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SO FAR

talked about in-kernel building blocks: 
threads 
memory 
IPC 

drivers enable access to a wide range of 
non-kernel resources 

need to manage resources
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COURSE EIP

Basic Abstractions

System Services

Applications
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RESOURCES

Disk Bandwidth

Network I/O

Files

TCP/IP Sessions

ThreadsMemory

Semaphores

Communication Rights

Windows
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COMPARISON
Memory Time

discrete, limited continuous, infinite

hidden in the system user-perceivable

managed by pager managed by scheduler

page-granular partitions arbitrary granularity

all pages are of equal value value depends on workload

active policy decisions, 
passive enforcement

active policy decisions, 
active enforcement

hierarchical management Fiasco: flattened in-kernel view
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REAL-TIME
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DEFINITION

a real-time system denotes a system, 
whose correctness depends on the timely 
delivery of results 

“it matters, when a result is produced” 

real-time denotes a predictable relation 
between system progress and wall-clock 
time
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benign failures 
complex

MOS: Real-Time

focused 
catastrophic failures

EXAMPLES

engine control in a car 

break-by-wire 

avionics 

railway control 

set-top box media player 

mobile stack in your cell phone

9



TU Dresden MOS: Real-Time

TOPICS

① Predictability 
② Guarantees 
③ Enforcement
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PREDICTABILITY
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ENEMIES
gap between worst and average case 

memory caches, disk caches, TLBs 
“smart” hardware 

system management mode 
disk request reordering 

cross-talk from resource sharing 
servers showing O(n) behavior 
SMP 

external influences: interrupts
12
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CROSSCUTTING

Kernel

System Services

Applications

Hardware

Realtim
e
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CUSTOM RTOS

small real-time executives tailor-made for 
specific applications 

fixed workload known a priori 

pre-calculated time-driven schedule 

used on small embedded controllers 

benign hardware
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RTLINUX
full Linux kernel and real-time processes 
run side-by-side 

small real-time executive underneath 
supports scheduling and IPC 

real-time processes implemented as 
kernel modules 

all of this runs in kernel mode 

no isolation
15
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XNU
the kernel used in macOS and iOS 

offers a real-time priority band above the 
priority of kernel threads 

interface: “I need X time with a Y period.” 

threads exceeding their assignment will 
be demoted 

all drivers need to handle interrupts 
correctly
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FIASCO
static thread priorities 

O(1) complexity for most system calls 

fully preemptible in kernel mode 
bounded interrupt latency 

lock-free synchronization 
uses atomic operations 

wait-free synchronization 
locking with helping instead of blocking
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BE AFRAID

Non-Real-Time Kernel

Real-Time Middleware

Applications

“real-time” architecture for those afraid of 
touching the OS 
example: Real-Time Java
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RESOURCES
a real-time kernel alone is not enough 

microkernel solution: temporal isolation 
eliminates cross-talk through system calls 
interrupt handling controlled by scheduler 

user-level servers as resource managers 
implement real-time views on specific 
resources 

real-time is not only about CPU
19
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GUARANTEES
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PROBLEM

worst case execution time (WCET) largely 
exceeds average case 

offering guarantees for the worst case will 
waste lots of resources 

missing some deadlines can be tolerated 
with the firm and soft real-time flavors
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MOTIVATION
desktop real-time 

there are no hard real-time applications 
on desktops 

there is a lot of firm and soft real-time 
low-latency audio processing 
smooth video playback 
desktop effects 
user interface responsiveness
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H.264 DECODING
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RESERVATION

preemptible (CPU) as well as for nonpreemptible (disk) re-
sources. Furthermore, we also included empirical execution
time distributions. Three main conclusions should be em-
phasized here.

• All the experiments show the compliance of the re-
quested qualities with the achieved qualities.

• The approach enables to provide statistical guarantees
and to control the behavior of firm applications even
under overload.

• QAS can clearly admit a higher load than an admission
based on WCET with negligible loss of quality.

The costs for these advantages are comparatively low. The
numerical complexity of the admission control (which can
be done offline) is dominated by the convolution of the dis-
cretized execution time distributions. The highest complex-
ity is that for the admission in case of nonpreemptible re-
sources; their complexity is O(s · v3) (s: total number of
optional parts, v: common number of values of the ran-
dom variables) [10, 11]. On the other hand, the scheduler
only manages the ready queue based on fixed priorities. So
online-overhead is negligible, independent of the type of re-
sources and the type of periods.

In case of arbitrary periods however, the computation of
the reservation time is very expensive with increasing costs
for larger task sets because the hyperperiod explodes for
task sets with close-by period lengths (like 503 and 510)
and all periods must be considered. Looking for a way to
overcome this difficulty, we propose a new admission con-
trol approach, which differs from QAS in three respects:
priority assignment, interpretation of the reservation time,
and as a consequence, a very low-cost admission algorithm.

4. Quality-Rate-Monotonic Scheduling

We will first explain our new approach, followed by an
investigation of the admission performance and overhead.

4.1. The QRMS Approach

QRMS is simple but still effective. We abandon the ex-
act modeling of the scheduling behavior in favor of apply-
ing the well-known results from rate-monotonic scheduling
theory. Therefore, we choose another priority assignment
policy and a simpler way to compute the reservation times:

• Priorities are assigned to tasks (this means mandatory
and optional parts of a task have the same priority) ac-
cording to RMS.

• All parts of a job are assigned a common reservation
time.
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Figure 2.  Reservation times of optional parts   
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          a)  QAS                                                        b)  QRMS 

Figure 4. Admission with QAS vs. QRMS 
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(b) QRMS
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Figure 4. Admission with QAS vs. QRMS

• In the admission, the reservation time is regarded as a
constant execution time.

Consequently, tasks are independent during admission, an
important advantage to drastically decrease the admission
overhead. Figure 4 illustrates the modified priority assign-
ment and the notion of reservation times for two tasks T1,
T2 with uniform periods of length d.

The approach uses the task model given in Definition 1.
To derive the reservation times, we consider preemptible
resources first. We have to use Equation (8). Due to the
laws of probability calculus, we can compute the expected
value of Ai as

EAi =
mi∑

k=1

P(Ai ≥ k), i = 1, . . . , n (9)

The number Ai of completed parts of task Ti within a
period does no longer depend on the reservation times of
other tasks. Obviously, it holds (see Figure (5)):

P(Ai(r) ≥ k) = P(Xi + k · Yi ≤ r), k = 1, . . . ,mi

(10)
Thus:

r′
i = min(r ∈ R |

mi∑

k=1

P(Xi + k · Yi ≤ r) ≥ qimi) . (11)

The final formula respects the fact that r′
i may be shorter

than the WCET wi of the mandatory part and includes the
constraint that jobs are aborted at the end of their period:

ri = max(r′
i, wi) i = 1, . . . , n (12)

We check ri ≤ di for all i in a first admission step. Then
the final admission test can be done using the Liu/Layland-
criterion or time demand analysis [13]. In case of nonpre-
emptible resources, r′

i is computed as above, but the admis-
sion must include the WCET wO,i of an optional part:

ri = max(r′
i + wO,i, wi) (13)

to fully understand this (or not): 
real-time systems lecture (defunct) 

good for microkernel: reservation can be 
calculated by a userland service 

kernel just needs to support static priorities

preemptible (CPU) as well as for nonpreemptible (disk) re-
sources. Furthermore, we also included empirical execution
time distributions. Three main conclusions should be em-
phasized here.

• All the experiments show the compliance of the re-
quested qualities with the achieved qualities.

• The approach enables to provide statistical guarantees
and to control the behavior of firm applications even
under overload.

• QAS can clearly admit a higher load than an admission
based on WCET with negligible loss of quality.

The costs for these advantages are comparatively low. The
numerical complexity of the admission control (which can
be done offline) is dominated by the convolution of the dis-
cretized execution time distributions. The highest complex-
ity is that for the admission in case of nonpreemptible re-
sources; their complexity is O(s · v3) (s: total number of
optional parts, v: common number of values of the ran-
dom variables) [10, 11]. On the other hand, the scheduler
only manages the ready queue based on fixed priorities. So
online-overhead is negligible, independent of the type of re-
sources and the type of periods.

In case of arbitrary periods however, the computation of
the reservation time is very expensive with increasing costs
for larger task sets because the hyperperiod explodes for
task sets with close-by period lengths (like 503 and 510)
and all periods must be considered. Looking for a way to
overcome this difficulty, we propose a new admission con-
trol approach, which differs from QAS in three respects:
priority assignment, interpretation of the reservation time,
and as a consequence, a very low-cost admission algorithm.

4. Quality-Rate-Monotonic Scheduling

We will first explain our new approach, followed by an
investigation of the admission performance and overhead.

4.1. The QRMS Approach

QRMS is simple but still effective. We abandon the ex-
act modeling of the scheduling behavior in favor of apply-
ing the well-known results from rate-monotonic scheduling
theory. Therefore, we choose another priority assignment
policy and a simpler way to compute the reservation times:

• Priorities are assigned to tasks (this means mandatory
and optional parts of a task have the same priority) ac-
cording to RMS.

• All parts of a job are assigned a common reservation
time.
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(b) QRMS

 

 

 

 

 

 

 

 

 

1a     1b    1c 

 

 

 

 

 

 

Figure 2.  Reservation times of optional parts   

 

 

 

 
 

Figure 3. Overlapping periods 

 

 

 

 

 

 

 

 

          a)  QAS                                                        b)  QRMS 

Figure 4. Admission with QAS vs. QRMS 

 

 

 

 

 

Figure 5.  

 

 

aborted part of J

di 

Ti 

Tj 

dj 

t

p.d.f. 

q 

r 

d 

…    J 

e t

p.d.f. 

q

r

d
e

…    J

p.d.f. 

q 

r 
 

t d

…        J 

e 

X1              X2          X3        Y1              Y2            Y3 

d 0 

r1 
r2 r 

Y2 aborted 

X1           X2         Y1       Y2 

0 d 

r1 

r2 

X1   Y1                      X2          Y2 

0 d

r1 r2 

lost for admission available for admission 

Xi         Yi        Yi         Yi            Yi

0 di 

 r

Figure 4. Admission with QAS vs. QRMS

• In the admission, the reservation time is regarded as a
constant execution time.

Consequently, tasks are independent during admission, an
important advantage to drastically decrease the admission
overhead. Figure 4 illustrates the modified priority assign-
ment and the notion of reservation times for two tasks T1,
T2 with uniform periods of length d.

The approach uses the task model given in Definition 1.
To derive the reservation times, we consider preemptible
resources first. We have to use Equation (8). Due to the
laws of probability calculus, we can compute the expected
value of Ai as

EAi =
mi∑

k=1

P(Ai ≥ k), i = 1, . . . , n (9)

The number Ai of completed parts of task Ti within a
period does no longer depend on the reservation times of
other tasks. Obviously, it holds (see Figure (5)):

P(Ai(r) ≥ k) = P(Xi + k · Yi ≤ r), k = 1, . . . ,mi

(10)
Thus:

r′
i = min(r ∈ R | 1

mi

mi∑

k=1

P(Xi +k ·Yi ≤ r) ≥ qi) . (11)

The final formula respects the fact that r′
i may be shorter

than the WCET wi of the mandatory part and includes the
constraint that jobs are aborted at the end of their period:

ri = max(r′
i, wi) i = 1, . . . , n (12)

We check ri ≤ di for all i in a first admission step. Then
the final admission test can be done using the Liu/Layland-
criterion or time demand analysis [13]. In case of nonpre-
emptible resources, r′

i is computed as above, but the admis-
sion must include the WCET wO,i of an optional part:

ri = max(r′
i + wO,i, wi) (13)
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SCHEDULING
scheduling = admission + enforcement 
admission = scheduling analysis 

verifies the feasibility of client requests 
formal task model 
calculates task parameters 
can reject requests 

enforcement 
executing the schedule 
preempt when reservation expires

25
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ENFORCEMENT
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DISPATCHER
executed at specific events 

enforces task parameters by preemption 
e.g. on deadline overrun 

picks the next thread 
static priorities (e.g. RMS, DMS) 
dynamic priorities (e.g. EDF) 

seems simple…
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PROBLEM
high priority thread calls low priority 
service, medium priority thread interferes:

Thread 1

Thread 2

Thread 3

Priority

1 waits for 3

3 waits for 2

= 1 waits for 2

✔

✔

✘ Priority Inversion
28
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SOLUTION
priority inheritance, priority ceiling 

nice mechanism for this in Fiasco, NOVA: 
timeslice donation 

split thread control block 
execution context: holds CPU state 
scheduling context: time and priority 

on IPC-caused thread switch, only the 
execution context is switched
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DONATING CALL

Thread 1

Thread 2

Thread 3

Priority

IPC receiver runs on the sender’s 
scheduling context 

priority inversion problem solved with 
priority inheritance
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ACCOUNTING
servers run on their clients’ time slice 

when the server executes on behalf of a 
client, the client pays with its own time 

this allows for servers with no scheduling 
context 

server has no time or priority on its own 
can only execute on client’s time 
relieves scheduler from dealing with 
servers
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OPEN ISSUES
servers could be malicious, so you need 
timeouts to get your time back 

now, malicious clients can call the server 
with a very short timeout 

on what time will the server do cleanup? 

donation does not work across CPUs 
would thwart admission; one CPU cannot 
execute on behalf of another 

migrate servers or clients?
32
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OPTIMIZATION
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SEMAPHORES

IPC only in the contention case 

optimized for low contention 

bad for producer-consumer problems

Thread 1

Thread 2

Semaphore 
Thread

down

down

enqueue 
and block

up

dequeue 
and unblock

up

34
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SEMAPHORES

reduce from 2 IPCs to one 

how to protect the short critical section? 

spinlocks suffer lockholder preemption

Thread 1

Thread 2

down

down enqueue 
and block

up

dequeue 
and signal

up
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IDEA
allow threads to have short periods 
where they are never preempted 

like a low cost global system lock 
like a userland flavor of disabling interrupts 

delayed preemption 

threads set “don’t preempt” flag in UTCB 
very low cost 
not a lock, no lockholder preemption

36



TU Dresden MOS: Real-Time

PROBLEMS
unbounded delay 

kernel honors the delayed preemption flag 
only for a fixed maximum delay 
what delay is useful? 

delay affects all threads 
effect can be limited to a priority band 
must be included in real-time analysis 

does not work across multiple CPUs
37
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SUMMARY
managing time is necessary 

we interact with the system based on time 

real-time is a cross-cutting concern 

heavy-math admission in userland, 
simple priorities in the kernel 

priority inheritance by timeslice donation 

synchronisation, delayed preemption 

next week: resource management
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