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Goals

Give you an overview about:
@ Virtualisation and virtual machines in general

@ Hardware-assisted virtualisation on x86

2/60


- overview, not specific implementation
 - also: how does this fit into the MOS lecture? ;-


Goals

Give you an overview about:
@ Virtualisation and virtual machines in general

@ Hardware-assisted virtualisation on x86

We will not discuss:
@ Lots and lots of details
@ Language runtimes
@ How to use Xen/KVM/. ..
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“Virtual machines have finally arrived. Dismissed for a
number of years as merely academic curiosities, they are
now seen as cost-effective techniques for organizing com-
puter systems resources to provide extraordinary system
flexibility and support for certain unique applications.”
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“Virtual machines have finally arrived. Dismissed for a
number of years as merely academic curiosities, they are
now seen as cost-effective techniques for organizing com-
puter systems resources to provide extraordinary system
flexibility and support for certain unique applications.”

— Goldberg: “Survey of Virtual Machine Research”, 1974
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Early History: IBM

Virtualisation was pioneered with IBM's CP/CMS in ~1967 running on System /360 and
System/370:

CP Control Program that provided System/360 virtual machines

@ Memory protection between VMs
@ Preemptive scheduling

CMS Cambridge (later Conversational) Monitor System — single-user OS
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Early History: IBM

Virtualisation was pioneered with IBM's CP/CMS in ~1967 running on System /360 and
System/370:

CP Control Program that provided System/360 virtual machines

@ Memory protection between VMs
@ Preemptive scheduling

CMS Cambridge (later Conversational) Monitor System — single-user OS

At the time more flexible and efficient than time-sharing multi-user systems.

Gave rise to IBM's VM line of operating systems:
o First release: 1972
o Latest release: z/VM 7.4 (20 September 2024)
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Virtualisation is Great

Consolidation: improve server utilization
Isolation: isolate services for security reasons or because of incompatibility
Reuse: run legacy software

Development
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Virtualisation is Great

Consolidation: improve server utilization
Isolation: isolate services for security reasons or because of incompatibility
Reuse: run legacy software

Development

... but was confined to the mainframe world for a very long time.
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You want to write a new operating system that is
@ secure

@ trustworthy

@ small

o fast

e fancy

but ...
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Commodity Applications

Users expect to run all the software they are used to (“legacy support”):
@ Browsers
e MS Word
@ iTunes
o certified business applications
e new (Windows/DirectX) and ancient (DOS) games

Porting or rewriting all applications is infeasible!
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- infeasible because of effort, closed source, maintenance
 - got easier due to Web-based applications (including games)
 


Commodity Hardware

Users expect to run an (x86) OS on any PC which requires support for:
@ input devices (USB, PS2, keyboards, mice, tablets, ...)
@ graphics adapters (AMD, Intel, nVidia, ...)
e disks (SATA, SAS, USB, Thunderbolt, ...)
e network (Ethernet, Wifi, ...)
@ printer, scanner, webcams, ...

Porting or rewriting all drivers is infeasible!
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- Infeasible because of effort, lacking documentation, maintainance
 


One Solution: Virtualisation

“By virtualizing a commodity OS [...] we gain support for legacy applications,
and devices we don’t want to write drivers for.”

“All this allows the research community to finally escape the straitjacket of
POSIX or Windows compatibility [...]"

— Roscoe, Elphinstone, Heiser: “Hype and virtue” (2007)
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Virtualisation

“Virtual is most generally used to describe something as being the same as
something else in almost every way, except perhaps in name or some other

minor, technical sense. —https://wuw.dictionary.com/
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Virtualisation

“Virtual is most generally used to describe something as being the same as
something else in almost every way, except perhaps in name or some other

minor, technical sense. —https://wuw.dictionary.com/

“A virtual machine is taken to be an efficient, isolated duplicate of the real
machine.” — Popek, Goldberg: “Formal requirements]...]", 1974

“All problems in computer science can be solved by another level of indirection.”

— Butler Lampson, 1972

i

“...except for the problem of too many layers of indirection.’

— David Wheeler
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Suppose you develop on your x86 workstation (Host) an operating system that is to run
on an ARM-based mobile device (Guest).
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Suppose you develop on your x86 workstation (Host) an operating system that is to run
on an ARM-based mobile device (Guest).

An emulator for G running on H precisely emulates G's:
e CPU
@ Memory subsystem
@ |/0 devices

Ideally, programs running on the emulated G exhibit the same behaviour as when
running on a real G (except for timing).
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The emulator
@ simulates every instruction in software as it is executed,
@ prevents G from directly accessing to H's resources,
@ maps G's devices onto H’s devices, and

@ may run multiple times on H.
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Mapping G to H

G and H may have considerably different
@ instructions sets

@ hardware devices
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Mapping G to H

G and H may have considerably different
@ instructions sets

@ hardware devices

making emulation slow and complex (depending on emulation fidelity).
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Virtualisation

What if G == H?
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Virtualisation

What if G == H?

If host and emulated hardware architecture is (about) the same,
@ interpreting every executed instruction seems unnecessary

@ near-native execution speed should be possible.

This is (easily) possible, if the architecture is virtualisable.
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Idea: Executing the guest as a user process

Run the guest operating system as a normal user process on the host.

1Often used synonymously with “hypervisor”. We'll come back to tht later.
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|dea: Executing the guest as a user process

Run the guest operating system as a normal user process on the host.
But this is not just about executing instructions!

We need to emulate virtual hardware. The software providing the illusion of a real
machine is the Virtual Machine Monitor (VMM)!.

1Often used synonymously with “hypervisor”. We'll come back to tht later.
16 /60



A hypothetical instruction: QUT

Suppose our system has an instruction OUT that writes to a device register in kernel
mode.
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A hypothetical instruction: QUT

Suppose our system has an instruction OUT that writes to a device register in kernel
mode. But we run it (virtualised) in user mode. How should OUT behave?

Just-donothing! \ Cause a trap to kernel mode! \

Otherwise device access cannot be (easily) virtualized.
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Virtualizability

...is a property of the Instruction Set Architecture (ISA).
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Virtualizability

...is a property of the Instruction Set Architecture (ISA).
Instructions are divided into two classes:

Privileged

A sensitive instruction changes or
depends in its behavior on the
processor's configuration or mode.

A privileged instruction causes a
trap when executed in user mode.
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Trap & Emulate

An ISA is virtualizable, i.e. a VMM can be written, if all sensitive instructions are
privileged.
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Trap & Emulate

An ISA is virtualizable, i.e. a VMM can be written, if all sensitive instructions are
privileged.

Approach:
@ Execute guest in unprivileged mode

@ Emulate all instructions that cause traps

Popek, Goldberg: “Formal Requirements for Virtualizable Third-Generation
Architectures”, 1973

19/60



VMM

The Virtual Machine Monitor (VMM) needs to handle:
@ address space changes
@ device accesses
@ system calls
o ...

Most of these are not problematic, because they trap to the host kernel.
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Where to put the VMM?

Hardware

Kernel

POSIX API POSIX API
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Type-1/Bare-Metal /Native Hypervisor

Hardware

T1 Hypervisor

Virtual Hardware Virtual Hardware

Kernel A Kernel B

Win32 API POSIX API POSIX API
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Type-1/Bare-Metal /Native Hypervisor

Virtual Hardware Virtual Hardware

Kernel B

Kernel A

Win32 API POSIX API POSIX API
pplicati n n

@ Implemented directly on hardware Popular examples:
@ No OS overhead @ Xen

@ Complete control over host resources o Hyper-V

@ High maintainance effort o VMware ESXi
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Type-2/Hosted Hypervisor

Hardware

Kernel

POSIX API POSIX API

T2 Hypervisor

Virtual Hardware

Kernel A

Win32 API

POSIX API

T2 Hypervisor

Virtual Hardware

Kernel B

Win32 API
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Type-2/Hosted Hypervisor

Hardware
Kernel
POSIX API
n

o Implemented as normal process on top Popular examples:
of an OS e KVM,
@ Doesn’t reinvent the wheel o VMware
@ Performance may suffer Server /Workstation,
@ Requires Host-OS support for CPU's e VirtualBox,
virtualisation features ° ..
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Paravirtualisation

Why all the trouble?
Just “port” a guest operating system to the interface of your choice.
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Paravirtualisation

Why all the trouble?
Just “port” a guest operating system to the interface of your choice.

+ Better performance

+ Simplified VMM

- Maintainance cost

- Source code of guest OS required (& modification allowed)

Compromise: Paravirtualized drivers for 1/O performance (KVM virtio, VMware)

Examples: Usermode Linux, [*Linux, Xen/XenoLinux, DragonFlyBSD VKERNEL, ...
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Virtualised ABI

Why deal with the OS kernel at all? Just reimplement its interface!

Example: Wine

@ Reimplements (virtualizes) Windows ABI
@ Run unmodified Windows binaries
@ Windows API calls are mapped to host OS's (Linux/MacOS/*BSD/...) equivalents

e Huge moving target/maintainance effort
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Virtualised ABI

Why deal with the OS kernel at all? Just reimplement its interface!

Example: Wine

@ Reimplements (virtualizes) Windows ABI
@ Run unmodified Windows binaries
@ Windows API calls are mapped to host OS's (Linux/MacOS/*BSD/...) equivalents

e Huge moving target/maintainance effort

Also: API “virtualisation”: Recompile Windows applications as native applications
linking to winelib

25 /60



Recap — Virtualisation

o Classification criteria:

e Target? Hardware, OS ABI, OS API, ...
e Modified guest? Paravirtualisation
e Emulation vs. Virtualisation (Interpret all or only some instructions?)
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Recap — Virtualisation

o Classification criteria:

e Target? Hardware, OS ABI, OS API, ...
e Modified guest? Paravirtualisation
e Emulation vs. Virtualisation (Interpret all or only some instructions?)

@ Popek, Goldberg: “A virtual machine is an efficient, isolated duplicate of a real
machine.” implemented by a Virtual Machine Monitor (hypervisor).

o Type 1/bare-metal hypervisors run as kernel
o Type 2/hosted hypervisors run as applications on a conventional OS
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Is x86 Virtualizable?

@ x86 originally not virtualizable (push, pushf /popf, ... 17 instructions on the
Pentium)

@ Trapping on every privileged instruction too expensive
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Is x86 Virtualizable?

@ x86 originally not virtualizable (push, pushf /popf, ... 17 instructions on the
Pentium)

@ Trapping on every privileged instruction too expensive

e First commercial virtualisation solution for x86: VMware Workstation (~1999)

e Translate problematic instructions into appropriate calls to the VMM on the fly
(binary rewriting)

e Avoid costly traps for privileged instructions

e Decent performance but complex runtime translation engine; only common guests
(commercially) supported

@ Other examples: KQemu, Virtual Box, Valgrind
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Special Hardware Support

@ “Hardware-assisted virtualisation”
o CPU

e Virtual CPU mode, including kernel mode
o All guest instructions are virtualisable

o Memory
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Special Hardware Support

@ “Hardware-assisted virtualisation”
o CPU

e Virtual CPU mode, including kernel mode
o All guest instructions are virtualisable

o Memory

e Typically, VMs have very few (if any) VM-exits for CPU/memory virtualisation
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Special Hardware Support

Pentium 4 introduced hardware support for virtualisation in 2004:
Intel VT (AMD-V very similar)
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Special Hardware Support

Pentium 4 introduced hardware support for virtualisation in 2004:
Intel VT (AMD-V very similar)

@ Root mode vs. non-root mode
X i i App App
e Duplicate x86 protection rings

e Root mode runs hypervisor

e Non-root mode runs guest VM

Kernel

non-root mode

root mode

user mode

kernel mode

Hypervisor
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Special Hardware Support

Pentium 4 introduced hardware support for virtualisation in 2004:
Intel VT (AMD-V very similar)

@ Root mode vs. non-root mode

e Duplicate x86 protection rings
e Root mode runs hypervisor
e Non-root mode runs guest

Situations that Intel VT cannot handle trap to root mode (VM Exit)
Special memory region (VMCS/VMCB) holds guest state

Reduced software complexity

Supported by all major virtualisation solutions today.
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Instruction Emulation

Intel VT and AMD-V still require an instruction emulator, e.g. for
@ Running 16-bit code (not in AMD-V, current Intel VT)

e BIOS
e Boot loaders

e Handling memory-mapped 1/0

o Realized as non-present page
e Page fault on access
e Emulate offending instruction
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MMU Virtualisation

Early versions of Intel VT do not completely virtualize the MMU. The VMM has to
handle guest virtual memory.
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handle guest virtual memory.
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MMU Virtualisation

Early versions of Intel VT do not completely virtualize the MMU. The VMM has to
handle guest virtual memory.

Four different types of memory addresses:
hPA Host physical address
hVA Host virtual address
gPA Guest physical address
gVA Guest virtual address

Usually GPA == HVA or other simple mapping (e.g. constant offset).
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MMU Virtualisation

guest virtual address

guest
page table

guest physical address
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MMU Virtualisation

guest virtual address

guest
page table

guest physical address

host virtual address

host
page table

host physical address
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Shadow Page Tables

If the hardware can handle only one page table, the hypervisor must maintain a shadow
page table that

@ maps from GVA to HPA (“merging” guest and host page table),

@ must be adapted on changes to virtual memory layout.
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MMU Virtualisation

guest virtual address

guest
page table
guest physical address shadow
------------------- page table

host virtual address

host
page table \/

host physical address
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Shadow Paging in a Nutshell

execute guest code
trap to VMM on page fault

[' SW page table walk
(on guest page tables)

VMM

yes, host related page fault

mapping found? no, guest related

page fault

find host physical addr.
inject page fault

| setup shadow page table

resume guest
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Drawbacks of Shadow Paging

Maintaining shadow page tables causes significant overhead, because they need to be
updated or recreated on

@ guest page table modification,

@ guest address space switch.

Certain workloads are penalized.

36 /60



Second Level Address Translation (SLAT)

Intel Nehalem (Extended Page Table, EPT) and AMD Barcelona (Nested Paging)
microarchitectures introduced hardware support for MMU virtualisation.
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Second Level Address Translation (SLAT)

Intel Nehalem (Extended Page Table, EPT) and AMD Barcelona (Nested Paging)
microarchitectures introduced hardware support for MMU virtualisation.

The CPU can handle the guest and host page table at the same time and thus reduce
VM Exits by two orders of magnitude.
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Second Level Address Translation (SLAT)

Intel Nehalem (Extended Page Table, EPT) and AMD Barcelona (Nested Paging)
microarchitectures introduced hardware support for MMU virtualisation.

The CPU can handle the guest and host page table at the same time and thus reduce
VM Exits by two orders of magnitude.

This feature introduces a measurable constant overhead (< 1%).
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Guest Address Translation
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Guest Address Translation
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2D Page Table Walk

2016

|| idxa | idx3 | idx2 | idx1 | offset |

C] = guest PTE O = host PTE

“Hash, Don't Cache (the Page Table)”,

— Yaniv, Tsafrir
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2D Page Table Walk

2016

|| idxa | iax3 | idx2 | idx1 | offset |

= guest PTE O = host PTE

“Hash, Don't Cache (the Page Table)”,

— Yaniv, Tsafrir
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2D Page Table Walk
nCR3

2016

“Hash, Don't Cache (the Page Table)”,

3
|| idxa | i3 | idx2 | idx1 | offset | %

= guest PTE O = host PTE
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Shadow Paging vs. SLAT

Event Shadow Paging EPT
vTLB Fill 181,966,391
Guest Page Fault 13,987,802
CR Read/Write 3,000,321
vTLB Flush 2,328,044
Port 1/0 723,274 610,589
INVLPG 537,270
Hardware Interrupts 239,142 174,558
Memory-Mapped |/O 75,151 76,285
HLT 4,027 3,738
Interrupt Window 3,371 2,171
Sum 202,864,793 867,341
Runtime (sec) 645 470
Exit/sec 314,519 1,845

— Linux kernel compilation, from Steinberg, Kauer
“NOVA: A Microhypervisor-Based Secure Virtualization Architecture”, 2010
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Arm

Virtualisation Support since Cortex A15 ( 2010)
New processor mode "HYP” (PL2/EL2) — different from x86
Nested paging from the start

No processor-defined state layout (VMCS/VMCB) = Hypervisor saves/restores all
registers

e Interrupt controller (GIC) and generic timer have built-in virtualisation support

@ Hardware support for nested virtualisation
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TCB of Virtual Machines

The Trusted Computing Base of a Virtual Machine is the hardware and software
components you have to trust to guarantee this VM's security.
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TCB of Virtual Machines

The Trusted Computing Base of a Virtual Machine is the hardware and software
components you have to trust to guarantee this VM's security.

App App
VM
For e.g. KVM this
VM th
non-root mode (conservatively) in-

root mode cludes the Linux
kernel and Qemu.

user mode

kernel mode

Hypervisor
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Recap: Microkernels & L4Re

@ Small is beautiful: small TCB; security & safety, application-specific TCBs
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Recap: Microkernels & L4Re

@ Small is beautiful: small TCB; security & safety, application-specific TCBs

@ Real-time, multi-server, modular frameworks, fault containment, . ..

Isolated domains

L4Re: OS Framework ’ @

e Fiasco/L4Re Microkernel river|[MicroApe|[Microfep
Q L4Re Runtime Environment

@ L4Re user-level infrastructure

o ... supports Virtualisation @' L4Re Microkernel & Hypervisor Privileged

Devices Multi-Core CPU, Memory
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Shrinking the Hypervisor

VM
non-root mode
root mode
I
I
5 VMM Driver I Application
o]
4 2 2 user mode
= = E kernel mode

Microhypervisor
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- externalize virtualisation functions into user application
 - one VMM per VM (possibly specialized)
 


Shrinking the Hypervisor

VM

non-root mode

root mode

VMM | | Driver | Application ﬂ

user mode

eTT

TesA
TME3sA

K
b
= kernel mode

| I Microhypervisor

What needs to be in the Microhypervisor? ldeally nothing, but

@ VT-x instructions are privileged

@ Hypervisor has to validate guest state to enforce isolation
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- externalize virtualisation functions into user application
 - one VMM per VM (possibly specialized)
 


Microhypervisor vs. VMM

“Hypervisor” and “VMM" do not need to be synonymous. ..

Microhypervisor

o “Kernel part”
@ Provides & ensures isolation

@ Enables safe access to virtualisation
features to userspace

@ Mechanisms, no policies!

@ "“User-space part”

o Platform & device emulation

@ Design options!
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- Take everything from the hypervisor what can be implemented in userspace (without sacrificing performance), call this VMM.
 - The rest is the microhypervisor.
 - Both terms *can* refer to the same software component, if it fulfills both roles.
 


VMM Design Options

VM A VM B
Guest OS Guest OS

L4Re Microkernel / Hypervisor

e Typical: One VMM per VM (multi-VM VMMs possible)
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VMM Design Options

VM A VM B
Guest OS Guest OS

L4Re Microkernel / Hypervisor

e Typical: One VMM per VM (multi-VM VMMs possible)
@ Application-specific: simple vs. feature-rich
@ VMM is an untrusted user application

@ Border between guest and VMM is not the only one
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o VMM for Arm, MIPS, RISC V, and x86
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o VMM for Arm, MIPS, RISC V, and x86
@ Small

@ Uses virtio for guests
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o VMM for Arm, MIPS, RISC V, and x86
e Small
@ Uses virtio for guests

e Mainly (unmodified) Linux as guest OS, but others on request
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L4Re: KVM/L4

VM
x86 Qemu Guest OS
Complex and feature-rich VMM

Uses L%Linux to run KVM + Qemu _

Runs Windows

Used in production L4Re Microkernel / Hypervisor
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L4Re: KVM/L4

° x86 Sl s

o Complex and feature-rich VMM

@ Uses [*Linux to run KVM + Qemu _

@ Runs Windows

@ Used in production L4Re Microkernel / Hypervisor

Shows flexibility of L4Re architecture:
integration of existing virtualization solutions, e.g. KVM
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...is a paravirtualized Linux running as a user-level application on top
of L4Re; first presented at SOSP'97

@ Regard “L4Re"” as new hardware platform in Linux and implement

o Syscall interface: kernel entry, signal delivery, copy from/ to userspace
o Hardware access: CPU state/features, MMU, interrupts, MMIO & port I/O
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...is a paravirtualized Linux running as a user-level application on top
of L4Re; first presented at SOSP'97

@ Regard “L4Re"” as new hardware platform in Linux and implement

o Syscall interface: kernel entry, signal delivery, copy from/ to userspace
o Hardware access: CPU state/features, MMU, interrupts, MMIO & port I/O

@ Stub drivers to connect to other L4 services

@ Slowdown of ~5% for typical loads

@ Supports x86-32, x86-64, ARM32 and ARM64 (aarch64), including SMP

@ Actively maintained (latest release based on Linux 6.10) and used in production
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[*Linux Architecture

Application Application Application Application

i System-Call Interface

File Systems Networking Processes Memory
VFS Sockets Scheduling Management

File System Impl. Protocols IPC Page allocation
Address spaces
Swapping

Device Drivers

Hardware Access

Hardware
CPU, Memory, PCI, Devices
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[*Linux Architecture
L4 Task L4 Task L4 Task L4 Task

L4 Task

Arch-

Depend. System-Call Interface

Linux File Systems Networking Processes Memory
Kernel VFS Sockets Scheduling Management
File System Impl. Protocols IPC Page allocation
Address spaces
Swapping

Arch-

Ind. Device Drivers

Hardware Access

‘ Hardware ‘
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Software Abstractions

Interface between kernel/microhypervisor and user-level/VMM

Requirements:
@ Asynchronous execution model of OS kernels (IRQs)
o Paravirtualization 4+ hardware-assisted virtualisation

@ Smooth integration into system

51/60


- requirements for practical system
 - integration: maintain ukernel isolation + small changes to Linux
 -> "Let's see how L4Linux approaches these"
 


Challenges

Fundamental problem: How to map three logical levels of privilege
(Linux application, Linux kernel, L4Re microkernel /hypervisor) onto
the two privilege levels the platform provides (user/kernel mode)?
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Challenges

Fundamental problem: How to map three logical levels of privilege
(Linux application, Linux kernel, L4Re microkernel /hypervisor) onto
the two privilege levels the platform provides (user/kernel mode)?

CPU: Run Linux kernel & applications in L4Linux Linux App
microkernel user land Kernel

Linux App

Memory: Linux kernel manages memory for .
Linux applications L4Re Mlcro_kernel /
Hypervisor
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Regular/"Legacy” L4 Thread

o Executes XOR waits (for event,
messages, IRQs)

@ Hard to map OS kernel onto

53/60



Regular/"Legacy” L4 Thread

@ Executes XOR waits (for event, e Similar to how a CPU works:
messages, IRQs) executes AND get interrupts

@ Hard to map OS kernel onto @ “Interruptible thread”

53/60



Regular/“Legacy” L4 Thread

@ Executes XOR waits (for event, e Similar to how a CPU works:
messages, IRQs) executes AND get interrupts

@ Hard to map OS kernel onto @ “Interruptible thread”

@ L4 thread (any thread can become a vCPU)

53/60



Regular/“Legacy” L4 Thread

@ Executes XOR waits (for event, e Similar to how a CPU works:
messages, IRQs) executes AND get interrupts

@ Hard to map OS kernel onto @ “Interruptible thread”

@ L4 thread (any thread can become a vCPU)
@ Interrupt-style excution

53/60



Regular/“Legacy” L4 Thread

@ Executes XOR waits (for event, e Similar to how a CPU works:
messages, IRQs) executes AND get interrupts

@ Hard to map OS kernel onto @ “Interruptible thread”

@ L4 thread (any thread can become a vCPU)
@ Interrupt-style excution
e Events transition execution to user-defined entry points (“entry vector”)

53/60



Regular/“Legacy” L4 Thread

@ Executes XOR waits (for event, e Similar to how a CPU works:
messages, IRQs) executes AND get interrupts

@ Hard to map OS kernel onto @ “Interruptible thread”

@ L4 thread (any thread can become a vCPU)
@ Interrupt-style excution

e Events transition execution to user-defined entry points (“entry vector”)
o Virtual interrupt flag (IRQs disabled == normal thread)

53/60



Regular/“Legacy” L4 Thread

@ Executes XOR waits (for event, e Similar to how a CPU works:
messages, IRQs) executes AND get interrupts

@ Hard to map OS kernel onto @ “Interruptible thread”

@ L4 thread (any thread can become a vCPU)
@ Interrupt-style excution

e Events transition execution to user-defined entry points (“entry vector”)
o Virtual interrupt flag (IRQs disabled == normal thread)

@ Virtual user mode

53/60



Regular/“Legacy” L4 Thread

@ Executes XOR waits (for event, e Similar to how a CPU works:
messages, IRQs) executes AND get interrupts
@ Hard to map OS kernel onto @ “Interruptible thread”

@ L4 thread (any thread can become a vCPU)
@ Interrupt-style excution

e Events transition execution to user-defined entry points (“entry vector”)
o Virtual interrupt flag (IRQs disabled == normal thread)

@ Virtual user mode
o vCPU can switch to a different L4 task (address space) for execution

53/60



Regular/“Legacy” L4 Thread

@ Executes XOR waits (for event, e Similar to how a CPU works:
messages, IRQs) executes AND get interrupts
@ Hard to map OS kernel onto @ “Interruptible thread”

@ L4 thread (any thread can become a vCPU)
@ Interrupt-style excution

e Events transition execution to user-defined entry points (“entry vector”)
o Virtual interrupt flag (IRQs disabled == normal thread)

@ Virtual user mode

o vCPU can switch to a different L4 task (address space) for execution
o Returns to “home task"” /kernel for any received event

53/60



Regular/“Legacy” L4 Thread

@ Executes XOR waits (for event, e Similar to how a CPU works:
messages, IRQs) executes AND get interrupts
@ Hard to map OS kernel onto @ “Interruptible thread”

@ L4 thread (any thread can become a vCPU)
@ Interrupt-style excution

e Events transition execution to user-defined entry points (“entry vector”)
o Virtual interrupt flag (IRQs disabled == normal thread)

@ Virtual user mode

o vCPU can switch to a different L4 task (address space) for execution
o Returns to “home task"” /kernel for any received event

@ State save area: Memory area to hold CPU & message state
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vCPUs in *Linux

L4Linux| |L4Linux| ([L4Linux L4Linux| [L4Linux| |L4Linux
a) Process Process| [Process b) Process| [Process| [Process

21 © |

L4Linux Kernel L4Linux Kernel

Microkernel Microkernel

- === === === === === == == = - N

4
E Legend: s Thread @ vCPU i

FIGURE 3: (a) L4Linux implemented
with threads and (b) L4Linux implemented
with vCPUs.

“Virtual Processors as Kernel Interface”, 2010

— from Lackorzynski, Warg, Peter
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Event Processing, e.g. Syscalls

@ Linux syscall interface (int 0x80) causes trap L4Linux app

(1) (4)

L4Linux
kernel

(2) (3)

Fiasco.OC
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@ Heavyweight compared to native Linux system (1) (4)
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Event Processing, e.g. Syscalls

@ Linux syscall interface (int 0x80) causes trap L4Linux app
o L*Linux server receives exception IPC
@ Heavyweight compared to native Linux system (1) (4)
calls:
o Two address space switches (native: zero) LALinux

o Two Fiasco kernel entries + exits (native: one) kernel

= Hardware-assisted virtualisation

o Nicely integrates into vCPU abstraction (2) (3)
o Nested paging by L4: :Task/L4: : VM .
Fiasco.OC
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- native AS switches also 2 with KPTI (kernel page table isolation) = Meltdown mitigation; no longer needed
 


Device Access

@ Options:
e Exclusive: Pass-through
o SR-IOV: Hardware-assisted sharing (virtualised hardware)
o Sharing: Microkernel-based service/driver 4 guest interface (VirtlO)
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Device Access

@ Options:

e Exclusive: Pass-through

o SR-IOV: Hardware-assisted sharing (virtualised hardware)

o Sharing: Microkernel-based service/driver 4 guest interface (VirtlO)
@ Pass through resources:

o MMIO (direct mapping)

o Interrupts via Microkernel /Hypervisor

o Interrupts delivered directly to guest on recent hardware
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- SR-IOV (single-root input/output virtualization), mainly for NICs 


e Standard for virtual devices
@ Defines common data structures
e Widely supported (Linux, *BSD, Windows, QNX, ...)

@ Optimised for virtualisation, but also usable for hardware devices

57 /60



IOMMU

Important hardware building block

MMU for devices
Indirection & Protection
o Limit device access to memory — prevents DMA attacks by guests, devices/firmware,

o Guest can use gPA (instead of hPA) to program DMA

Programmed by assigning L4: : Task to device
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[*Linux as a Toolbox

Reuse large parts of code from Linux:

Filesystems
Network stack

o
@ Device drivers
(]
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[*Linux as a Toolbox

Reuse large parts of code from Linux:

Filesystems
Network stack

o
@ Device drivers
(]

Hybrid applications can provide these services to native L4 applications.
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- more in an upcoming lecture 


Research Paths

@ Realtime: fully preemptive kernel, realtime drivers & services
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Research Paths

@ Realtime: fully preemptive kernel, realtime drivers & services
@ Security: capability system, reduced TCB
e HPC/Cloud: scalability, OS-noise/execution variability, isolation

@ Techniques

e Combining critical & non-critical applications in a single system
e Split off critical parts from applications and run them on L4Re
e Use VM to provide comon runtime, then decouple critical applications
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