
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Inter-Process Communication

Dresden, 2024-10-29

Nils Asmussen

Organization

• Next exercise is next week in APB/E065:
– Booting L4

• Reminder: consider visiting the MOS lab!
– Hacking on L4
– Pong game
– You implement memory management,

keyboard driver, and graphical console
– Subscribe to the mailing list:

https://tudos.org/mailman/listinfo/moslab2023

https://tudos.org/mailman/listinfo/moslab2023

So far...

• Microkernels as a design alternative
– Flexibility
– Security

• Case Study: Fiasco.OC
– Provides: Tasks, Threads, Communication
– Capabilities to denote kernel objects

Today

• Inter-Process Communication (IPC)
– Purpose
– Implementation
– How to find a service?
– Tool/Language support
– Security – Who speaks to whom?
– Shared memory

Why do we need to Communicate?

• IPC is a fundamental mechanism in L4:
– Exchange data
– Synchronization
– Sleep, timeout
– Hardware / software interrupts
– Grant access to resources (memory, I/O ports,

kernel objects)
– Exceptions

• Liedtke: “IPC performance is the master.”

Exploring the Design Space

• Asynchronous IPC (e.g., Mach)
– “Fire and forget”
– In-kernel message buffering
– Two problems:

• Data copied twice
• DoS attack on kernel memory (never receive

data) – can use quotas, though

• Synchronous IPC (e.g., L4)
– IPC partner blocks until other one gets ready
– Direct copy between sender and receiver

L4 IPC - Basics

• What you can send:
– Plain data
– Resource mappings

• Types
– Send
– Closed wait
– Open wait
– Call
– Reply & wait

L4 IPC – Advanced Features

• Timeouts
– 0 (non-blocking IPC)
– NEVER or specific value – block until partner

gets ready or timeout occurs
– sleep() is implemented as IPC to NIL (non-

existing) thread with timeout

• Exceptions
– Certain conditions need external interaction

• Page faults
• L4Linux system calls
• Virtualization faults (-> lectures on

virtualization)

L4 IPC Flavors

• Why is there no broadcast?

Basics Special cases for
client/server IPC

S R send

S R
receive from
(closed wait)

R
receive any
(open wait)?

cl
ie

n
t

s e
r v

e
r

• call := send + recv
from

• reply and wait :=
send + recv any

?

Break

Purpose

Implementation

Tool/Language support

Security

How to find a service?

Shared memory

IPC Building Blocks – IPC Gate

• Referenced through a capability (local name)

• Created using factory object
– Each L4Re task is assigned a factory object
– Factory creates other objects (e.g., kernel objects)
– Can enforce quotas / perform accounting / ...

• Bound to a thread (receiver)
– IPC channels are uni-directional
– Anyone with the gate capability may send, only bound

thread receives

• Add a label
– A thread may receive from multiple gates
– Label allows to identify where a message came from

IPC Building Blocks – IPC Gate Usage

• Sending:
– Sender calls send or call
– Blocks until message has been sent or reply

has been received

• Receiving:
– Receiver calls open wait.
– Waits for message on any of its gates
– Receive system call returns label of the used gate

(but not the sender's capability!)

• Replying
– Receiver doesn't have IPC Gate to sender.
– Kernel provides implicit reply capability (per-thread)

• Valid until reply sent or next wait started.

IPC Building Blocks – UTCB

• User-level Thread Control Block

• Set of “virtual” registers

• Message Registers
– System call parameters
– IPC: direct copy to receiver

• Buffer registers
– Contains flexpage descriptors

• Thread Control Registers
– Thread-private data
– Preserved, not copied

Message
Registers

Buffer
Registers

Thread Control
Registers

IPC Building Blocks – Message Tag

• Protocol:
– User-defined type of communication
– Pre-defined system protocols (Page fault, IRQ, …)

• Flags
– Special-purpose communication flags

• Items
– Number of indirect items to copy (resource mappings)

• Words
– Number of direct items to copy (plain data)

Protocol
Flags Items Words

31

15

16

12 6 0

Direct vs. indirect copy

Sender AS

Receiver AS

Sender UTCB Receiver UTCBdirect

indirect

Break

Purpose

Implementation

Tool/Language support

Security

How to find a service?

Shared memory

Client-Server RPC Broken down

Client

Marshall data
Assign Opcode
IPC call

Unmarshall error or reply

Server

IPC wait
Unmarshall Opcode
Unmarshall Data
Execute function
Marshall reply or error
IPC reply
Goto begin

Writing IPC code Manually

/* Arguments: 1 integer parameter, 1 char array with size */
int FOO_OP1_call(l4_cap_idx_t dest, int arg1, char *arg2, unsigned size) {
 int idx = 0; // index into message registers

 // opcode and first arg go into first 2 registers
 l4_utcb_mr()->mr[idx++] = OP1_opcode;
 l4_utcb_mr()->mr[idx++] = arg1;

 // tricky: memcpy buffer into registers, adapt idx according
 // to size (XXX NO BOUNDS CHECK!!!)
 memcpy(&l4_utcb_mr()->mr[idx], arg2, size);
 idx += round_up(size / sizeof(int));

 // create message tag (prototype, <idx> words, no bufs, no flags)
 l4_msgtag_t tag = l4_msg_tag(PROTO_FOO, idx, 0, 0);
 return l4_ipc_call(dest, l4_utcb(), tag, TIMEOUT_NEVER);
}

Writing IPC code Manually

• Now repeat the above steps for
– N > 20 functions with

• varying parameters
• varying argument size
• complex use of send/receive flexpages
• correct error checking
• …

• Dull and error-prone!

How About Some Automation?

• Specify the interface of server in Interface Definition
Language (IDL)

interface FOO {
 int OP1(int arg1,
 [size_is(arg2_size)] char *arg2,
 unsigned arg2_size);
};

• Use IDL Compiler to generate IPC code
– Automatic assignment of RPC opcodes
– Generated marshalling/unmarshalling code
– Built-in error handling
– Client/server stub functions to fill in

• For L4: Dice – DROPS IDL Compiler

IDL vs. Manual code

• Use of high-level language and IDL compiler
makes things easier

• Additionally:
– Type checking: generated code stubs make

sure that client sends the correct amount of
data, having proper types

– IDL compiler can optimize code
– Use IDL interfaces to generate

• Documentation
• Unit tests
• ...

Using Fancy Language Features

• C++: streams

• Overload operator<< to access the UTCB
– Copying of basic data types and arrays into

message registers
– Dedicated objects representing flexpages

copied into buffer registers
– Automatic updates of positions in buffer

• Do the reverse steps for operator>>

Fancy Language Features - Client

int Foo::op1(l4_cap_idx_t dest, int arg1,
 char *arg2, unsigned arg2_size)
{
 int res = -1;
 L4_ipc_iostream i(l4_utcb());
 i << Foo::Op1
 << arg1
 << Buffer(arg2, arg2_size);
 int err = i.call(dest);
 if (!err)
 i >> res;
 return res;
}

Fancy Language Features - Server

int Foo::dispatch(L4_ipc_iostream& str, l4_msgtag_t tag) {
 // check for invalid invocations
 if (tag.label() != PROTO_FOO)
 return -L4_ENOSYS;

 int opcode, arg1, retval;
 Buffer argbuf(MAX_BUF_SIZE);

 str >> opcode;
 switch(opcode) {
 case Foo::Op1:
 str >> arg1 >> argbuf;
 // do something clever, calculate retval
 str << retval;
 return L4_EOK;
 // .. more cases ..

 }}

Dynamic RPC Marshalling in Genode

• C++-based operating system framework

• Abstract from the underlying kernel
– Runs on Linux, Fiasco.OC, OKL4, L4::Pistacchio, Nova,

CodeZero
– IPC mechanisms differ (built-in mechanism in L4.Fiasco

vs. UDP sockets in Linux)

• Communication abstraction: IPC streams
– Use C++ templates to allow writing arbitrary (primitively

serializable!) objects to IPC message buffer
– Special values (Genode::IPC_CALL) lead to calls to

underlying system's mechanism

DynRPC Summary

• C++ compiler can heavily optimize IPC path

• No automatic (un)marshalling
– Use whatever serialization mechanism you like

• No builtin type checking
– Developer needs to care about amount, type and order of

arguments

• Orthogonal to use of IDL compiler
– Generate IPC stream code from C++ class definitions

(Prototype: Liasis IDL compiler by Stefan Kalkowski, 2008)

Break

Purpose

Implementation

Tool/Language support

Security

How to find a service?

Shared memory

IPC & Security

• Problem: How to control data flow?

• Crucial problem to solve when building real
systems

• Many proposed solutions

L4v2: Clans & Chiefs

• Tasks are owned by a chief.
• Clan := set of tasks with the same chief
• No IPC restrictions inside a clan
• Inter-clan IPC redirected through chiefs
• Performance issue

– One IPC transformed into three IPCs
– Decisions are not cached.

C
C

blue clan
green clan

Mach: Ports

• Dedicated kernel objects (global)
• Applications hold send/recv rights for ports
• Kernel checks whether task owns sufficient

rights before doing IPC

Mach kernel

client
(with
right)

server

server port

client
(w/o
right)

receive()

send()

se
nd
()

L4/Fiasco: Reference Monitors

• New abstraction: communication is allowed if certain
flexpage has been mapped to sender

• Every task gets a reference monitor assigned.

• Communication:
– IPC right mapped?

• Yes: perform IPC
• No: raise exception at reference monitor

– Reference monitor can answer exception IPC with a
mapping and thereby allow IPC

• Fine-grained control
• No per-IPC overhead, only exception in the beginning

kernel

L4.Sec, L4Re: Dedicated Kernel Objects

• Idea:
– Invoke IPC on a kernel-object (IPC gate)

-> endpoint (capability)
– Kernel object mapped to a virtual address (local

name space)
• task only knows object's local name

→ no information leaks through global names

client AS server AS

endpoint
send()

receive()

Singularity

• Singularity
– Research microkernel by MS Research
– Written in a dialect of C# (Sing#)
– Topic of a paper reading exercise

• All applications run in privileged mode.
– No system call overhead – syscalls are normal

function calls

• Enforce system safety at compile time.
– Isolation completely realized using means of the

used programming language -> Language-Based
Isolation

IPC & Language-Based Isolation

• Singularity IPC is always performed through
shared memory.

• Only certain objects can be transferred.
– Allocated from a special memory pool

-> shared heap

Task A Task B

Local
Heap

Local
HeapShared Heap

ow
ns owns

owns

IPC & Language-Based Isolation (2)

• Only one task may own objects in SH.
• IPC := transfer ownership of an object in SH.
• IPC protocols are specified by state machines

– contracts
• Contracts are verified at compile-time

Task A Task B

Local
Heap

Local
HeapShared Heap

ow
ns

owns

owns

Summary

• Mechanisms for controlling information flow

– Special IPC control mechanism (traditional L4)

– Reuse other kernel mechanism (e.g., mapping of
memory pages) for IPC control (L4.Fiasco)

– Special kernel objects for IPC (Mach, L4.Florence,
L4Re)

– Static compile-time analysis of communication
behavior (Singularity)

Break

Purpose

Implementation

Tool/Language support

Security

How to find a service?

Shared memory

How to find a service

• Need to get some kind of identification of
service provider in order to perform IPC.
– L4Re: need to get a capability mapped into my

local capability space

• Idea borrowed from the internet: translate
human-readable-names into IDs.

• Need a name service provider.

Global name service

Name service

Service
Client

1. register(“service”)

2. query(“service”)

3... use

• Race condition: Evil app can register name before real one.
• Information leak: Query name service for names and gain

information about running services → contradicts resource
separation

→ Names are a resource and must be managed!

Hierarchical naming

Parent

Client1 Service2 Client2Service1

libNS
4. query(“service”)2. query(“service”)

ns/C1/ ns/C2/3. reply 5. reply

n
s
/
S
1

n
s
/
S
2

1. register(“service)

Hierarchical naming

• Race Condition
– Parent controls name space and program

startup
– Knows who is registering a service

• Information leak
– Parent only provides name space content to

each application

• Problem: configuration can be a mess.

Break

Purpose

Implementation

Tool/Language support

Security

How to find a service?

Shared memory

Asynchronous IPC & Shared Memory

• Some applications need high throughput for a
lot of data.
– Sharing memory between tasks can provide

better performance

• Many workloads need asynchronous
communication.
– Fiasco.OC: IRQ kernel object

Shared Memory

• Zero-copy communication
– Producer writes data in place
– Consumer reads data from the same physical

location
• Kernel seldom involved

– At setup time: establish memory mapping
(flexpage IPC + resolution of pagefaults)

– Synchronization only when necessary
• Ergo: Shared mem communication is fast (if

the scenario allows it)
– High throughput, large amount of data
– Example: streaming media applications

Producer Consumer

FIFO queuegenerate data (recv
from network,
keyboard events, ...)

process data

Example: Consumer-Producer Problem

• Shared buffer between consumer and
producer

• Wake up notifications using IPC
– If new data for consumer is ready
– If free space for producer is available

1st try: Consumer sets flag

• Consumer indicates “I am ready to receive.” using
a flag (in shared memory) and waits for IPC.

• Producer sends notification IPC with infinite
timeout.

• Evil consumer: sets flag, but doesn't wait
• Producer remains blocked forever -> DoS

Producer Consumer

blocked in IPC

Flag: Consumer waits

continues with
program

2nd try: Notify with zero Timeout

• Consumer flags “I am ready.”
• Producer sends notification with timeout zero
• Consumer in bad luck: sets flag and gets

interrupted right before waiting for IPC
• Producer sends notification
• Consumer is blocked forever

sends IPC not yet waiting

Producer Consumer

Flag: Consumer waits

The Problem: Atomicity

• Solution: set flag and enter wait state atomically
• (Delayed preemption)
• L4 IPC call is atomic

 2. wakeup,
 timeout infinite

consumer in recv state1. IPC call

3. wakeup, tim
eout zero

Producer
Consumer

Synchronization Thread

Flag: Consumer waits

Further Reading

• L4 kernel manual: http://l4hq.org/docs/manuals/Ln-86-21.
pdf

• Genode Dynamic RPC Marshalling:
N. Feske: “A case study on the cost and benefit of dynamic
RPC marshalling for low-level system components”

• Singularity IPC:
Faehndrich, Aiken et al.: “Language support for fast and
reliable message-based communication in Singularity OS”

http://l4hq.org/docs/manuals/Ln-86-21.pdf
http://l4hq.org/docs/manuals/Ln-86-21.pdf

Coming soon

• Next lecture:
– Threads on November 5th, 14:50 APB/E008

• Next exercise:
– Booting L4 on November 5th, 16:40 APB/E065

• IPC exercise on December 3rd, 16:40 APB/E065

	Hier steht der Titel der Power Point Präsentation.
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

