
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Hardware and Device Drivers

Dresden, November 19, 2024

Till Miemietz
Maksym Planeta
Björn Döbel

Slide 2 / 57

• How do Linux drivers look like?

• What's so different about device drivers?

• How to access hardware?

• L4 services for writing drivers

• Reusing legacy drivers

• Device virtualization

Outline

Slide 3 / 57

Drivers in Linux

J. Corbet et al: Linux Device Drivers 3rd edition, Chapter 1, page 6

Slide 4 / 57

Simple character device driver

• Sketch out how a Linux driver looks like

• A module which allows to read RTC value

• Use IO-ports to access RTC (CMOS map)

0x70

CMOS RAM indexNMI

07

0x71
CMOS data port

07

00 Current second in BCD

02 Current minute in BCD

04 Current hour in BCD

06 Day of week in BCD

07 Day of month in BCD

08 Month in BCD

09 Year in BCD

RTC registers

http://www.bioscentral.com/misc/cmosmap.htm

Slide 5 / 57

Using the device driver

• File in the /dev filesystem

• Read the value

$ cat /dev/rtctest
14:05:44 24.11.2020

Slide 6 / 57

Simple character device driver

/* Global variables definitions. Forward declarations. */

static struct file_operations fops = {
 .open = dev_open,
 .read = dev_read,
 … };

static int __init rtctest_init(void) {...}
static void __exit rtctest_exit(void){...}

static int dev_open(struct inode *inodep, struct file *filep){}
static ssize_t dev_read(struct file *filep, char *buffer,
 size_t len, loff_t *ppos){...}
module_init(rtctest_init);
module_exit(rtctest_exit);

Slide 7 / 57

Simple character device driver

static int __init rtctest_init(void){
 majorNumber = register_chrdev(0, DEVICE_NAME, &fops); // /dev/rtctest
 if (majorNumber<0) goto err_major;

 rtctestClass = class_create(THIS_MODULE, CLASS_NAME); // lsmod → rtctest
 if (IS_ERR(rtctestClass)) goto err_class;

 rtctestDevice = device_create(rtctestClass, NULL,
MKDEV(majorNumber, 0), NULL, DEVICE_NAME);

 if (IS_ERR(rtctestDevice)) goto err_device;

 rtc_resource = request_region(RTC_PORT_START, RTC_PORT_NUM, "RTC");
 if (!rtc_resource) goto err_region;
 return 0;

 err_region: device_destroy(rtctestClass, MKDEV(majorNumber, 0));
 err_device: class_unregister(rtctestClass); class_destroy(rtctestClass);
 err_class: unregister_chrdev(majorNumber, DEVICE_NAME);
 err_major: return -EFAULT;
}

Slide 8 / 57

Simple character device driver

static ssize_t dev_read(struct file *filep, char *buffer, size_t len, loff_t *ppos){
 if (*ppos) goto out;

 get_time(&time);
 ret = snprintf(time_str, MAX_STRLEN, "%d:%d:%d %d.%d.%d",
 time.hour, time.minute, time.second,
 time.day_of_month, time.month, time.year);
 if (ret < 0) goto err;

 ret += 1; // Account zero-terminator
 len = len < ret ? len : ret;

 error_count = copy_to_user(buffer+*ppos, time_str+*ppos, len-*ppos);
 if (error_count) goto err;

 *ppos += len;
 /* ... */
}

Slide 9 / 57

Simple character device driver

static void get_time(struct time_struct *time)
{
 int old_NMI;
 local_irq_disable();
 old_NMI = NMI_get();

 time->second = read_reg(0x00);
 time->minute = read_reg(0x02);
 time->hour = read_reg(0x04);
 time->day_of_week = read_reg(0x06);
 time->day_of_month = read_reg(0x07);
 time->month = read_reg(0x08);
 time->year = read_reg(0x09);

 NMI_restore(old_NMI);
 local_irq_enable();
}

static int from_bcd(int bcd) {
 return ((bcd&0xf0) >> 4)*10+(bcd&0xf);
}

static int read_reg(int reg) {
 outb_p(reg, 0x70);
 int val = inb_p(0x71);
 return from_bcd(val);
}

Slide 10 / 57

Simple character device driver

static void __exit rtctest_exit(void){
 release_region(RTC_PORT_START, RTC_PORT_NUM);
 device_destroy(rtctestClass, MKDEV(majorNumber, 0)); // remove the device
 class_unregister(rtctestClass); // unregister the device class
 class_destroy(rtctestClass); // remove the device class
 unregister_chrdev(majorNumber, "rtctest"); // unregister the major number
 printk(KERN_INFO "RTCtest: Goodbye from the LKM!\n");
}

Slide 11 / 57

Monolithic architecture problems

• Which problems do you see?

• What I see
– Security problems
– Safety problems
– Concurrency considerations
– Requires implicit knowledge
– Volatile interfaces

Slide 12 / 57

Some statistics

• [Swift03]: Drivers cause 85% of Windows XP crashes.
• [Chou01]:

– Error rate in Linux drivers is 3x (maximum: 10x) higher than
for the rest of the kernel

– Bugs cluster (if you find one bug, you're more likely to find
another one pretty close)

– Life expectancy of a bug in the Linux kernel (~2.4): 1.8
years

• [Rhyzyk09]: Causes for driver bugs
– 23% programming error
– 38% mismatch regarding device specification
– 39% OS-driver-interface misconceptions

• [Xiao19]: “bugs related […] Drivers and ACPI, account for 51.6%
of all classified bugs”

Slide 13 / 57

Anecdote: Linux e1000 NVRAM bug

• Aug 8th 2008 Bug report: e1000 PCI-X network cards
rendered broken by Linux 2.6.27-rc

– overwritten NVRAM on card

• Oct 1st 2008 Intel releases quickfix
– map NVRAM somewhere else

• Oct 15th 2008 Reason found:
– dynamic ftrace framework tries to patch __init code, but .init

sections are unmapped after running init code
– NVRAM got mapped to same location
– Scary cmpxchg() behavior on I/O memory

• Nov 2nd 2008 dynamic ftrace reworked for Linux 2.6.28-rc3

Slide 14 / 57

Traditional approach does not work

• Problem
Fault in a driver quickly propagates to the whole
system

• Reason
Kernel and device drivers are too tightly coupled

• Solutions
– Verification (e. g. Singularity [Hunt07])
– Hardware assisted isolation (e.g. Intel’s MPK)
– Specialized fault tolerance techniques (e. g.

Otherworld [Dep10])
– Safe languages (Rust)

Slide 15 / 57

Idea: User-level Drivers

• Isolate components
– device drivers (disk, network, graphic, USB cruise missiles, ...)
– stacks (TCP/IP, file systems, …)

• Separate address spaces each
– More robust components

• Problems
– Overhead

• HW multiplexing
• Context switches

– Need to handle I/O privileges

Slide 16 / 57

A closer look

• Organization of device hierarchy
– CPU
– Chipset
– Buses

• How devices interact with OS
– Ports
– IO memory
– Interrupts

Slide 17 / 57

System Layout

• Devices connected by buses (USB, PCI, PCIe)
• Host chipset (DMA logic, IRQ controller) connects buses

and CPU

Root Complex
Bus 0 (Internal)

Memory Switch

Network Card

Sound Card

PCIe Bridge to PCI

USB Host
Controller USB

Bus

USB Coffee
Machine

PCI Wifi

PCIe 1

PCI 8

PCIe 2

SwitchPCIe 4 PCIe 6

PCIe 7

Chipset

CPU

Source: pcisig.com

https://pcisig.com/sites/default/files/files/PCI_Express_Basics_Background.pdf

Slide 18 / 57

Real World Example

Intel c612 Chipset
(source: intel.com)

http://www.intel.com/content/www/us/en/embedded/products/grantley/specifications.html?wapkw=c612+chipset

Slide 19 / 57

Buses and Devices

• A long long time ago:
– device architecture hard-coded

• Problem: more and more devices
– need means of dynamic device discovery

• Probing
– try out every driver to see if it works

• Plug&Play:
– first try of dynamic system description
– device manufacturers provide unique IDs

• PCI: dedicated config space
• ACPI: system description without relying on underlying

bus/chipset

Slide 20 / 57

Buses: PCI

• Peripheral Component Interconnect
• Hierarchy of buses, devices and functions
• Configuration via I/O ports

• Address + data register (0xcf8-0xcff)

ChipsetChipset

Device 1Device 1 Device 2Device 2 PCI-to-PCI
Bridge

PCI-to-PCI
Bridge

Device 3Device 3 Device 4Device 4

Func 1Func 1

Func 2Func 2

Slide 21 / 57

Buses: PCI (2)

• PCI configuration space

• 64 byte header
– Busmaster DMA
– Interrupt line
– I/O port regions
– I/O memory regions
– + 192 byte additional space

• must be provided by every device function

• must be managed to isolate device drivers

Slide 23 / 57

Interrupts

• Signal device state change
• Programmable Interrupt Controller (PIC, APIC)

– map HW IRQs to CPU's IRQ lines
– prioritize interrupts

ChipsetChipset

CPUCPU

System
Bus

Memory
Bus

PCI
Bus

IDEIDE NETNET USBUSB

INT
PICPIC

INT A
INT B
INT C

MemoryMemory

Slide 24 / 57

Interrupts (2)

• Handling interrupts involves
– examine / manipulate device
– program PIC

• acknowledge/mask/unmask interrupts

ChipsetChipset

CPUCPU

System
Bus

Memory
Bus

PCI
Bus

IDEIDE NETNET USBUSB

INT
PICPIC

INT A
INT B
INT C

MemoryMemory

Slide 25 / 57

L4: Interrupt handling

• IRQ kernel object
– Represents arbitrary async notification
– Kernel maps hardware IRQs to IRQ objects

• Exactly one waiter per object
– call l4_irq_attach() before
– wait using l4_irq_receive()

• Multiple IRQs per waiter
– attach to multiple objects
– use l4_ipc_wait()

• IRQ sharing
– Many IRQ objects may be chain()ed to a master IRQ

object

Slide 26 / 57

Disabling interrupts

• CLI – only with IO Privilege Level (IOPL) 3

• Should not be allowed for every user-level driver
– untrusted drivers
– security risk

• Observation: drivers often don't need to disable IRQs
globally, but only access to their own IRQ
– Just don't receive from your IRQ

Slide 27 / 57

Linux: Interrupt handling

• Catching interrupts in a driver
– Setup a handler with request_irq() in open()
– Release interrupt line with free_irq in close()

• Disabling interrupts is also bad in kernel
– Handler should be quick
– If it is not quick, split the handler

• Top and bottom halves
– Top half catches invoked immediately, and schedules

“real” handler
– Bottom half is executed by the kernel in preemptable

context, but can be slow

Slide 28 / 57

I/O ports

• x86-specific feature
• I/O ports define own I/O address space

– Each device uses its own area within this address space
• Special instruction to access I/O ports

– in / out: I/O read / write
– Example: read byte from serial port
mov $0x3f8, %edx
in (%dx), %al

• Need to restrict I/O port access
– Allow device drivers access to I/O ports used by its device

only

Slide 29 / 57

I/O Bitmap

• Per task IO privilege level (IOPL)
• If IOPL > current PL, all accesses are

allowed
(kernel mode)

• Else: I/O bitmap is checked
• 1 bit per I/O port

– 65536 ports -> 8kB
• Controls port access

(0 == ok, 1 == GPF)
• L4: per-task I/O bitmap

– Switched during task switch
– Allows per-task grant/deny of I/O

port access

I/O Map Base AddressI/O Map Base Address

. . .
#0x0000

#0xffe0

#0xfff0

TSS

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

11 11 11 11 11 11 11 11 11 11 00 11 11 00 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Slide 30 / 57

I/O Memory

• Devices often contain on-chip memory (NICs, graphics
cards, ...)

• Drivers can map this memory into their address space just like
normal RAM
– no need for special instructions
– increased flexibility by using underlying virtual memory

management

CPUCPU ChipsetChipset

MemoyMemoy

DeviceDevice
Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

MemoryMemory

DriverDriver MemoryMemory

Slide 31 / 57

I/O memory (2)

• Device memory looks just like phys. memory
• Chipset needs to

– map I/O memory to exclusive address ranges
– distinguish physical and I/O memory access

CPUCPU ChipsetChipset

MemoryMemory

DeviceDevice
Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

MemoryMemory

DriverDriver

Slide 32 / 57

Capabilities in Driver Context

• A driver can grant, share or receive a capability for
every object

• Flexpage is a descriptor for capabilities in L4

• Flexpage types:
– Memory
– IO ports
– Objects

Slide 33 / 57

I/O memory in L4

• Like all memory, I/O memory is owned by sigma0
• Sigma0 implements protocol to request I/O memory pages
• Abstraction: Dataspaces containing I/O memory

CPUCPU ChipsetChipset

MemoryMemory

Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

Driver 1Driver 1

Device 1Device 1 Device 2Device 2

Driver 2Driver 2

Sigma0Sigma0

Slide 34 / 57

Direct Memory Access (DMA)

• Bypass CPU by directly transferring data from device to
RAM
– improved bandwidth
– relieved CPU

• DMA controller either programmed by driver or by
device's DMA engine (Busmaster DMA)

CPUCPU ChipsetChipset

MemoryMemory

Device
Controller

Device
ControllerDMA

Engine

Slide 35 / 57

Problems with DMA

• DMA uses physical addresses.
– I/O memory regions need to be

physically contiguous supported by L4Re dataspace →
manager

– Buffers must not be paged out during DMA L4Re DS →
manager allows “pinning” of pages

• DMA with phys. addresses bypasses VM management
– Drivers can overwrite any phys. Address

• DMA is both a safety and a security risk.

• Which mechanism do you know to protect untrusted software from
accessing physical memory?

Slide 36 / 57

Idea: I/O MMU

• Like traditional MMU maps virtual to physical
addresses
– implemented in PCI bridge
– manages a page table
– I/O-TLB

• Drivers access buffers through virtual addresses
– I/O MMU translates accesses from virtual to IO-virtual

addresses (IOVA)
– restrict access to phys. memory by only mapping

certain IOVAs into driver's address space
• Interrupt remapping and virtualization

Slide 38 / 57

I/O MMU architecture

Memory
controller
Memory

controller Device 1Device 1 Device 2Device 2

I/O-MMUI/O-MMU

Device 3Device 3

MemoryMemory Device 4Device 4

IO TLBIO TLB

Device 5Device 5

IO TLBIO TLB
CacheCache

I/O-MMUI/O-MMU

Device 6Device 6

CPUCPU

TLBTLB

TLBTLB

Source: amd.com

CacheCache

• Do you see a security problem?
– Device TLB and caches bypass IO-MMU

https://support.amd.com/TechDocs/48882_IOMMU.pdf
http://developer.amd.com/wordpress/media/2012/10/488821.pdf

Slide 39 / 57

I/O MMU Architecture

• I/O MMU managed by yet another resource manager
• Before accessing I/O memory, drivers use manager

to establish a virt phys mapping→

CPUCPU ChipsetChipset

MemoryMemory

Hardware

Software

I/O-MMUI/O-MMU DeviceDevice

Device
Manager
Device
Manager

Dataspace
Manager
Dataspace
Manager

I/O-MMU
Manager
I/O-MMU
Manager

DriverDriver

Client ApplicationClient Application

Slide 40 / 57

Summary: Driver support in L4

• Interrupts -> Kernel object + IPC
• I/O ports and memory -> flexpage mappings
• User-level resource manager -> IO

CPUCPU ChipsetChipset

MemoryMemory

DevicesDevices
Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

IO
- Device Resources
- PCI
- Virtual buses

IO
- Device Resources
- PCI
- Virtual buses

Dataspace Manager
- Phys. Addresses
- Pinned Memory

Dataspace Manager
- Phys. Addresses
- Pinned Memory

DriverDriver
lib_l4io lib_dm

DriverDriver
lib_l4io lib_dm

DriverDriver
lib_l4io lib_dm

Slide 41 / 57

Untrusted Device Drivers

• How to enforce device access policies on untrusted
drivers?

NIC Disk 1 Disk 2 Sound card
PCI bus

Network
Driver

Disk
Driver

Sound
Driver

Slide 42 / 57

Untrusted Device Drivers

• How to enforce device access policies on untrusted
drivers?

• I/O manager needs to manage device resources
– Virtual buses

NIC Disk 1 Disk 2 Sound card
PCI bus

I/O server

Network
Driver

Disk
Driver

Sound
Driver

Slide 43 / 57

Break

• Device drivers are hard.
• Hardware is complex.
• Virtual buses for isolating device resources

• Next: Implementing device drivers on L4 without
doing too much work

Slide 44 / 57

Implementing Device Drivers

• Just like in any other OS:
– Specify a server interface
– Implement interface, use the access methods provided by

the runtime environment
• Highly optimized code possible
• Hard to maintain
• Implementation time-consuming
• Unavailable specifications
• Why reimplement drivers if they are already available on

other systems?
– Linux, BSD – Open Source
– Windows – Binary drivers

Slide 45 / 57

Reusing legacy device drivers

• Exploit virtualization: Device Driver OS

Source: LeVasseur et. al.: "Unmodified Device Driver Reuse and Improved System
Dependability via Virtual Machines”, OSDI 2004

Slide 46 / 57

Reusing Legacy Device Drivers

LinuxLinux

Windows
Driver
Code

Windows
Driver
Code

Glue Code

• NDIS-Wrapper: Linux glue library to
run Windows WiFi drivers on Linux

• Idea is simple: provide a library
mapping Windows API to Linux

• Implementation is a problem.

Slide 47 / 57

Reusing Legacy Device Drivers (2)

• Generalize the idea: provide a Linux environment
to run drivers on L4

 Device Driver Environment (DDE)→

Slide 48 / 57

Emulating Linux: DDE/Linux

• Multiple L4 threads provide a Linux environment
– Workqueues
– SoftIRQs
– Timers
– Jiffies

• Emulate SMP-like system (each L4 thread assumed to be
one processor)

• Wrap Linux functionality
– kmalloc() L4 Slab allocator library→
– Linux spinlock pthread mutex→

• Handle in-kernel accesses (e.g., PCI config space)

Slide 49 / 57

DDE Structure

CPUCPU ChipsetChipset

MemoryMemory

DevicesDevices
Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

IOIO Dataspace ManagerDataspace Manager

Emulation Library (dde_linux)Emulation Library (dde_linux)

Linux Driver
Source Code
Linux Driver
Source Code

L4 Server Code

Client ApplicationClient Application Client Library

lib_l4io lib_dm

Work Queues

SoftIRQs

IRQs

Timer

Slide 57 / 57

RDMA Networks

User-level driver

Kernel driver

• Remote Direct Memory Access
• Separate control and data path
• Control path:

– Connection setup
– Goes through kernel

• Data path:
– Data exchange
– Directly exchange with NIC (DMA)

• Network Interface Controller (NIC)
– Specialized interface
– No need for SR-IOV

User process

Kernel

NIC

D
at

a
pa

th

C
on

tr
ol

Slide 58 / 57

RDMA-network vs TCP/IP-network

 Traditional (left) and RDMA (right) network stacks.

Slide 59 / 57

Features of RDMA-networks

• Kernel-bypass
– No user-kernel boundary crossing

• Zero-copy
– No message copy through the kernel

• Offloading
– RDMA API is message-level
– NIC splits messages into packets

Slide 60 / 57

Arrakis: the dataplane OS

• Kernel code can add significant overhead
• Put the device driver in the application

– LibOS
• Hardware virtualization for isolation

– SR-IOV
– VNIC
– IOMMU

Slide 61 / 57

Using device in Linux

Source: The Morning Paper: Arrakis - the operating system is the control plane, S. Peter, et al. OSDI 2014

Slide 62 / 57

Linux overhead

Source: The Morning Paper: Arrakis - the operating system is the control plane, S. Peter, et al. OSDI 2014

Slide 63 / 57

SR-IOV Architecture

Source: https://doc.dpdk.org

Slide 64 / 57

Using device in Arrakis

Source: The Morning Paper: Arrakis - the operating system is the control plane, S. Peter, et al. OSDI 2014

Slide 77 / 57

Literature
 Device drivers, problems, and solutions

– Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, Dawson R. Engler:
“An Empirical Study of Operating System Errors”, SOSP 2001

– Michael M. Swift, Brian N. Bershad, Henry M. Levy: “Improving the Reliability of Commodity
Operating Systems”, SOSP 2003

– Michael M. Swift, Brian N. Bershad, Henry M. Levy, Muthukaruppan Annamalai : “Recovering
Device Drivers”, OSDI 2004

– Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz: “Unmodified Device Driver Reuse
and Improved System Dependability via Virtual Machines”, OSDI 2004

– Galen Hunt, James Larus “Singularity: Rethinking the Software Stack”, SIGOPS 2007
– Leonid Ryzhyk et al.: “Automatic Device Driver Synthesis with Termite”, SOSP 2009
– V. Chipounov, G. Candea: “Reverse Engineering of Binary Device Drivers with RevNIC”, EuroSys 2010
– Alex Depoutovitch, Michael Stumm, “Otherworld - Giving Applications a Chance to Survive OS

Kernel Crashes”, EuroSys 2010
– N. Palix et al.: “Faults in linux – 10 years later”, ASPLOS 2011
– Kantee, Antti. "Rump device drivers: Shine on you kernel diamond." AsiaBSDCon
– H. Weisbach, B. Döbel, A. Lackorzynski: “Generic User-Level PCI Drivers”, Real-Time Linux

Workshop 2011
– S. Peter: “Arrakis - the operating system is the control plane”, OSDI 2014
– A. Belay” “IX: a protected dataplane operating system for high throughput and low latency”, OSDI

2014
– DPDK, https://www.dpdk.org/
– J. Corbet, A. Rubini, G Kroah-Hartman, “Linux Device Drivers, 3rd edition”
– Robert Love, “Linux Kernel Development”, 3rd edition

Slide 78 / 57

Coming soon

• Today
– Exercise: Paper discussion (Singularity)

• Nov 26th
– Lecture: Real-Time and Microkernels

	Hier steht der Titel der Power Point Präsentation.
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 77
	Slide 78

