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RECAP
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MICROKERNEL
kernel: 

provides system foundation 
usually runs in privileged CPU mode 

microkernel: 
kernel provides mechanisms, no policies 
most functionality implemented in user 
mode, unless dictated otherwise by 

security 
performance
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ABSTRACTIONS
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VIRTUAL MACHINE

provides an exclusive instance of a full 
system platform 

may be a synthetic platform (bytecode) 

full software implementations 

hardware-assisted implementations in the 
kernel (hypervisor) 

see virtualization lecture
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IPC

inter-process communication 

between threads 

two-way agreement, synchronous 

memory mapping with flexpages 

see communication lecture
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TASK
(virtual) address space 

unit of memory management 

provides spatial isolation 

common memory content can be shared 
shared libraries 
kernel 

see memory lecture

7



TU Dresden MOS: Threads

SHARED KERNEL
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KERNEL AS
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User Kernel
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ALTERNATIVES
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user shared system privileged

Monolith Exokernel Microkernel Software 
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THREADS
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BASICS
abstraction of code execution 
unit of scheduling 
provides temporal 
isolation 
typically requires a stack 
thread state: 

instruction pointer 
stack pointer 
CPU registers, flags
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STACK

storage for function-local data 
local variables 
return address 

one stack frame per function 

grows and shrinks 
dynamically 

grows from high to low addresses
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KERNEL’S VIEW
maps user-level threads to 
kernel-level threads 

often a 1:1 mapping 
threads can be implemented in userland 

assigns threads to hardware 

one kernel-level thread per logical CPU 

with hyper-threading and multicore, we 
have more than one hardware context
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KERNEL ENTRY

thread can enter 
kernel: 

voluntarily 
system call 

forced 
interrupt 
exception
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KERNEL ENTRY
IP and SP point 
into kernel 
user CPU state 
stored in TCB 

old IP and SP 
registers 
flags 
FPU state 
MMX, SSE, AVX

CPU

IP
SP

Regs
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TCB
thread control block 

kernel object, one per thread 

stores thread’s userland state while it is 
not running 

untrusted parts can be stored in user space 
separation into KTCB (kernel TCB) and 
UTCB (user TCB) 
UTCB also holds system call parameters
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KERNEL EXIT
once the kernel has provided its services, 
it returns back to userland 

by restoring the saved user IP and SP 

the same thread or a different thread 

the old thread may be blocking now 
waiting for some resource 

returning to a different thread might 
involve switching address spaces
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SCHEDULING
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BASICS
scheduling describes the decision, which 
thread to run on a CPU at a given time 

When do we schedule? 
current thread blocks or yields 
time quantum expired 

How do we schedule? 
RR, FIFO, RMS, EDF 
based on thread priorities
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POLICY
scheduling decisions are policies 
should not be in a microkernel 
L4 used to have facilities to implement 
scheduling in user land 

each thread has an associated preempter 
kernel sends an IPC when thread blocks 
preempter tells kernel where to switch to 

no efficient implementation yet 
scheduling is the only in-kernel policy in L4
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L4

scheduling in L4 is based on thread 
priorities 

time-slice-based round robin within the 
same priority level 

kernel manages priority and timeslice as 
part of the thread state 

see scheduling lecture
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EXAMPLE
thread 1 is a high priority driver thread, 
waiting for an interrupt (blocking) 

thread 2 and 3 are ready with equal 
priority
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EXAMPLE
1 hardware context 

kernel fills time slices of threads 2 and 3 

scheduler selects 2 to run
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EXAMPLE
device interrupt arrives 

thread 2 is forced into the kernel, where it 
unblocks thread 1 and fills its time slice 

switch to thread 1 preempts thread 2
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EXAMPLE
thread 1 blocks again (interrupt handled, 
waiting for next) 

thread 2 has time left
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EXAMPLE
thread 2’s time slice has expired 

timer interrupt forces thread 2 into kernel 

scheduler selects the next thread on the 
same priority level (round robin)
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EXAMPLE
it’s really only one hardware thread being 
multiplexed
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SYNCHRONIZATION
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BASICS

synchronization used for 
mutual exclusion 
producer-consumer-scenarios 

traditional approaches that do not work 
spinning, busy waiting 
disabling interrupts

30



TU Dresden MOS: Threads

ATOMIC OPS

for concurrent access to data structures 

use atomic operations to protect 
manipulations 

only suited for simple critical sections
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EXPECTATION
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SOLUTION
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SEMAPHORES

serializer and atomic operations can be 
combined to a nice counting semaphore 

semaphore 
shared counter for correctness 
wait queue for fairness 
down (P) and up (V) operation 
semaphore available iff counter > 0
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SEMAPHORES
counter increments and decrements 
using atomic operations 
when necessary, call semaphore thread 
to block/unblock and enqueue/dequeue
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BENEFITS
cross-task semaphores, when counter is 
in shared memory 

IPC only in the contention case 
good for mutual exclusion when 
contention is rare 
for producer-consumer-scenarios, 
contention is the common case 

optimisation for small critical sections in 
scheduling lecture
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RECAP
repeated basic microkernel concepts 

paradigm, resource abstractions 
closer look on threads 

TCB, kernel entry 
scheduling 

time slices, priorities, preemption 
synchronization 

atomic ops, serializer thread, semaphore 
next up: memory
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