
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Microkernel-based Operating Systems
—Introduction—

Dresden, October 15th 2024

Jan Bierbaum, Carsten Weinhold

TU Dresden, 2024-10-15 MOS — Introduction 2 / 48

Lecture Goals

• Provide deeper understanding of OS mechanisms

• Illustrate alternative design concepts

• Promote OS research at TU Dresden

• Make you all enthusiastic about OS development in
general and microkernels in particular

TU Dresden, 2024-10-15 MOS — Introduction 3 / 48

Administrativia

• Slides: https://tud.de/inf/os Studies → →

 Lectures MOS→

• Mailing list (announcement & updates):
https://os.inf.tu-dresden.de/mailman/listinfo/mos2024

• Matrix: https://matrix.to/#/#inf-os-mos:tu-dresden.de
• Schedule:

– Lecture: every Tuesday, 16:40, APB/E023
– Exercises: (roughly) bi-weekly, Tuesday, 14:50
– (mostly) hybrid via BBB
– Switch slots of lecture and exercise?

https://tud.de/inf/os
https://os.inf.tu-dresden.de/mailman/listinfo/mos2024
https://matrix.to/#/%23inf-os-mos:tu-dresden.de

TU Dresden, 2024-10-15 MOS — Introduction 4 / 48

Exercises

• Practical exercises in the computer lab
– Might happen at slightly different times
– First one on Nov 4th at 16:40

• Paper reading exercises in APB/E008
– Read a paper beforehand
– Sum it up and prepare questions/observations
– Actively participate in the discussion
– First one next week (Oct 22nd)

• Exercises may also take place online/hybrid
• Announced on website and mailing list

TU Dresden, 2024-10-15 MOS — Introduction 5 / 48

More Hands-On: Complex Lab

• Complex lab “Microkernel-based Operating
Systems” in parallel to this lecture

• Build several components of an MOS
• (roughly) bi-weekly, Tuesday, 14:50, APB E008
• Hybrid via BBB
• Mainly programming on your own
• Coordination via dedicated mailing list, check the

complex lab website

https://tu-dresden.de/ing/informatik/sya/professur-fuer-betriebssysteme/studium/praktika-seminare/komplexpraktikum-mikrokernbasierte-betriebssysteme

TU Dresden, 2024-10-15 MOS — Introduction 6 / 48

Monoliths vs. MicrokernelsMonoliths vs. Microkernels

TU Dresden, 2024-10-15 MOS — Introduction 7 / 48

Purpose of an Operating System

• Manage the available resources
– Hardware (CPU, memory, storage, network, …)
– Software (file systems, networking stack, …)

• Provide easier-to-use interface to access resources
– Unix: read/write data from/to sockets instead of fiddling with TCP/IP

packets on your own

• Perform privileged or HW-specific operations
– x86: ring 0 vs. ring 3
– Device drivers

• Provide separation and means for collaboration
– Isolate users / processes from each other
– Allow cooperation if needed (e.g., sending messages between

processes)

TU Dresden, 2024-10-15 MOS — Introduction 8 / 48

Monolithic Kernels: Linux

Linux
Kernel

Processes,
 Scheduling,

 IPC

Memory
Management,

 Page Allocation,
 Address Spaces,

 Swapping

File Systems,
 VFS,

 File System Impl.

Networking,
 Sockets,

 Protocols

Device Drivers

System-Call Interface

Hardware Access

Application Application Application Application
User mode

Kernel
mode

Hardware
CPU, Memory, PCI, Devices

TU Dresden, 2024-10-15 MOS — Introduction 9 / 48

What's the Problem with Monoliths?

• Security issues
– All components in privileged mode
– Direct access to all kernel-level data
– Module loading easy living for rootkits→

• Resilience issues
– Faulty drivers can crash the whole system
– 75% of today's OS kernels are drivers

• Software-level issues
– Complexity is hard to manage
– Custom OS for hardware with scarce resources?

TU Dresden, 2024-10-15 MOS — Introduction 10 / 48

The Microkernel Vision

• Minimal OS kernel
– Less error prone (less code fewer errors)→

– Small Trusted Computing Base
– Suitable for verification

• System services in user-level servers
– Flexible and extensible

• Protection between individual components
– More resilient: crashing component does not

(necessarily...) crash the whole system
– More secure: inter-component protection

TU Dresden, 2024-10-15 MOS — Introduction 11 / 48

The Microkernel Vision

Memory
Management,

 Page Allocation,
Swapping

File Systems,
 VFS,

 File System Impl.

Networking,
 Sockets,

 Protocols

Device Drivers

Application Application Application Application

Hardware
CPU, Memory, PCI, Devices

 Address Spaces,
 Threads,

 Scheduling, IPC

System-Call Interface

Hardware Access

Microkernel

User mode

Kernel
mode

TU Dresden, 2024-10-15 MOS — Introduction 12 / 48

What Microkernels Can Give Us…

• OS personalities

• Customisability
– Servers may be configured to suit the target

system (small embedded systems, desktop PCs,
SMP systems, …)

– Remove unnecessary servers

• Enforce reasonable system design
– Well-defined interfaces between components
– Access to components only via these interfaces
– Improved maintainability

TU Dresden, 2024-10-15 MOS — Introduction 13 / 48

Mach: A 1st-generation Microkernel

• Developed at CMU, 1985 – 1994
– Rick Rashid (former head of MS Research)
– Avie Tevanian (former Apple CTO)
– Brian Bershad (professor @ U. of Washington)
– …

• Foundation for several real systems
– Single Server Unix (BSD4.3 on Mach)
– MkLinux (OSF, Apple)
– IBM Workplace OS
– NeXT OS Mac OS X→

TU Dresden, 2024-10-15 MOS — Introduction 14 / 48

Mach: Features

• Simple, extensible communication kernel
– “Everything is a pipe.”
– Ports as secure communication channels

• Multiprocessor support
• Message passing by mapping
• Multi-server OS personality
• POSIX compatibility
• Shortcomings

– Performance
– Drivers in the kernel

TU Dresden, 2024-10-15 MOS — Introduction 15 / 48

Case Study: IBM Workplace OS

• Main goals:
– Multiple OS personalities
– Support for multiple HW architectures

ARM PPC x86 MIPS Alpha

Mach microkernel

OS base servicesFiles
Network Processes Power ...

Windows
Personality

Unix
Personality

OS/2
Personality

Win Apps Unix Apps OS/2 Apps

TU Dresden, 2024-10-15 MOS — Introduction 16 / 48

IBM Workplace OS: A Failure?

• Never finished … but almost 2 billion US-$ spent
• Causes of failure:

– Underestimated difficulties in creating OS
personalities

– Management errors: divisions forced to adopt new
system without having a system

– “Second System Effect”: too many fancy features
– Too slow

• Conclusion: Microkernel worked, but system atop
the microkernel did not

TU Dresden, 2024-10-15 MOS — Introduction 17 / 48

IBM Workplace OS: Lessons Learned

• OS personalities did not work
• Flexibility … but monolithic kernels became flexible,

too (e.g., Linux kernel modules)
• Better design … but monolithic kernels also

improved (restricted symbol access, layered
architectures)

• Maintainability … still very complex
• Performance matters a lot

TU Dresden, 2024-10-15 MOS — Introduction 18 / 48

Microkernels: Proven Advantages

• Subsystem protection / isolation
• Code size (generated using David A. Wheeler’s “SLOCCount”)

– Microkernel-based OS
• Fiasco kernel: ~34,000 LoC
• “HelloWorld” (+ boot loader + root task): ~10,000 LoC

– Linux kernel (3.0.4., x86 architecture):
• Kernel: ~2.5 million LoC
• + Drivers: ~5.4 million LoC

• Customisability
– Tailored memory management / scheduling / …

algorithms
– Adaptable to embedded / real-time / secure / … systems

https://dwheeler.com/sloccount/

TU Dresden, 2024-10-15 MOS — Introduction 19 / 48

Challenges

• We need fast and efficient kernels
– Covered in the “Microkernel Construction” lecture

in the summer term
• We need fast and efficient OS services

– Memory and resource management
– Synchronisation
– Device Drivers
– File systems
– Communication interfaces

 → Subject of this lecture

TU Dresden, 2024-10-15 MOS — Introduction 20 / 48

Who's Out There?

• Minix @ FU Amsterdam (Andrew Tanenbaum)

• Singularity @ MS Research

• EROS/CoyotOS @ Johns Hopkins University

• The L4 Microkernel Family
– Originally developed by Jochen Liedtke at IBM and GMD
– 2nd-generation microkernel
– Several kernel ABI versions

TU Dresden, 2024-10-15 MOS — Introduction 21 / 48

The L4 Family Tree

v2 x0 x2/v4

N1 N2

Fiasco

L4/x86

L4Ka::Hazelnut

Fiasco/L4v2

L4Ka::Pistachio

NICTA::
Pistachio-embedded OKL4

Fiasco/L4.Fiasco

OKL4v2

Fiasco.OCL4.Sec

University of
Karlsruhe

University of New South
Wales / NICTA / Open
Kernel Labs

TU
Dresden

seL4

L2, L3

OC

Nova

Nova

ABI Specification

Implementation

TU Dresden, 2024-10-15 MOS — Introduction 22 / 48

L4 Key Concepts

• Jochen Liedtke:
“A microkernel does no real work.”
– Kernel only provides inevitable mechanisms.
– Kernel does not enforce policies.

• But what is inevitable?
– Abstractions

• Threads
• Address spaces (tasks)

– Mechanisms
• Communication
• Resource mapping
• (Scheduling)

TU Dresden, 2024-10-15 MOS — Introduction 23 / 48

Taking a closer look at L4Taking a closer look at L4

Case study: L4/Fiasco.OC

TU Dresden, 2024-10-15 MOS — Introduction 24 / 48

L4/Fiasco.OC

• “Everything is an object”

– Task Address spaces
– Thread Activities, scheduling
– IPC Gate Communication, resource mapping
– IRQ Communication

– Factory Create other objects, enforce
 resource quotas

• One system call: invoke_object()
– Parameters passed in UTCB
– Types of parameters depend on type of object

TU Dresden, 2024-10-15 MOS — Introduction 25 / 48

L4/Fiasco.OC: Kernel Objects

• Kernel-provided objects
– Threads
– Tasks
– IRQs
– …

• Generic communication object: IPC gate
– Send message from sender to receiver
– Allows to implement new objects in user-level

applications

TU Dresden, 2024-10-15 MOS — Introduction 26 / 48

L4/Fiasco.OC: User-Level Objects

• Build everything above kernel using user-level objects
that provide a service
– Networking stack
– File system
– ...

• Kernel provides
– Object creation/management
– Object interaction: Inter-Process Communication (IPC)

Client Service 1

Service 2

call()

call() call()

TU Dresden, 2024-10-15 MOS — Introduction 27 / 48

L4/Fiasco.OC: How to Use an Object?

• To call an object, we need an address:
– Telephone number
– Postal address
– IP address
– ...

• Simple idea, isn’t it?
• ID is wrong? Kernel returns ENOTEXIST
• But not so fast! This scheme is insecure:

– Client could simply “guess” IDs brute-force
– (Non-)Existence can be used as a covert channel

Client Service 1

Kernel
call(service1.ID)

TU Dresden, 2024-10-15 MOS — Introduction 28 / 48

L4/Fiasco.OC: Capabilities

• Global object IDs are
– insecure (forgery, covert channels)
– inconvenient (programmer needs to know about

partitioning in advance)

• Solution in Fiasco.OC
– Task-local capability space as indirection
– Object capability required to invoke object
– Per-task name space

• Maps names to object capabilities
• Configured by task's creator

TU Dresden, 2024-10-15 MOS — Introduction 29 / 48

L4/Fiasco.OC: Object Capabilities

• Capability:
– Reference to an object
– Protected by the kernel

• Kernel knows all capability–object mappings
• Managed as a per-process capability table
• User processes only use indices into this table

Client Service 1

 Kernel

1
2
3
4

IPC Gate: communication
channel for “Service 1”

invoke(capability(3))

TU Dresden, 2024-10-15 MOS — Introduction 30 / 48

L4/Fiasco.OC: Communication

• Kernel object for communication: IPC gate

• Inter-process communication (IPC)
– Between threads
– Synchronous

• Sequence:
– Sender writes message into its UTCB
– Sender invokes IPC gate blocks sender until receiver →

ready (i.e., waits for message)
– Kernel copies message to receiver thread's UTCB
– Both continue, knowing that message has been

transferred/received

TU Dresden, 2024-10-15 MOS — Introduction 31 / 48

Capabilities == Local Names

Address
Space

Address
Space

Address
Space

1

3

4

1

4

1 2 3 4

TU Dresden, 2024-10-15 MOS — Introduction 32 / 48

More L4 conceptsMore L4 concepts

TU Dresden, 2024-10-15 MOS — Introduction 33 / 48

L4/Fiasco.OC: Threads
• Thread

– Unit of execution
– Implemented as kernel object

• Properties managed by the kernel
– Instruction Pointer (EIP)
– Stack (ESP)
– Registers
– User-level thread control block (UTCB)

• User-level applications need to
– allocate stack memory
– provide memory for application binary
– find entry point
– …

Code

Data

Stack

Stack

Threads

Address Space

UTCBs

TU Dresden, 2024-10-15 MOS — Introduction 34 / 48

L4/Fiasco.OC: Interrupts

• Kernel object: IRQ
• Used for hardware and software interrupts
• Provides asynchronous signaling

– invoke_object(irq_cap, WAIT)
– invoke_object(irq_cap, TRIGGER)

Kernel
User-space

device
driver

IRQ
invoke_object
(irq_cap, ...)

TU Dresden, 2024-10-15 MOS — Introduction 35 / 48

Challenge: Memory partitioning

Physical Memory

App2

0

4 GB

App1
App3

TU Dresden, 2024-10-15 MOS — Introduction 36 / 48

Solution: Virtual Memory

Physical Memory

App2

0

4 GB

App1
App3

TU Dresden, 2024-10-15 MOS — Introduction 37 / 48

L4: Recursive Address Spaces

 RAM Device
Memory

Physical Address Space

TU Dresden, 2024-10-15 MOS — Introduction 38 / 48

L4: Resource Mappings

• If a thread has access to a capability, it can map this
capability to another thread

• Mapping / not mapping of capabilities used to
implement access control

• Abstraction for mapping: flexpage
– Location and size of resource
– Receiver's rights (read-only, mappable)
– Type (memory, I/O, communication capability)

TU Dresden, 2024-10-15 MOS — Introduction 39 / 48

L4/Fiasco.OC: Object Types (Recap)

• Summary of object types
– Task
– Thread
– IPC Gate
– IRQ
– Factory

• Each task gets initial set of capabilities for some of
these objects at startup

TU Dresden, 2024-10-15 MOS — Introduction 40 / 48

What can we build with this?What can we build with this?

TU Dresden, 2024-10-15 MOS — Introduction 41 / 48

Kernel vs. Operating System

• Fiasco.OC is not a full
operating system!
– No device drivers (except

UART + timer)
– No file system / network

stack / …

• A microkernel-based OS
needs to add these services
as user-level components

L4Re = L4 Runtime
Environment Fiasco.OC

Basic Resource Manager(s)

Sigma0

Moe

Init-style task loader

Ned

User-level libraries

uClibC libstdc++

IPC Client/Server Framework

...

L4
R

e
Kernel
mode

User
mode

TU Dresden, 2024-10-15 MOS — Introduction 42 / 48

L4Linux: Linux on L4

L4 Task

Linux
Kernel

Processes,
 Scheduling,

 IPC

Memory
Management,

 Page allocation,
 Address spaces,

 Swapping

File Systems,
 VFS,

 File System Impl.

Networking,
 Sockets,

 Protocols

Device Drivers

System-Call Interface

Hardware Access

User mode

Kernel
mode

Hardware

arch-dep.

arch-dep.

arch-
indep.

Fiasco.OC

L4 Task

Application

L4 Task

Application

L4 Task

Application

L4 Task

Application

Runtime Environment (L4Re)

TU Dresden, 2024-10-15 MOS — Introduction 43 / 48

Drops: Dresden Real-Time Operating System

Kernel
Mode

User
Mode

Fiasco.OC microkernel

Resource Management Layer (L4Re)

L4Linux

Apps

SCSI
driver

Network
driver

Display
driver

RT AppsTime
service

Non-RT World RT World

TU Dresden, 2024-10-15 MOS — Introduction 44 / 48

Virtual Machines

• Isolate not only processes, but also complete operating
systems (compartments)

• “Server consolidation”

Kernel
Mode

User
Mode

Fiasco.OC microkernel

Virtualisation Layer (L4Re)

L4Linux L4Linux

Native
Linux

Apps Apps Apps

VMM

TU Dresden, 2024-10-15 MOS — Introduction 45 / 48

Genode

• Genode = C++-based OS framework developed here
in Dresden

• Goal: hierarchical system that
– supports resource partitioning
– layers security policies on top of each other

Genode::Core

Parent 1 Parent 2

Child Child Child

Child Child

https://genode.org/

TU Dresden, 2024-10-15 MOS — Introduction 46 / 48

What’s to come?What’s to come?

TU Dresden, 2024-10-15 MOS — Introduction 47 / 48

Lecture Outline

• Basic mechanisms and concepts
– Memory management
– Tasks, Threads, Synchronisation
– Communication

• Building real systems
– What are resources and how to manage them?
– How to build a secure system?
– How to build a real-time system?
– How to re-use existing code (Linux, standard

system libraries, device drivers, …)?
– How to improve robustness and safety?

TU Dresden, 2024-10-15 MOS — Introduction 48 / 48

Outlook

• Next lecture:
– No lecture next week
– In two weeks (Oct 29th): “Inter-Process

Communication (IPC)”

• First exercise:
– Next week (Oct 22nd): Per Brinch Hansen — “The

nucleus of a multiprogramming system”
– Link on the website
– Read the paper!

	Hier steht der Titel der Power Point Präsentation.
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

