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• How do Linux drivers look like?

• What's so different about device drivers?

• How to access hardware?

• L4 services for writing drivers

• Reusing legacy drivers

• Device virtualization

Outline



Slide 3 / 57

Drivers in Linux

J. Corbet et al: Linux Device Drivers 3rd edition, Chapter 1, page 6



Slide 4 / 57

Simple character device driver

• Sketch out how a Linux driver looks like

• A module which allows to read RTC value

• Use IO-ports to access RTC (CMOS map)

0x70

CMOS RAM indexNMI

07

0x71
CMOS data port

07

00 Current second in BCD

02 Current minute in BCD

04 Current hour in BCD

06 Day of week in BCD

07 Day of month in BCD

08 Month in BCD

09 Year in BCD

RTC registers

http://www.bioscentral.com/misc/cmosmap.htm
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Using the device driver

• File in the /dev filesystem

• Read the value

$ cat /dev/rtctest
14:05:44 24.11.2020
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Simple character device driver

/* Global variables definitions. Forward declarations. */

static struct file_operations fops = {
  .open = dev_open,
  .read = dev_read,
  … };

static int __init rtctest_init(void) {...}
static void __exit rtctest_exit(void){...}

static int dev_open(struct inode *inodep, struct file *filep){}
static ssize_t dev_read(struct file *filep, char *buffer,
                        size_t len, loff_t *ppos){...}
module_init(rtctest_init);
module_exit(rtctest_exit);



Slide 7 / 57

Simple character device driver

static int __init rtctest_init(void){
  majorNumber = register_chrdev(0, DEVICE_NAME, &fops); // /dev/rtctest
  if (majorNumber<0)  goto err_major;

  rtctestClass = class_create(THIS_MODULE, CLASS_NAME); // lsmod → rtctest
  if (IS_ERR(rtctestClass)) goto err_class;

  rtctestDevice = device_create(rtctestClass, NULL,
MKDEV(majorNumber, 0), NULL, DEVICE_NAME);

  if (IS_ERR(rtctestDevice)) goto err_device;

  rtc_resource = request_region(RTC_PORT_START, RTC_PORT_NUM, "RTC");
  if (!rtc_resource) goto err_region;
  return 0;

  err_region: device_destroy(rtctestClass, MKDEV(majorNumber, 0));
  err_device: class_unregister(rtctestClass); class_destroy(rtctestClass);
  err_class: unregister_chrdev(majorNumber, DEVICE_NAME);
  err_major: return -EFAULT;
}
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Simple character device driver

static ssize_t dev_read(struct file *filep, char *buffer, size_t len, loff_t *ppos){
  if (*ppos) goto out;

  get_time(&time);
  ret = snprintf(time_str, MAX_STRLEN, "%d:%d:%d %d.%d.%d",
                 time.hour, time.minute, time.second,
                 time.day_of_month, time.month, time.year);
  if (ret < 0) goto err;

  ret += 1; // Account zero-terminator
  len = len < ret ? len : ret;

  error_count = copy_to_user(buffer+*ppos, time_str+*ppos, len-*ppos);
  if (error_count) goto err;

  *ppos += len;
 /* ... */
}
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Simple character device driver

static void get_time(struct time_struct *time)
{
  int old_NMI;
  local_irq_disable();
  old_NMI = NMI_get();

  time->second       = read_reg(0x00);
  time->minute       = read_reg(0x02);
  time->hour         = read_reg(0x04);
  time->day_of_week  = read_reg(0x06);
  time->day_of_month = read_reg(0x07);
  time->month        = read_reg(0x08);
  time->year         = read_reg(0x09);

  NMI_restore(old_NMI);
  local_irq_enable();
}

static int from_bcd(int bcd) {
  return ((bcd&0xf0) >> 4)*10+(bcd&0xf);
}

static int read_reg(int reg) {
  outb_p(reg, 0x70);
  int val = inb_p(0x71);
  return from_bcd(val);
}
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Simple character device driver

static void __exit rtctest_exit(void){
  release_region(RTC_PORT_START, RTC_PORT_NUM);
  device_destroy(rtctestClass, MKDEV(majorNumber, 0));     // remove the device
  class_unregister(rtctestClass);                          // unregister the device class
  class_destroy(rtctestClass);                             // remove the device class
  unregister_chrdev(majorNumber, "rtctest");             // unregister the major number
  printk(KERN_INFO "RTCtest: Goodbye from the LKM!\n");
}
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Monolithic architecture problems

• Which problems do you see?

• What I see
– Security problems
– Safety problems
– Concurrency considerations
– Requires implicit knowledge
– Volatile interfaces
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Some statistics

• [Swift03]: Drivers cause 85% of Windows XP crashes.
• [Chou01]:

– Error rate in Linux drivers is 3x (maximum: 10x) higher than 
for the rest of the kernel

– Bugs cluster (if you find one bug, you're more likely to find 
another one pretty close)

– Life expectancy of a bug in the Linux kernel (~2.4): 1.8 
years

• [Rhyzyk09]: Causes for driver bugs
– 23% programming error
– 38% mismatch regarding device specification
– 39% OS-driver-interface misconceptions

• [Xiao19]: “bugs related […] Drivers and ACPI, account for 51.6% 
of all classified bugs”
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Anecdote: Linux e1000 NVRAM bug

• Aug 8th  2008 Bug report: e1000 PCI-X network cards 
rendered broken by Linux 2.6.27-rc

– overwritten NVRAM on card

• Oct 1st  2008 Intel releases quickfix
– map NVRAM somewhere else

• Oct 15th 2008 Reason found:
– dynamic ftrace framework tries to patch __init code, but .init 

sections are unmapped after running init code
– NVRAM got mapped to same location
– Scary cmpxchg() behavior on I/O memory

• Nov 2nd 2008 dynamic ftrace reworked for Linux 2.6.28-rc3
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Traditional approach does not work

• Problem
Fault in a driver quickly propagates to the whole 
system

• Reason
Kernel and device drivers are too tightly coupled

• Solutions
– Verification (e. g. Singularity [Hunt07])
– Hardware assisted isolation (e.g. Intel’s MPK)
– Specialized fault tolerance techniques (e. g. 

Otherworld [Dep10])
– Safe languages (Rust)
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Idea: User-level Drivers

• Isolate components
– device drivers (disk, network, graphic, USB cruise missiles, ...)
– stacks (TCP/IP, file systems, …)

• Separate address spaces each
– More robust components

• Problems
– Overhead

• HW multiplexing
• Context switches

– Need to handle I/O privileges
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A closer look

• Organization of device hierarchy
– CPU
– Chipset
– Buses

• How devices interact with OS
– Ports
– IO memory
– Interrupts
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System Layout

• Devices connected by buses (USB, PCI, PCIe)
• Host chipset (DMA logic, IRQ controller) connects buses 

and CPU

Root Complex
Bus 0 (Internal)

Memory Switch

Network Card

Sound Card

PCIe Bridge to PCI

USB Host
Controller USB

Bus

USB Coffee
Machine

PCI Wifi

PCIe 1

PCI 8

PCIe 2

SwitchPCIe 4 PCIe 6

PCIe 7

Chipset

CPU

Source: pcisig.com

https://pcisig.com/sites/default/files/files/PCI_Express_Basics_Background.pdf
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Real World Example

Intel c612 Chipset
(source: intel.com)

http://www.intel.com/content/www/us/en/embedded/products/grantley/specifications.html?wapkw=c612+chipset
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Buses and Devices

• A long long time ago:
– device architecture hard-coded

• Problem: more and more devices
– need means of dynamic device discovery

• Probing
– try out every driver to see if it works

• Plug&Play:
– first try of dynamic system description
– device manufacturers provide unique IDs

• PCI: dedicated config space
• ACPI: system description without relying on underlying 

bus/chipset
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Buses: PCI

• Peripheral Component Interconnect
• Hierarchy of buses, devices and functions
• Configuration via I/O ports

• Address + data register (0xcf8-0xcff)

ChipsetChipset

Device 1Device 1 Device 2Device 2 PCI-to-PCI
Bridge

PCI-to-PCI
Bridge

Device 3Device 3 Device 4Device 4

Func 1Func 1

Func 2Func 2
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Buses: PCI (2)

• PCI configuration space

• 64 byte header 
– Busmaster DMA
– Interrupt line
– I/O port regions
– I/O memory regions
– + 192 byte additional space

• must be provided by every device function

• must be managed to isolate device drivers
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Interrupts

• Signal device state change
• Programmable Interrupt Controller (PIC, APIC)

– map HW IRQs to CPU's IRQ lines
– prioritize interrupts

ChipsetChipset

CPUCPU

System
Bus

Memory
Bus

PCI
Bus

IDEIDE NETNET USBUSB

INT
PICPIC

INT A
INT B
INT C

MemoryMemory
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Interrupts (2)

• Handling interrupts involves
– examine / manipulate device
– program PIC

• acknowledge/mask/unmask interrupts

ChipsetChipset

CPUCPU

System
Bus

Memory
Bus

PCI
Bus

IDEIDE NETNET USBUSB

INT
PICPIC

INT A
INT B
INT C

MemoryMemory
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L4: Interrupt handling

• IRQ kernel object
– Represents arbitrary async notification
– Kernel maps hardware IRQs to IRQ objects

• Exactly one waiter per object
– call l4_irq_attach() before
– wait using l4_irq_receive()

• Multiple IRQs per waiter
– attach to multiple objects
– use l4_ipc_wait()

• IRQ sharing
– Many IRQ objects may be chain()ed to a master IRQ 

object
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Disabling interrupts

• CLI – only with IO Privilege Level (IOPL) 3

• Should not be allowed for every user-level driver
– untrusted drivers
– security risk

• Observation: drivers often don't need to disable IRQs 
globally, but only access to their own IRQ 
– Just don't receive from your IRQ
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Linux: Interrupt handling

• Catching interrupts in a driver
– Setup a handler with request_irq() in open()
– Release interrupt line with free_irq in close()

• Disabling interrupts is also bad in kernel
– Handler should be quick
– If it is not quick, split the handler

• Top and bottom halves
– Top half catches invoked immediately, and schedules 

“real” handler
– Bottom half is executed by the kernel in preemptable 

context, but can be slow
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I/O ports

• x86-specific feature
• I/O ports define own I/O address space

– Each device uses its own area within this address space
• Special instruction to access I/O ports

– in / out: I/O read / write
– Example: read byte from serial port
mov $0x3f8, %edx
in  (%dx), %al

• Need to restrict I/O port access
– Allow device drivers access to I/O ports used by its device 

only
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I/O Bitmap

• Per task IO privilege level (IOPL)
• If IOPL > current PL, all accesses are 

allowed
(kernel mode)

• Else: I/O bitmap is checked
• 1 bit per I/O port

– 65536 ports -> 8kB
• Controls port access

(0 == ok, 1 == GPF)
• L4: per-task I/O bitmap

– Switched during task switch
– Allows per-task grant/deny of I/O 

port access

I/O Map Base AddressI/O Map Base Address

. . .
#0x0000

#0xffe0

#0xfff0

TSS

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

11 11 11 11 11 11 11 11 11 11 00 11 11 00 11 11
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
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I/O Memory

• Devices often contain on-chip memory (NICs, graphics 
cards, ...)

• Drivers can map this memory into their address space just like 
normal RAM
– no need for special instructions
– increased flexibility by using underlying virtual memory 

management

CPUCPU ChipsetChipset

MemoyMemoy

DeviceDevice
Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

MemoryMemory

DriverDriver MemoryMemory
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I/O memory (2)

• Device memory looks just like phys. memory
• Chipset needs to

– map I/O memory to exclusive address ranges
– distinguish physical and I/O memory access

CPUCPU ChipsetChipset

MemoryMemory

DeviceDevice
Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

MemoryMemory

DriverDriver
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Capabilities in Driver Context

• A driver can grant, share or receive a capability for 
every object

• Flexpage is a descriptor for capabilities in L4

• Flexpage types:
– Memory
– IO ports
– Objects
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I/O memory in L4

• Like all memory, I/O memory is owned by sigma0
• Sigma0 implements protocol to request I/O memory pages
• Abstraction: Dataspaces containing I/O memory

CPUCPU ChipsetChipset

MemoryMemory

Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

Driver 1Driver 1

Device 1Device 1 Device 2Device 2

Driver 2Driver 2

Sigma0Sigma0
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Direct Memory Access (DMA)

• Bypass CPU by directly transferring data from device to 
RAM
– improved bandwidth
– relieved CPU

• DMA controller either programmed by driver or by 
device's DMA engine (Busmaster DMA)

CPUCPU ChipsetChipset

MemoryMemory

Device
Controller

Device
ControllerDMA

Engine
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Problems with DMA

• DMA uses physical addresses.
– I/O memory regions need to be

physically contiguous  supported by L4Re dataspace →
manager

– Buffers must not be paged out during DMA  L4Re DS →
manager allows “pinning” of pages

• DMA with phys. addresses bypasses VM management
– Drivers can overwrite any phys. Address

• DMA is both a safety and a security risk.

• Which mechanism do you know to protect untrusted software from 
accessing physical memory?
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Idea: I/O MMU

• Like traditional MMU maps virtual to physical 
addresses
– implemented in PCI bridge
– manages a page table
– I/O-TLB

• Drivers access buffers through virtual addresses
– I/O MMU translates accesses from virtual to IO-virtual 

addresses (IOVA)
– restrict access to phys. memory by only mapping 

certain IOVAs into driver's address space
• Interrupt remapping and virtualization
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I/O MMU architecture

Memory
controller
Memory

controller Device 1Device 1 Device 2Device 2

I/O-MMUI/O-MMU

Device 3Device 3

MemoryMemory Device 4Device 4

IO TLBIO TLB

Device 5Device 5

IO TLBIO TLB
CacheCache

I/O-MMUI/O-MMU

Device 6Device 6

CPUCPU

TLBTLB

TLBTLB

Source: amd.com

CacheCache

• Do you see a security problem?
– Device TLB and caches bypass IO-MMU

https://support.amd.com/TechDocs/48882_IOMMU.pdf
http://developer.amd.com/wordpress/media/2012/10/488821.pdf
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I/O MMU Architecture

• I/O MMU managed by yet another resource manager
• Before accessing I/O memory, drivers use manager 

to establish a virt phys mapping→

CPUCPU ChipsetChipset

MemoryMemory

Hardware

Software

I/O-MMUI/O-MMU DeviceDevice

Device
Manager
Device
Manager

Dataspace
Manager
Dataspace
Manager

I/O-MMU
Manager
I/O-MMU
Manager

DriverDriver

Client ApplicationClient Application
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Summary: Driver support in L4

• Interrupts -> Kernel object + IPC
• I/O ports and memory -> flexpage mappings
• User-level resource manager -> IO

CPUCPU ChipsetChipset

MemoryMemory

DevicesDevices
Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

IO
- Device Resources
- PCI
- Virtual buses

IO
- Device Resources
- PCI
- Virtual buses

Dataspace Manager
- Phys. Addresses
- Pinned Memory

Dataspace Manager
- Phys. Addresses
- Pinned Memory

DriverDriver
lib_l4io lib_dm

DriverDriver
lib_l4io lib_dm

DriverDriver
lib_l4io lib_dm
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Untrusted Device Drivers

• How to enforce device access policies on untrusted 
drivers?

NIC Disk 1 Disk 2 Sound card
PCI bus

Network
Driver

Disk
Driver

Sound
Driver
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Untrusted Device Drivers

• How to enforce device access policies on untrusted 
drivers?

• I/O manager needs to manage device resources
– Virtual buses

NIC Disk 1 Disk 2 Sound card
PCI bus

I/O server

Network
Driver

Disk
Driver

Sound
Driver
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Break

• Device drivers are hard.
• Hardware is complex.
• Virtual buses for isolating device resources

• Next: Implementing device drivers on L4 without 
doing too much work
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Implementing Device Drivers

• Just like in any other OS:
– Specify a server interface
– Implement interface, use the access methods provided by 

the runtime environment
• Highly optimized code possible
• Hard to maintain
• Implementation time-consuming
• Unavailable specifications
• Why reimplement drivers if they are already available on 

other systems?
– Linux, BSD – Open Source
– Windows – Binary drivers
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Reusing legacy device drivers

• Exploit virtualization: Device Driver OS

Source: LeVasseur et. al.: "Unmodified Device Driver Reuse and Improved System 
Dependability via Virtual Machines”, OSDI 2004
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Reusing Legacy Device Drivers

LinuxLinux

Windows
Driver
Code

Windows
Driver
Code

Glue Code

• NDIS-Wrapper: Linux glue library to 
run Windows WiFi drivers on Linux

• Idea is simple: provide a library 
mapping Windows API to Linux

• Implementation is a problem.
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Reusing Legacy Device Drivers (2)

• Generalize the idea: provide a Linux environment 
to run drivers on L4

 Device Driver Environment (DDE)→
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Emulating Linux: DDE/Linux

• Multiple L4 threads provide a Linux environment
– Workqueues
– SoftIRQs
– Timers
– Jiffies

• Emulate SMP-like system (each L4 thread assumed to be 
one processor)

• Wrap Linux functionality
– kmalloc()  L4 Slab allocator library→
– Linux spinlock  pthread mutex→

• Handle in-kernel accesses (e.g., PCI config space)
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DDE Structure

CPUCPU ChipsetChipset

MemoryMemory

DevicesDevices
Hardware

Software
Kernel
Fiasco Microkernel
Kernel
Fiasco Microkernel

IOIO Dataspace ManagerDataspace Manager

Emulation Library (dde_linux)Emulation Library (dde_linux)

Linux Driver
Source Code
Linux Driver
Source Code

L4 Server Code

Client ApplicationClient Application Client Library

lib_l4io lib_dm

Work Queues

SoftIRQs

IRQs

Timer
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RDMA Networks

User-level driver

Kernel driver

• Remote Direct Memory Access
• Separate control and data path
• Control path:

– Connection setup
– Goes through kernel

• Data path:
– Data exchange
– Directly exchange with NIC (DMA)

• Network Interface Controller (NIC)
– Specialized interface
– No need for SR-IOV

User process

Kernel

NIC

D
at

a 
pa

th

C
on

tr
ol
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RDMA-network vs TCP/IP-network

 Traditional (left) and RDMA (right) network stacks.  
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Features of RDMA-networks

• Kernel-bypass
– No user-kernel boundary crossing

• Zero-copy
– No message copy through the kernel

• Offloading
– RDMA API is message-level
– NIC splits messages into packets
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Arrakis: the dataplane OS

• Kernel code can add significant overhead
• Put the device driver in the application

– LibOS
• Hardware virtualization for isolation

– SR-IOV
– VNIC
– IOMMU
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Using device in Linux

Source: The Morning Paper: Arrakis - the operating system is the control plane, S. Peter, et al. OSDI 2014 
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Linux overhead

Source: The Morning Paper: Arrakis - the operating system is the control plane, S. Peter, et al. OSDI 2014 
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SR-IOV Architecture

Source:  https://doc.dpdk.org
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Using device in Arrakis

Source: The Morning Paper: Arrakis - the operating system is the control plane, S. Peter, et al. OSDI 2014 
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Literature
 Device drivers, problems, and solutions
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– Galen Hunt, James Larus “Singularity: Rethinking the Software Stack”, SIGOPS 2007
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– V. Chipounov, G. Candea: “Reverse Engineering of Binary Device Drivers with RevNIC”, EuroSys 2010
– Alex Depoutovitch, Michael Stumm, “Otherworld - Giving Applications a Chance to Survive OS 

Kernel Crashes”, EuroSys 2010
– N. Palix et al.: “Faults in linux – 10 years later”, ASPLOS 2011
– Kantee, Antti. "Rump device drivers: Shine on you kernel diamond." AsiaBSDCon
– H. Weisbach, B. Döbel, A. Lackorzynski: “Generic User-Level PCI Drivers”, Real-Time Linux 

Workshop 2011
– S. Peter: “Arrakis - the operating system is the control plane”, OSDI 2014
– A. Belay” “IX: a protected dataplane operating system for high throughput and low latency”, OSDI 

2014
– DPDK, https://www.dpdk.org/
– J. Corbet, A. Rubini, G Kroah-Hartman, “Linux Device Drivers, 3rd edition”
– Robert Love, “Linux Kernel Development”, 3rd edition
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Coming soon

• Today
– Exercise: Paper discussion (Singularity)

• Nov 26th
– Lecture: Real-Time and Microkernels
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