

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

TRUSTED COMPUTING

CARSTEN WEINHOLD

Today: Trusted Computing Technology

- Lecture discusses basics in context of TPMs + outlook
- More theoretical concepts also covered in lecture "Distributed Operating Systems"

Things you should have heard about:

- How to use asymmetric encryption
- Concept of digital signatures
- Collision-resistant hash functions

THIS LECTURE ...

Anonymity Service

Microkernel

TU Dresden

Microkernel-based Operating Systems – Trusted Computing

AN EXAMPLE USE CASE

Microkernel-based Operating Systems – Trusted Computing

Microkernel-based Operating Systems – Trusted Computing

Microkernel-based Operating Systems – Trusted Computing

Microkernel-based Operating Systems – Trusted Computing

SYSTEM LAYERS

AN.ON MIX

OS

Boot Loader

BIOS

Hardware

http://www.infineon.com/export/sites/default/media/press/Image/press_photo/TPM_SLB9635.jpg

TU Dresden

Microkernel-based Operating Systems – Trusted Computing

TPM

Platform Configuration Register PCR := SHA256(PCR | **X**)

Microkernel-based Operating Systems – Trusted Computing

TU Dresden

Picture for illustration purposes only. SHA256 requires TPM 2.0.

BOOTING + TPM

AN.ON MIX

OS

Boot Loader

BIOS

4490EF83

Microkernel-based Operating Systems – Trusted Computing

ATTESTATION

Remote Attestation

AN.ON

Linux Windows

Microkernel-based Operating Systems – Trusted Computing

TU Dresden

ARCHITECTURE

Microkernel-based Operating Systems – Trusted Computing

MONOLITHIC

L4/AN.ON

🗩 🦳 📅 Einstellun	gen	
Erscheinungsbild Bezahlung JAP Update Netzwerk V Anonymität InfoService Dienste	AN.ON Tor Mixminion Allgemein Kostenpflichtige Mixkaskaden Anonymitätsgrad: N/A Profit Pythagoras-Tulpe-Saturn Anonymitätsgrad: N/A Profit Apfel-Rousseau-Augenklappe Ports: N/A	
Forwarding-Server Zertifikatsstellen Debugging	✓ 100 Opossum – Nyx – Unsu ✓ 100 Amun–Pluto–Euler ✓ 100 SpeedPartner–ULD ✓ 100 Euklid–Rose–Holzbein ✓ 100 141.76.49.51:6544 ✓ 111 Auswählen Hinzufügen Ändern Löschen	
	Image: Second structure Image: Second structure Klicken Sie auf die Mix-Icons, um Informationen über die einzelnen Betreiber dieses Dienstes zu erhalten. 2. test mix 2. test mix	
	Position: 2 von 3 (Mittlerer Mix)	
	Betreiber: TU-Dresden, TUDOS/L4	
	E-Mail: boettcher@os.inf.tu-dresden.de	
	Standort: Dresden, Saxony, Deutschland	
	TPM support: detected. Software stack is in expected state.	
	Zertifikat: verifiziert, gültig (Was bedeutet das?)	
	Hilfe Auf Standardwerte zurücksetzen Abbrechen Übernehmen OK	

L4/AN.ON

,	\mathbf{e}	📅 Zertifikatsdetails
	Details	Zertifikatshierarchie Softwares
	PCR: 00	Ob 35 2b e2 28 1b a1 46 bf 33 3b b9
	PCR: 01	3a 3f 78 0f 11 a4 b4 99 69 fc aa 80 d
	PCR: 02	3a 3f 78 0f 11 a4 b4 99 69 fc aa 80 d
	PCR: 03	3a 3f 78 0f 11 a4 b4 99 69 fc aa 80 d
	PCR: 04	fa 68 bf fd e1 33 3f ad 5d 7e ff 67 30
	PCR: 05	3a 3f 78 0f 11 a4 b4 99 69 fc aa 80 d
	PCR: 06	3a 3f 78 0f 11 a4 b4 99 69 fc aa 80 d
	PCR: 07	3a 3f 78 0f 11 a4 b4 99 69 fc aa 80 d
	PCR: 08	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 09	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 10	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 11	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 12	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 13	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 14	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 15	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 16	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 17	79 3c 9f a7 5c 23 24 bb ac c0 48 ab 1
	PCR: 18	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 19	15 6b f3 58 45 c9 1d 2a de ab cd d6
	PCR: 20	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 21	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 22	00 00 00 00 00 00 00 00 00 00 00 0
	PCR: 23	00 00 00 00 00 00 00 00 00 00 00 0

L4/AN.ON

stackzustand

🗨 🦳 📅 Einstellun	igen	
Erscheinungsbild	AN.ON Tor Mixminion Allgemein	
Bezahlung JAP Update Netzwerk ▼ Anonymität ● InfoService ● Dienste ● Forwarding-Server ■ Zertifikatsstellen Debugging	Kostenpflichtige Mixkaskaden Dresden-Dresden Forseti-JAP (Test) JonDos Test Mix JonDos Test Mix CookieCooker.de cascade 127.0.0.1:6544 Ports: Pythagoras-Tulpe-Saturn Apfel-Rousseau-Augenklappe Apfel-Rousseau-Augenklappe Ramses-Lilie-Jupiter Neu laden Hinzufügen Ändern	
	Klicken Sie auf die Mix-Icons, um Informationen über Klicken Sie auf die Mix-Icons, um Informationen über die einzelnen Betreiber dieses Dienstes zu erhalten. 2. test mix	
	Position: 2 von 3 (Mittlerer Mix) Betreiber: TU-Dresden, TUDOS/L4	
	E-Mail: boettcher@os.inf.tu-dresden.de Standort: Dresden, Saxony, Deutschland	
	TPM support: no support. Unknown state of software stack.	
	Zertifikat: verifiziert, gültig (Was bedeutet das?)	
	Hilfe Auf Standardwerte zurücksetzen Abbrechen Übernehmen Ok	

L4/AN.ON

AN.ON

L4

Microkernel-based Operating Systems – Trusted Computing

L4/AN.ON

THE TRUSTED PLATFORM MODULE

TU Dresden

- TPMs are tightly integrated into platform:
 - Soldered on motherboard
 - Insecure / for experimentation only: Pluggable modules (PC, Raspberry Pi, ...)
 - Built into chipset / SoC
 - Implemented in Firmware
- Tamper resistant casing
- Widely deployed:
 - Business notebooks + desktops
 - Windows RT/8/10tablets + all Windows 11 PCs

TPN HARDWARE

- TPM is cryptographic coprocessor:
 - RSA (encryption, signatures), AES (encryption), SHA-1 (cryptographic hashes)
 - Other crypto schemes (e.g., DAA)
 - Random number generator
 - Platform Configuration Registers (PCRs)
 - Non-volatile memory
- TPMs are <u>passive</u> devices!

TPM OVERVIEW

- TPMs specified by Trusted Computing Group [2]
- Multiple implementations
- TPM specifications [3,4] cover:
 - Architecture, interfaces, security properties
 - Data formats of input / output
 - Schemes for signatures, encryption, ...
 - TPM life cycle, platform requirements

TPM SPECS

TPM & PLATFORM

- TPM identified by Endorsement Key EK:
 - Generated in manufacturing process
 - Certified by manufacturer
 - Unique among all TPMs
- Can only decrypt, serves as root of trust Creating entirely new EK possible (e.g., for use in
- corporate environments)
- Private part of EK <u>never</u> leaves TPM

TPNIDENTITY

- All keys except for EK are part of key hierarchy below Storage Root Key SRK:
 - SRK created when user "takes ownership"
 - Key types: storage, signature, identity, ...
 - Storage keys are parent keys at lower levels of hierarchy (like **SRK** does at root level)
 - Keys other than EK / SRK can leave TPM: Encrypted under parent key before exporting Parent key required for loading and decrypting

KEY HIERARCHY

Remote Attestation

Microkernel-based Operating Systems – Trusted Computing

TU Dresden

KEY HIERARCHY

- Special key type for remote attestation: Attestation Identity Key (AIKs)
 - TPM creates AIK + certificate request
 - Privacy CA checks certificate request + EK, issues certificate and encrypts under **EK**
 - TPM can decrypt certificate using EK
- AIK certificate:
 - "This AIK has been created by a valid TPM" TPM identity (EK) cannot be derived from it

BOOTING + TPM

Remote Attestation with Challenge/Response

Microkernel-based Operating Systems – Trusted Computing

TU Dresden

AIKS & QUOTES

TPM_Quote(AIK, Nonce, PCR)

Applications require secure storage TPMs can lock data to PCR values:

TPM_Seal():

- Encrypt user data under specified storage key Encrypted blob contains expected PCR values

TPM_Unseal():

- Decrypt encrypted blob using storage key Compare current and expected PCR values Release user data <u>only if</u> PCR values <u>match</u>

SEALED MENORY

Microkernel-based Operating Systems – Trusted Computing

TU Dresden

SEALED BLOBS

Only the TPM_SEALED_DATA structure is encrypted

- Sealed data is stored outside the TPM
- Vulnerable to replay attacks:
 - Multiple versions of sealed blob may exist
 - Any version can be passed to TPM
 - TPM happily decrypts, if crypto checks out
- Problem:
 - What if sealed data must be current?
 - How to prevent use of older versions?

FRESHNESS

- TPMs provide monotonic counters
- Only two operations: increment, read
- Password protected
- Prevent replay attacks:
 - Seal expected value of counter with data

 - Increment counter to invalidate old versions

After unseal, compare unsealed value with current counter

- Key functionality of TPMs:
 - Authenticated booting
 - Remote attestation
 - Sealed memory
- Problems with current TPMs:
 - No (sensible) support for virtualization
 - Can be slow (hundreds of ms / operation)
 - Linear chain of trust

TPM SUMMARY

TPMS IN NIZZA ARCHITECTURE

TU Dresden

- Use one PCR per application:
 - Application measurements independent
 - Number of PCRs is limited (usually 24 PCRs)
- Use one PCR for all applications:
 - Chain of trust / application log grows
 - All applications reported in remote attestation (raises) privacy concerns)
 - All applications checked when unsealing

NULTIPLE APPS

- Idea: per-application PCRs in software:
 - Measure only base system into TPM PCRs (microkernel, basic services, TPM driver, ...)

 - Software TPM" provides "software PCRs" for each application More flexibility with "software PCRs":
 - Chain of trust common up to base system
 - Extension of chains of trust for applications fork above base system Branches in Tree of Trust are independent

EXTENDING TPMS

SOFTWARE PCRS

- Operations on software PCRs:
 - Seal, Unseal, Quote, Extend
 - Add_child, Remove_child
- Performed using software keys (AES, RSA)
- Software keys protected with real TPM
- Link between software PCRs and real PCRs: certificate for RSA signature key

TPM MULTIPLEXED

A SECOND LOOK AT VPFS

TU Dresden

Microkernel-based Operating Systems – Trusted Computing

VPFS SECURITY

VPFS TRUST

VPFS can access secrets only, if its own vPCR and the vPCR for the app match the respective expected values.

VPFS uses sealed memory:

- Secret encryption key
- Root hash of Merkle hash tree
- Second use case is remote attestation:
 - storage can be lost
 - Secure access to backup server needed

VPFS SECURITY

Trusted backup storage required, because data in untrusted

VPFS challenges backup server: "Will you store my backups

A SECOND LOOK AT THE CHAIN OF TRUST

TU Dresden

- When you press the power button ...
 - First code to be run: BIOS boot block (stored in ROM)
 - Starts chain of trust:
 - Initialize TPM
 - Hash BIOS into TPM
 - Pass control to BIOS
- Core Root of Trust for Measurement (CRTM)

Discussed so far:

- CRTM & chain of trust
- How to make components in chain of trust smaller
- Observation: BIOS and boot loader only needed for booting
- Question: can chain of trust be shorter?

CHAIN OF TRUST

- CRTM starts chain of trust early Dynamic Root of Trust for Measurement (DRTM) starts it late:
 - Special CPU instructions (AMD: skinit, Intel: senter)
 - Put CPU in known state
 - Measure small "secure loader" into TPM
 - Start "secure loader"
- **DRTM:** Chain of trust can start anywhere

- Simple: DRTM put right below OS
- Smaller TCB:
 - Large and complex BIOS / boot loader removed
 - Small and simple **DRTM** bootstrapper added
- Open Secure Loader OSLO: 1,000 SLOC, **4KB** binary size [6]

DRTM BOOTLOADER

App App OS DRTM **Boot Loader** BIOS Hardware

- DRTM remove boot software from TCB
- Key challenges:
 - "Secure loader" must not be compromised
 - Requires careful checking of platform state
 - Secure loader must actually run in locked RAM, not in insecure device memory
- DRTM can also run <u>after</u> booting OS

DRTM CHALLENGES

BEYOND THE TRUSTED PLATFORM MODULE

TU Dresden

- Simple implementations in smartphones, etc.
 - Non-modifiable boot ROM loads OS
 - OS is signed with manufacturer key, checked by ROM-based boot loader
 - Small amount of flash integrated into SoC
 - Cryptographic co-processor: software can use (but not obtain) encryption key
- Not open: closed or secure boot instead of authenticated booting

NOBILE DEVICES

THERE'S MORE ...

- Intel TDX: 4th Gen Xeon Scalable Processors Arm Confidential Compute Architecture (CCA)
- (introduced with Armv9)
- TPM support in VMs
 - Software TPM: libtpms + SWTPM
 - SWTPM runs as process outside VM
 - SWTPM identity linked to hardware TPM

... AND EVEN MORE

TRUSTED EXECUTION ENVIRONMENTS

TU Dresden

WHAT IS A TEE?

- Computation
- Measurement
- Root of Trust
- Isolation
- Management
- Environment

Арр

TU Dresden

Microkernel-based Operating Systems – Trusted Computing

TEE CONCERNS

Compute

Isolation

TU Dresden

Microkernel-based Operating Systems – Trusted Computing

BREAKING UP TEE

Management

Measurement

Root-of-Trust

Compute

Isolation

TU Dresden

Microkernel-based Operating Systems – Trusted Computing

SPLIT TEE?

Management

Measurement

Root-of-Trust

Compute

Isolation

TU Dresden

Microkernel-based Operating Systems – Trusted Computing

SPLIT TEE?

Compute

Isolation

TU Dresden

Microkernel-based Operating Systems – Trusted Computing

MODULAR TEE?

Management

Measurement

Root-of-Trust

- [1] http://www.heise.de/security/Anonymisierungsnetz-Tor-abgephisht--/news/meldung/95770
- [2] <u>https://www.trustedcomputinggroup.org/home/</u>
- [3] <u>https://www.trustedcomputinggroup.org/specs/TPM/</u>
- [4] <u>https://www.trustedcomputinggroup.org/specs/PCClient/</u>
- [5] Carsten Weinhold and Hermann Härtig, "VPFS: Building a Virtual Private File System with a Small Trusted Computing Base", Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, 2008, Glasgow, Scotland UK
- [6] Bernhard Kauer, "OSLO: Improving the Security of Trusted Computing", Proceedings of 16th USENIX Security Symposium, 2007, Boston, MA, USA
- [7] McCune, Jonathan M., Bryan Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi Isozaki, "Flicker: An Execution Infrastructure for TCB Minimization", In Proceedings of the ACM European Conference on Computer Systems (EuroSys'08), Glasgow, Scotland, March 31 - April 4, 2008
- [8] <u>http://arm.com/products/processors/technologies/trustzone/index.php</u>
- [9] <u>http://software.intel.com/en-us/intel-isa-extensions#pid-19539-1495</u>

REFERENCES