
MICHAEL ROITZSCH

Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

THREADS

TU Dresden MOS: Threads

RECAP

2

TU Dresden MOS: Threads

MICROKERNEL
kernel:

provides system foundation
usually runs in privileged CPU mode

microkernel:
kernel provides mechanisms, no policies
most functionality implemented in user
mode, unless dictated otherwise by

security
performance

3

TU Dresden MOS: Threads

ABSTRACTIONS

4

Resource Mechanism

CPU Thread

Memory Task

Communication IPC, IRQ

Platform Virtual Machine

Rights

Capabilities

TU Dresden MOS: Threads

VIRTUAL MACHINE

provides an exclusive instance of a full
system platform

may be a synthetic platform (bytecode)

full software implementations

hardware-assisted implementations in the
kernel (hypervisor)

see virtualization lecture

5

TU Dresden MOS: Threads

IPC

inter-process communication

between threads

two-way agreement, synchronous

memory mapping with flexpages

see communication lecture

6

TU Dresden MOS: Threads

TASK
(virtual) address space

unit of memory management

provides spatial isolation

common memory content can be shared
shared libraries
kernel

see memory lecture

7

TU Dresden MOS: Threads

SHARED KERNEL

8

User

Kernel

Task 1

User

Kernel

Task 2Physical RAM

Pagetables

Pagetables

TU Dresden MOS: Threads

KERNEL AS

9

User Kernel

User Address Space Kernel Address Space

TU Dresden MOS: Threads

ALTERNATIVES

10

user shared system privileged

Monolith Exokernel Microkernel Software
Isolation

m
or

e
co

de

TU Dresden MOS: Threads

THREADS

11

TU Dresden MOS: Threads

BASICS
abstraction of code execution
unit of scheduling
provides temporal
isolation
typically requires a stack
thread state:

instruction pointer
stack pointer
CPU registers, flags

12

CPU
IP
SP

Regs

Code

Stack

TU Dresden MOS: Threads

STACK

storage for function-local data
local variables
return address

one stack frame per function

grows and shrinks
dynamically

grows from high to low addresses

13

Stack Frame 1

Stack Frame 2

Stack Frame 3

TU Dresden MOS: Threads

KERNEL’S VIEW
maps user-level threads to
kernel-level threads

often a 1:1 mapping
threads can be implemented in userland

assigns threads to hardware

one kernel-level thread per logical CPU

with hyper-threading and multicore, we
have more than one hardware context

14

TU Dresden MOS: Threads

KERNEL ENTRY

thread can enter
kernel:

voluntarily
system call

forced
interrupt
exception

CPU

IP
SP

Regs

Code

Stack

15

✖

TU Dresden MOS: Threads

KERNEL ENTRY
IP and SP point
into kernel
user CPU state
stored in TCB

old IP and SP
registers
flags
FPU state
MMX, SSE, AVX

CPU

IP
SP

Regs

16

Stack

Code

Code

Stack

✖

Regs

TU Dresden MOS: Threads

TCB
thread control block

kernel object, one per thread

stores thread’s userland state while it is
not running

untrusted parts can be stored in user space
separation into KTCB (kernel TCB) and
UTCB (user TCB)
UTCB also holds system call parameters

17

TU Dresden MOS: Threads

KERNEL EXIT
once the kernel has provided its services,
it returns back to userland

by restoring the saved user IP and SP

the same thread or a different thread

the old thread may be blocking now
waiting for some resource

returning to a different thread might
involve switching address spaces

18

TU Dresden MOS: Threads

SCHEDULING

19

TU Dresden MOS: Threads

BASICS
scheduling describes the decision, which
thread to run on a CPU at a given time

When do we schedule?
current thread blocks or yields
time quantum expired

How do we schedule?
RR, FIFO, RMS, EDF
based on thread priorities

20

TU Dresden MOS: Threads

POLICY
scheduling decisions are policies
should not be in a microkernel
L4 used to have facilities to implement
scheduling in user land

each thread has an associated preempter
kernel sends an IPC when thread blocks
preempter tells kernel where to switch to

no efficient implementation yet
scheduling is the only in-kernel policy in L4

21

TU Dresden MOS: Threads

L4

scheduling in L4 is based on thread
priorities

time-slice-based round robin within the
same priority level

kernel manages priority and timeslice as
part of the thread state

see scheduling lecture

22

TU Dresden MOS: Threads

EXAMPLE
thread 1 is a high priority driver thread,
waiting for an interrupt (blocking)

thread 2 and 3 are ready with equal
priority

23

Thread 1

Thread 2
Thread 3

Priority

TU Dresden MOS: Threads

EXAMPLE
1 hardware context

kernel fills time slices of threads 2 and 3

scheduler selects 2 to run

24

Thread 1

Thread 2
Thread 3

Priority

TU Dresden MOS: Threads

EXAMPLE
device interrupt arrives

thread 2 is forced into the kernel, where it
unblocks thread 1 and fills its time slice

switch to thread 1 preempts thread 2

25

Thread 1

Thread 2
Thread 3

Priority

TU Dresden MOS: Threads

EXAMPLE
thread 1 blocks again (interrupt handled,
waiting for next)

thread 2 has time left

26

Thread 1

Thread 2
Thread 3

Priority

TU Dresden MOS: Threads

EXAMPLE
thread 2’s time slice has expired

timer interrupt forces thread 2 into kernel

scheduler selects the next thread on the
same priority level (round robin)

27

Thread 1

Thread 2
Thread 3

Priority

TU Dresden MOS: Threads

EXAMPLE
it’s really only one hardware thread being
multiplexed

28

Thread 1

Thread 2
Thread 3

Priority

Kernel

TU Dresden MOS: Threads

SYNCHRONIZATION

29

TU Dresden MOS: Threads

BASICS

synchronization used for
mutual exclusion
producer-consumer-scenarios

traditional approaches that do not work
spinning, busy waiting
disabling interrupts

30

TU Dresden MOS: Threads

ATOMIC OPS

for concurrent access to data structures

use atomic operations to protect
manipulations

only suited for simple critical sections

31

TU Dresden MOS: Threads

EXPECTATION

32

Thread 1

Thread 2
Thread 1 in critical section

Thread 2 in critical section

TU Dresden MOS: Threads

SOLUTION

33

Thread 1

Thread 2
Thread 1 in critical section

Thread 2 in critical section

Serializer
Thread

IPC call

IPC call

IPC reply

IPC reply

TU Dresden MOS: Threads

SEMAPHORES

serializer and atomic operations can be
combined to a nice counting semaphore

semaphore
shared counter for correctness
wait queue for fairness
down (P) and up (V) operation
semaphore available iff counter > 0

34

TU Dresden MOS: Threads

SEMAPHORES
counter increments and decrements
using atomic operations
when necessary, call semaphore thread
to block/unblock and enqueue/dequeue

35

Thread 1

Thread 2

Semaphore
Thread

down

down

enqueue
and block

up

dequeue
and unblock

up

TU Dresden MOS: Threads

BENEFITS
cross-task semaphores, when counter is
in shared memory

IPC only in the contention case
good for mutual exclusion when
contention is rare
for producer-consumer-scenarios,
contention is the common case

optimisation for small critical sections in
scheduling lecture

36

TU Dresden MOS: Threads

RECAP
repeated basic microkernel concepts

paradigm, resource abstractions
closer look on threads

TCB, kernel entry
scheduling

time slices, priorities, preemption
synchronization

atomic ops, serializer thread, semaphore
next up: memory

37

