intel 82599-basedEthernet controllers
• Out of 64 CVE-listed Linux kernel bugs, ≈ 40 would be fully or partiallyalleviated by Go

• 5% to 15% slower, up to 600µs latencies for GC

2Cody Cutler, M. Frans Kaashoek, and Robert T. Morris. ‘The benefits and costs of writing aPOSIX kernel in a high-level language.’ In: OSDI. Oct. 2018. URL:
https://www.usenix.org/conference/osdi18/presentation/cutler.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 21 of 60

https://www.usenix.org/conference/osdi18/presentation/cutler

Writing a kernel in a high-level language2
• Biscuit: a monolithic kernel implemented in Go
• High-level features: closures, channels, garbage collection
• Development effort: 28k lines in Go and 1.5k lines in Assembly
• Implemented drivers: AHCI SATA disk controllers and Intel 82599-basedEthernet controllers
• Out of 64 CVE-listed Linux kernel bugs, ≈ 40 would be fully or partiallyalleviated by Go
• 5% to 15% slower, up to 600µs latencies for GC

2Cody Cutler, M. Frans Kaashoek, and Robert T. Morris. ‘The benefits and costs of writing aPOSIX kernel in a high-level language.’ In: OSDI. Oct. 2018. URL:
https://www.usenix.org/conference/osdi18/presentation/cutler.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 21 of 60

https://www.usenix.org/conference/osdi18/presentation/cutler

Writing a kernel in a safe language3
• Tock: an embedded OS implemented in Rust

• Compiler enforced rules:

– Several immutable references or one mutable one– No null pointers– No reading undefined memory– etc.

• Unsafe code is annotated
• Memory or synchronization problems are impossible in safe code
• Performance like in C or C++ code
• Some software patterns don’t work with (safe) Rust well

3Amit Levy et al. ‘Multiprogramming a 64kb computer safely and efficiently.’ In: SOSP. 2017.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 22 of 60

Writing a kernel in a safe language3
• Tock: an embedded OS implemented in Rust
• Compiler enforced rules:

– Several immutable references or one mutable one– No null pointers– No reading undefined memory– etc.
• Unsafe code is annotated
• Memory or synchronization problems are impossible in safe code
• Performance like in C or C++ code
• Some software patterns don’t work with (safe) Rust well

3Amit Levy et al. ‘Multiprogramming a 64kb computer safely and efficiently.’ In: SOSP. 2017.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 22 of 60

Writing a kernel in a safe language3
• Tock: an embedded OS implemented in Rust
• Compiler enforced rules:

– Several immutable references or one mutable one

– No null pointers– No reading undefined memory– etc.
• Unsafe code is annotated
• Memory or synchronization problems are impossible in safe code
• Performance like in C or C++ code
• Some software patterns don’t work with (safe) Rust well

3Amit Levy et al. ‘Multiprogramming a 64kb computer safely and efficiently.’ In: SOSP. 2017.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 22 of 60

Writing a kernel in a safe language3
• Tock: an embedded OS implemented in Rust
• Compiler enforced rules:

– Several immutable references or one mutable one– No null pointers

– No reading undefined memory– etc.
• Unsafe code is annotated
• Memory or synchronization problems are impossible in safe code
• Performance like in C or C++ code
• Some software patterns don’t work with (safe) Rust well

3Amit Levy et al. ‘Multiprogramming a 64kb computer safely and efficiently.’ In: SOSP. 2017.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 22 of 60

Writing a kernel in a safe language3
• Tock: an embedded OS implemented in Rust
• Compiler enforced rules:

– Several immutable references or one mutable one– No null pointers– No reading undefined memory

– etc.
• Unsafe code is annotated
• Memory or synchronization problems are impossible in safe code
• Performance like in C or C++ code
• Some software patterns don’t work with (safe) Rust well

3Amit Levy et al. ‘Multiprogramming a 64kb computer safely and efficiently.’ In: SOSP. 2017.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 22 of 60

Writing a kernel in a safe language3
• Tock: an embedded OS implemented in Rust
• Compiler enforced rules:

– Several immutable references or one mutable one– No null pointers– No reading undefined memory– etc.

• Unsafe code is annotated
• Memory or synchronization problems are impossible in safe code
• Performance like in C or C++ code
• Some software patterns don’t work with (safe) Rust well

3Amit Levy et al. ‘Multiprogramming a 64kb computer safely and efficiently.’ In: SOSP. 2017.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 22 of 60

Writing a kernel in a safe language3
• Tock: an embedded OS implemented in Rust
• Compiler enforced rules:

– Several immutable references or one mutable one– No null pointers– No reading undefined memory– etc.
• Unsafe code is annotated

• Memory or synchronization problems are impossible in safe code
• Performance like in C or C++ code
• Some software patterns don’t work with (safe) Rust well

3Amit Levy et al. ‘Multiprogramming a 64kb computer safely and efficiently.’ In: SOSP. 2017.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 22 of 60

Writing a kernel in a safe language3
• Tock: an embedded OS implemented in Rust
• Compiler enforced rules:

– Several immutable references or one mutable one– No null pointers– No reading undefined memory– etc.
• Unsafe code is annotated
• Memory or synchronization problems are impossible in safe code

• Performance like in C or C++ code
• Some software patterns don’t work with (safe) Rust well

3Amit Levy et al. ‘Multiprogramming a 64kb computer safely and efficiently.’ In: SOSP. 2017.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 22 of 60

Writing a kernel in a safe language3
• Tock: an embedded OS implemented in Rust
• Compiler enforced rules:

– Several immutable references or one mutable one– No null pointers– No reading undefined memory– etc.
• Unsafe code is annotated
• Memory or synchronization problems are impossible in safe code
• Performance like in C or C++ code

• Some software patterns don’t work with (safe) Rust well

3Amit Levy et al. ‘Multiprogramming a 64kb computer safely and efficiently.’ In: SOSP. 2017.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 22 of 60

Writing a kernel in a safe language3
• Tock: an embedded OS implemented in Rust
• Compiler enforced rules:

– Several immutable references or one mutable one– No null pointers– No reading undefined memory– etc.
• Unsafe code is annotated
• Memory or synchronization problems are impossible in safe code
• Performance like in C or C++ code
• Some software patterns don’t work with (safe) Rust well

3Amit Levy et al. ‘Multiprogramming a 64kb computer safely and efficiently.’ In: SOSP. 2017.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 22 of 60

Safe Monoculture Operating Systems

• Safe language for the safe OS
• Maintaining safety guarantees requires using the same language for thesubcomponents
• Examples: Theseus4 (Rust), RedLeaf5 (Rust), Singularity6 (C#)

4Kevin Boos et al. ‘Theseus: an Experiment in Operating System Structure and StateManagement.’ In: OSDI. 2020, pp. 1–19. ISBN: 978-1-939133-19-9. URL:
https://www.usenix.org/conference/osdi20/presentation/boos (visited on 01/24/2021).5Vikram Narayanan et al. ‘RedLeaf: Isolation and Communication in a Safe OperatingSystem.’ In: OSDI. 2020, pp. 21–39. ISBN: 978-1-939133-19-9. URL:
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram (visited on01/24/2021).6Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. ‘Singularity: Scientificcontainers for mobility of compute.’ In: PLOS ONE 12.5 (May 11, 2017), e0177459. ISSN:1932-6203. DOI: 10/f969fz.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 23 of 60

https://www.usenix.org/conference/osdi20/presentation/boos
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://doi.org/10/f969fz

Software architectures addressing faults

• Means:
– Compartmentalisation– Redundancy– Hardening

• Address hardware faults
• Recovery– Rollback: return to a previous state

– Transactions– Checkpoint/Restart– Roll-forward: everything else
– Error correcting codes– Triple modular redundancy +majority voting

Figure: Ship building

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 24 of 60

Software architectures addressing faults

• Means:
– Compartmentalisation– Redundancy– Hardening

• Address hardware faults

• Recovery– Rollback: return to a previous state
– Transactions– Checkpoint/Restart– Roll-forward: everything else
– Error correcting codes– Triple modular redundancy +majority voting

Figure: Ship building

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 24 of 60

Software architectures addressing faults

• Means:
– Compartmentalisation– Redundancy– Hardening

• Address hardware faults
• Recovery– Rollback: return to a previous state

– Transactions– Checkpoint/Restart– Roll-forward: everything else
– Error correcting codes– Triple modular redundancy +majority voting Figure: Ship building

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 24 of 60

Minix3: A Fault-tolerant OS

Use
rpr

oce
sse

s User Processes
Server Processes
Device Processes Disk TTY Net Printer Other

File PM Reinc ... Other
Shell Make User ... Other

Ker
nel Kernel Clock Task System Task

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 25 of 60

Minix3: Fault Tolerance7

• Address Space Isolation
– Applications only access private memory– Faults do not spread to other components

• User-level OS services
– Principle of Least Privilege– Fine-grain control over resource access

– e.g., DMA only for specific drivers
• Small components

– Easy to replace (micro-reboot)

7Jorrit N Herder et al. ‘Fault isolation for device drivers.’ In: DSN. 2009, pp. 33–42.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 26 of 60

Minix3: Fault Detection

• Fault model: transient errors caused by software bugs
• Fix: Component restart
• Reincarnation servermonitors components

– Program termination (crash)– CPU exception (div by 0)– Heartbeat messages
• Users may also indicate that something is wrong

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 27 of 60

Repair

• Restarting a component is insufficient:
– Applications may depend on restarted component– After restart, component state is lost

• Minix3: explicit mechanisms
– Reincarnation server signals applications about restart– Applications store state at data store server– In any case: program interaction needed

– Restarted app: store/recover state– User apps: recover server connection

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 28 of 60

L4ReAnimator: Restart on L4Re8

• L4Re Applications
– Loader component: ned– Detects application termination: parent signal– Restart: re-execute Lua init script (or parts of it)
– Problem after restart: capabilities

– No single component knows everyone owning a capability to an object– Minix3 signals won’t work

8Dirk Vogt, Björn Döbel, and Adam Lackorzynski. ‘Stay strong, stay safe: Enhancingreliability of a secure operating system.’ In: Workshop on Isolation and Integration forDependable Systems. 2010, pp. 1–10.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 29 of 60

L4ReAnimator: Lazy recovery

• Only the application itself can detect that a capability vanished
• Kernel raises Capability fault
• Application needs to re-obtain the capability: execute capability faulthandler
• Capfault handler: application-specific

– Create new communication channel– Restore session state
• Programming model:

– Capfault handler provided by server implementor– Handling transparent for application developer– Semi-transparency

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 30 of 60

Distributed snapshots9

• Localized checkpoints
• Problem: Unlimited rollbacks
• Solution: Create global snapshot
• No synchronized clock
• No shared memory
• Only point-to-point messages

9K Mani Chandy and Leslie Lamport. ‘Distributed snapshots: Determining global states ofdistributed systems.’ In: ACM Transactions on Computer Systems (TOCS) 3.1 (1985), pp. 63–75.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 31 of 60

Break

• Minix3 fault tolerance
– Architectural Isolation– Explicit monitoring and notifications

• L4ReAnimator
– semi-transparent restart in a capability-based system

• Next: CuriOS
– smart session state handling

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 32 of 60

CuriOS: Servers and Sessions10
• State recovery is tricky– Minix3: Data Store for application data– But: applications interact

– Servers store session-specific state– Server restart requires potential rollback for every participant

ServerState

Client AState

Client BStateServer

Client A

Client B
10Francis M David et al. ‘CuriOS: Improving Reliability through Operating System Structure..’In: OSDI. 2008, pp. 59–72.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 33 of 60

CuriOS: Server State Regions

• CuiK kernel manages dedicated session memory: Server State Regions
• SSRs are managed by the kernel and attached to a client-serverconnection

ServerState
Server

Client A
Client State A

Client B
Client State B

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 34 of 60

CuriOS: Protecting Sessions

• SSR gets mapped only when a client actually invokes the server
• Solves another problem: failure while handling A’s request will nevercorrupt B’s session state

ServerState
Server

Client A
Client State A

Client B
Client State B

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 35 of 60

CuriOS: Protecting Sessions

• SSR gets mapped only when a client actually invokes the server
• Solves another problem: failure while handling A’s request will nevercorrupt B’s session state

ServerState
Server

Client A
Client State A

Client B
Client State B

call()

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 35 of 60

CuriOS: Protecting Sessions

• SSR gets mapped only when a client actually invokes the server
• Solves another problem: failure while handling A’s request will nevercorrupt B’s session state

ServerState
Server

Client A
Client State A

Client B
Client State B

Client A
State

call()

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 35 of 60

CuriOS: Protecting Sessions

• SSR gets mapped only when a client actually invokes the server
• Solves another problem: failure while handling A’s request will nevercorrupt B’s session state

ServerState
Server

Client A
Client State A

Client B
Client State B

reply()

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 35 of 60

CuriOS: Protecting Sessions

• SSR gets mapped only when a client actually invokes the server
• Solves another problem: failure while handling A’s request will nevercorrupt B’s session state

ServerState
Server

Client A
Client State A

Client B
Client State B

call()

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 35 of 60

CuriOS: Protecting Sessions

• SSR gets mapped only when a client actually invokes the server
• Solves another problem: failure while handling A’s request will nevercorrupt B’s session state

ServerState
Server

Client A
Client State A

Client B
Client State B

Client B
State

call()

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 35 of 60

CuriOS: Protecting Sessions

• SSR gets mapped only when a client actually invokes the server
• Solves another problem: failure while handling A’s request will nevercorrupt B’s session state

ServerState
Server

Client A
Client State A

Client B
Client State B

reply()

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 35 of 60

CuriOS: Transparent Restart

• CuriOS is a Single-Address-Space OS:
– Every application runs on the same page table (with modified access rights)

OS A A B BShared Mem
OS A A B BB Running
OS A A B BA Running
OS A A B BVirt. Memory

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 36 of 60

Transparent Restart

• Single Address Space
– Each object has unique address– Identical in all programs– Server := C++ object

• Restart
– Replace old C++ object with new one– Reuse previous memory location– References in other applications remain valid– OS blocks access during restart

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 37 of 60

Transient Hardware Faults

• Radiation-induced soft errors
– Mainly an issue in avionics+space?

• DRAM errors in large data centers
– Google study: >2% failing DRAM DIMMs per year [20]– ECC insufficient [12]

• Decreasing transistor sizes → higher rate of errors in CPU functional units [7]

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 38 of 60

Transparent Replication as OS Service [9, 8]

Application

L4 RuntimeEnvironment

L4/Fiasco.OC microkernel

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 39 of 60

Transparent Replication as OS Service [9, 8]

ReplicatedApplication

L4 RuntimeEnvironment Romain

L4/Fiasco.OC microkernel

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 39 of 60

Transparent Replication as OS Service [9, 8]

UnreplicatedApplication ReplicatedApplication

L4 RuntimeEnvironment Romain

L4/Fiasco.OC microkernel

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 39 of 60

Transparent Replication as OS Service [9, 8]

ReplicatedDriver UnreplicatedApplication ReplicatedApplication

L4 RuntimeEnvironment Romain

L4/Fiasco.OC microkernel

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 39 of 60

Transparent Replication as OS Service [9, 8]

Reliable Computing Base

ReplicatedDriver UnreplicatedApplication ReplicatedApplication

L4 RuntimeEnvironment Romain

L4/Fiasco.OC microkernel

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 39 of 60

Romain: Structure

Master

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 40 of 60

Romain: Structure

Replica Replica Replica

Master

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 40 of 60

Romain: Structure

Replica Replica Replica

Master

=

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 40 of 60

Romain: Structure

Replica Replica Replica

Master

SystemCallProxy
ResourceManager =

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 40 of 60

Replica Memory Management
Replica 1
rw ro ro

Replica 2
rw ro ro

Master

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 41 of 60

Replica Memory Management
Replica 1
rw ro ro

Replica 2
rw ro ro

Master

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 41 of 60

Replica Memory Management
Replica 1
rw ro ro

Replica 2
rw ro ro

Master

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 41 of 60

Replicating SPEC CPU 2006 [10]

perl bzip2 gamess mcf milc gromacs leslie3d namd gobmk calculix

1

1.1

1.2

1.3

1.4

1.5
1.6

N
o
rm

a
li
ze

d
R

u
n
ti

m
e

hmmer sjeng libquant h264ref tonto lbm omnet++ astar sphinx3 GEOM

1

1.1

1.2

1.3

1.4

1.5
1.6

N
o
rm

a
li
ze

d
R

u
n
ti

m
e

Single Replica Two Replicas Three Replicas

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 42 of 60

Replicating SPEC CPU 2006 [10]

perl bzip2 gamess mcf milc gromacs leslie3d namd gobmk calculix

1

1.1

1.2

1.3

1.4

1.5
1.6

N
o
rm

a
li
ze

d
R

u
n
ti

m
e Sources of overhead:

• System call interception
– Frequent memory allocation

• Cache effects

hmmer sjeng libquant h264ref tonto lbm omnet++ astar sphinx3 GEOM

1

1.1

1.2

1.3

1.4

1.5
1.6

N
o
rm

a
li
ze

d
R

u
n
ti

m
e

Single Replica Two Replicas Three Replicas

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 42 of 60

Error Coverage [10]

0 10 20 30 40 50 60 70 80 90 100

Bitcount

IPC

Dijkstra

CRC32

Ratio of Total Faults in %

No Effect Crash SDC
Timeout Recovered (Compare) Recovered (Timeout)

Error Coverage [10]

0 10 20 30 40 50 60 70 80 90 100

Bitcount

Bitcount/TMR

IPC

IPC/TMR

Dijkstra

Dijkstra/TMR

CRC32

CRC32/TMR

Ratio of Total Faults in %

No Effect Crash SDC
Timeout Recovered (Compare) Recovered (Timeout)

Romain: Summary

• Faults: CPU and memory bit-flips
• Best-effort resilience
• Tripple modular redundancy with small increase in makespan
• Multithreading support with determenistic multithreading11

11Björn Döbel and Hermann Härtig. ‘Can we put concurrency back into redundantmultithreading?’ In: EMSOFT. 2014, pp. 1–10.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 44 of 60

HAFT: Hardware-Assisted Fault Tolerance12

• CPU single-event upsets (SEU)
• Instruction-level redundancy for fault detection
• Hardware transaction memory for fault recovery
• Best-effort fault tolerance
• Improve efficiency through instruction-level parallelism (ILP) and compileroptimisations

12Dmitrii Kuvaiskii et al. ‘HAFT: hardware-assisted fault tolerance.’ In: Proceedings of theEleventh European Conference on Computer Systems. EuroSys ’16: Eleventh EuroSys Conference2016. London United Kingdom: ACM, Apr. 18, 2016, pp. 1–17. ISBN: 978-1-4503-4240-7. DOI:
10/ghvf8p.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 45 of 60

https://doi.org/10/ghvf8p

Instruction-level redundancy

(a) Native
1

2 z = add x, y
3

4

5

6

7 ret z

(b) ILR

z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, crash

ret z

DMR

(b) ILR
loop:

r1 = add r1, r2
r1’ = add r1’, r2’
r1’’ = add r1’’, r2’’
majority(r1, r1’, r1’’)
majority(r3, r3’, r3’’)
cmp r1, r3

jne loop

TMR [15]

(c) HAFT
xbegin
z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, xabort
xend
ret z

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 46 of 60

Instruction-level redundancy

(a) Native
1

2 z = add x, y
3

4

5

6

7 ret z

(b) ILR

z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, crash

ret z

DMR

(b) ILR
loop:

r1 = add r1, r2
r1’ = add r1’, r2’
r1’’ = add r1’’, r2’’
majority(r1, r1’, r1’’)
majority(r3, r3’, r3’’)
cmp r1, r3

jne loop

TMR [15]

(c) HAFT
xbegin
z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, xabort
xend
ret z

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 46 of 60

Instruction-level redundancy

(a) Native
1

2 z = add x, y
3

4

5

6

7 ret z

(b) ILR

z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, crash

ret z

DMR

(b) ILR
loop:

r1 = add r1, r2
r1’ = add r1’, r2’
r1’’ = add r1’’, r2’’
majority(r1, r1’, r1’’)
majority(r3, r3’, r3’’)
cmp r1, r3

jne loop

TMR [15]

(c) HAFT
xbegin
z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, xabort
xend
ret z

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 46 of 60

Instruction-level redundancy

(a) Native
1

2 z = add x, y
3

4

5

6

7 ret z

(b) ILR

z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, crash

ret z

DMR

(b) ILR
loop:

r1 = add r1, r2
r1’ = add r1’, r2’
r1’’ = add r1’’, r2’’
majority(r1, r1’, r1’’)
majority(r3, r3’, r3’’)
cmp r1, r3

jne loop

TMR [15]

(c) HAFT
xbegin
z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, xabort
xend
ret z

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 46 of 60

HAFT: Performance

 1

 2

 3

 4

hist
km km-ns

linreg
mmul

pca
smatch

wc wc-ns
black

canneal

dedup
ferret

scluster

swap
vips

vips-nc

x264
mean

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e
(w

.r
.t
.
n
a
ti
v
e
)

Number of threads
1 2 4 8 14

Figure 6: Performance overhead over native execution with the increasing number of threads (on a machine with 14 cores).

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 47 of 60

Romain vs. HAFT

Romain HAFT
Granularity Syscall InstructionParallelism Thread-level Instruction-levelRuntime overhead ≈ 10% ≈ 100%Resource overhead ≈ 210% ≈ 100%Faults CPU & (some) Memory CPUImplementation OS Compiler & CPU features

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 48 of 60

Software verification

• Combines software engineeringand software architectures
• Define good and bad states
• Define axioms (i.e. initial state isgood)
• Prove bad states (i.e. null pointerdereference) are anreachable
• Special theorem prover languages

a b
c e

d

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 49 of 60

Software verification

• Combines software engineeringand software architectures
• Define good and bad states
• Define axioms (i.e. initial state isgood)
• Prove bad states (i.e. null pointerdereference) are anreachable
• Special theorem prover languages

a b
c e

d

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 49 of 60

Software verification

• Combines software engineeringand software architectures
• Define good and bad states
• Define axioms (i.e. initial state isgood)
• Prove bad states (i.e. null pointerdereference) are anreachable
• Special theorem prover languages

a b
c e

d

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 49 of 60

Software verification

• Combines software engineeringand software architectures
• Define good and bad states
• Define axioms (i.e. initial state isgood)
• Prove bad states (i.e. null pointerdereference) are anreachable
• Special theorem prover languages

a b
c e

d

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 49 of 60

Software verification

• Combines software engineeringand software architectures
• Define good and bad states
• Define axioms (i.e. initial state isgood)
• Prove bad states (i.e. null pointerdereference) are anreachable
• Special theorem prover languages

a b
c e

d

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 49 of 60

Software verification

• Combines software engineeringand software architectures
• Define good and bad states
• Define axioms (i.e. initial state isgood)
• Prove bad states (i.e. null pointerdereference) are anreachable
• Special theorem prover languages

a b
c e

d

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 49 of 60

seL4: Formal verification of an OS kernel13

• seL4: https://sel4.systems/
• Formally verify that system adheres to specification
• Microkernel design allows to separate components easier
• Hence verification process is easier

13Gerwin Klein et al. ‘seL4: Formal verification of an OS kernel.’ In: SOSP. 2009, pp. 207–220.
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 50 of 60

https://sel4.systems/

Verification of a microkernel
Design Cycle

Haskell
Prototype

Design

Formal Executable Spec

High-Performance C ImplementationUser Programs

Hardware
Simulator

ProofManual
Implementation

+

Figure 1: The seL4 design process

prototype in a near-to-realistic setting, we link it
with software (derived from QEMU) that simulates
the hardware platform. Normal user-level execution
is enabled by the simulator, while traps are passed
to the kernel model which computes the result of
the trap. The prototype modifies the user-level state
of the simulator to appear as if a real kernel had
executed in privileged mode.

This arrangement provides a prototyping environ-
ment that enables low-level design evaluation from
both the user and kernel perspective, including low-
level physical and virtual memory management. It
also provides a realistic execution environment that is
binary-compatible with the real kernel. For example,
we ran a subset of the Iguana embedded OS [37] on
the simulator-Haskell combination. The alternative
of producing the executable specification directly
in the theorem prover would have meant a steep
learning curve for the design team and a much less
sophisticated tool chain for execution and simulation.

We restrict ourselves to a subset of Haskell that
can be automatically translated into the language
of the theorem prover we use. For instance, we do
not make any substantial use of laziness, make only
restricted use of type classes, and we prove that all
functions terminate. The details of this subset are
described elsewhere [19,41].

While the Haskell prototype is an executable model
and implementation of the final design, it is not the
final production kernel. We manually re-implement
the model in the C programming language for several
reasons. Firstly, the Haskell runtime is a significant
body of code (much bigger than our kernel) which
would be hard to verify for correctness. Secondly, the
Haskell runtime relies on garbage collection which is
unsuitable for real-time environments. Incidentally,
the same arguments apply to other systems based on
type-safe languages, such as SPIN [7] and Singular-
ity [23]. Additionally, using C enables optimisation of
the low-level implementation for performance. While
an automated translation from Haskell to C would
have simplified verification, we would have lost most

Abstract Specification

Executable Specification

High-Performance C Implementation

Haskell Prototype

Isabelle/HOL

Automatic Translation

Refinement Proof

Figure 2: The refinement layers in the verification of
seL4

opportunities to micro-optimise the kernel, which is
required for adequate microkernel performance.

2.3 Formal verification

The technique we use for formal verification is inter-
active, machine-assisted and machine-checked proof.
Specifically, we use the theorem prover Isabelle/HOL
[50]. Interactive theorem proving requires human
intervention and creativity to construct and guide
the proof. However, it has the advantage that it is
not constrained to specific properties or finite, feasi-
ble state spaces, unlike more automated methods of
verification such as static analysis or model checking.

The property we are proving is functional correct-
ness in the strongest sense. Formally, we are showing
refinement [18]: A refinement proof establishes a
correspondence between a high-level (abstract) and
a low-level (concrete, or refined) representation of a
system.

The correspondence established by the refinement
proof ensures that all Hoare logic properties of the
abstract model also hold for the refined model. This
means that if a security property is proved in Hoare
logic about the abstract model (not all security prop-
erties can be), refinement guarantees that the same
property holds for the kernel source code. In this
paper, we concentrate on the general functional cor-
rectness property. We have also modelled and proved
the security of seL4’s access-control system in Is-
abelle/HOL on a high level. This is described else-
where [11,21], and we have not yet connected it to
the proof presented here.

Fig. 2 shows the specification layers used in the
verification of seL4; they are related by formal proof.
Sect. 4 explains the proof and each of these layers in
detail; here we give a short summary.

The top-most layer in the picture is the abstract
specification: an operational model that is the main,
complete specification of system behaviour. The
abstract level contains enough detail to specify the
outer interface of the kernel, e.g., how system-call
arguments are encoded in binary form, and it de-

Figure: The seL4 design process [13]
OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 51 of 60

SeL4: Conclusion

• Assumes correctness of compiler, assembly code, and hardware
• DMA over IOMMU
• Architectures: arm, x86
• Virtualization
• Future: Verification on multicores

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 52 of 60

Hardening the RCB

• We need: Dedicated mechanismsto protect the RCB (HW or SW)
• We have: Full control over software
• Use FT-encoding compiler?

– Has not been done for kernel codeyet
• RAD-hardened hardware?

– Too expensive

Why not split cores into re-silient and non-resilient ones?

ResCore

NonResCore

NonResCore

NonResCore

NonResCore

NonResCore

NonResCore

NonResCore

NonResCore

NonResCore

NonResCore

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 53 of 60

Summary

• Dependability is robust development practices + reliability techniques
• Do not let failures propagate
• Silent data corruptions are the worst

• Fail fast!
• Further reading: D. Bernstein: Some thoughts on security after ten years ofqmail 1.0

Next week (in previous life): Practical exercise starts at 14:50

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 54 of 60

Summary

• Dependability is robust development practices + reliability techniques
• Do not let failures propagate
• Silent data corruptions are the worst
• Fail fast!

• Further reading: D. Bernstein: Some thoughts on security after ten years ofqmail 1.0

Next week (in previous life): Practical exercise starts at 14:50

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 54 of 60

Summary

• Dependability is robust development practices + reliability techniques
• Do not let failures propagate
• Silent data corruptions are the worst
• Fail fast!
• Further reading: D. Bernstein: Some thoughts on security after ten years ofqmail 1.0

Next week (in previous life): Practical exercise starts at 14:50

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 54 of 60

Summary

• Dependability is robust development practices + reliability techniques
• Do not let failures propagate
• Silent data corruptions are the worst
• Fail fast!
• Further reading: D. Bernstein: Some thoughts on security after ten years ofqmail 1.0

Next week (in previous life): Practical exercise starts at 14:50

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 54 of 60

Summary

• Dependability is robust development practices + reliability techniques
• Do not let failures propagate
• Silent data corruptions are the worst
• Fail fast!
• Further reading: D. Bernstein: Some thoughts on security after ten years ofqmail 1.0

Next week (in previous life): Practical exercise starts at 14:50

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 54 of 60

Bibliography I

[1] Algirdas Aviz, Jean-Claude Laprie, and Brian Randell. FundamentalConcepts of Dependability. 2001, p. 21.
[2] Kevin Boos et al. ‘Theseus: an Experiment in Operating SystemStructure and State Management.’ In: OSDI. 2020, pp. 1–19. ISBN:978-1-939133-19-9. URL:

https://www.usenix.org/conference/osdi20/presentation/boos(visited on 01/24/2021).
[3] K Mani Chandy and Leslie Lamport. ‘Distributed snapshots:Determining global states of distributed systems.’ In: ACM Transactionson Computer Systems (TOCS) 3.1 (1985), pp. 63–75.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 55 of 60

https://www.usenix.org/conference/osdi20/presentation/boos

Bibliography II

[4] Andy Chou et al. ‘An empirical study of operating systems errors.’ In:SOSP. 2001, pp. 73–88.
[5] Cody Cutler, M. Frans Kaashoek, and Robert T. Morris. ‘The benefitsand costs of writing a POSIX kernel in a high-level language.’ In: OSDI.Oct. 2018. URL:

https://www.usenix.org/conference/osdi18/presentation/cutler.
[6] Francis M David et al. ‘CuriOS: Improving Reliability through OperatingSystem Structure..’ In: OSDI. 2008, pp. 59–72.
[7] Anand Dixit and Alan Wood. ‘The impact of new technology on softerror rates.’ In: International Reliability Physics Symposium (IRPS). 2011,5B–4.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 56 of 60

https://www.usenix.org/conference/osdi18/presentation/cutler

Bibliography III

[8] Björn Döbel and Hermann Härtig. ‘Can we put concurrency back intoredundant multithreading?’ In: EMSOFT. 2014, pp. 1–10.
[9] Björn Döbel, Hermann Härtig, and Michael Engel. ‘Operating systemsupport for redundant multithreading.’ In: EMSOFT. 2012, pp. 83–92.
[10] Björn Döbel. ‘Operating System Support for RedundantMultithreading.’ Dissertation. TU Dresden, 2014.
[11] Jorrit N Herder et al. ‘Fault isolation for device drivers.’ In: DSN. 2009,pp. 33–42.
[12] Andy A Hwang, Ioan A Stefanovici, and Bianca Schroeder. ‘Cosmic raysdon’t strike twice.’ In: ASPLOS. 2012, pp. 111–122.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 57 of 60

Bibliography IV

[13] Gerwin Klein et al. ‘seL4: Formal verification of an OS kernel.’ In: SOSP.2009, pp. 207–220.
[14] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer.‘Singularity: Scientific containers for mobility of compute.’ In: PLOS ONE12.5 (May 11, 2017), e0177459. ISSN: 1932-6203. DOI: 10/f969fz.
[15] D. Kuvaiskii et al. ‘ELZAR: Triple Modular Redundancy Using Intel AVX(Practical Experience Report).’ In: 2016 46th Annual IEEE/IFIPInternational Conference on Dependable Systems and Networks (DSN).2016 46th Annual IEEE/IFIP International Conference on DependableSystems and Networks (DSN). June 2016, pp. 646–653. DOI: 10/ghvjrb.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 58 of 60

https://doi.org/10/f969fz
https://doi.org/10/ghvjrb

Bibliography V

[16] Dmitrii Kuvaiskii et al. ‘HAFT: hardware-assisted fault tolerance.’ In:Proceedings of the Eleventh European Conference on Computer Systems.EuroSys ’16: Eleventh EuroSys Conference 2016. London UnitedKingdom: ACM, Apr. 18, 2016, pp. 1–17. ISBN: 978-1-4503-4240-7. DOI:
10/ghvf8p.

[17] Amit Levy et al. ‘Multiprogramming a 64kb computer safely andefficiently.’ In: SOSP. 2017.
[18] Vikram Narayanan et al. ‘RedLeaf: Isolation and Communication in aSafe Operating System.’ In: OSDI. 2020, pp. 21–39. ISBN:978-1-939133-19-9. URL: https:

//www.usenix.org/conference/osdi20/presentation/narayanan-
vikram (visited on 01/24/2021).

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 59 of 60

https://doi.org/10/ghvf8p
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram

Bibliography VI

[19] Nicolas Palix et al. ‘Faults in Linux: Ten years later.’ In: ASPLOS. 2011,pp. 305–318.
[20] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. ‘DRAMerrors in the wild: a large-scale field study.’ In: SIGMETRICS/Performance.2009, pp. 193–204.
[21] Dirk Vogt, Björn Döbel, and Adam Lackorzynski. ‘Stay strong, stay safe:Enhancing reliability of a secure operating system.’ In: Workshop onIsolation and Integration for Dependable Systems. 2010, pp. 1–10.

OS ResilienceMaksym Planeta, Björn DöbelDresden (online), 16.01.2024 Slide 60 of 60

	Introduction
	References

