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Goals

Give you an overview about:
Virtualisation and virtual machines in general
Hardware-assisted virtualisation on x86

We will not discuss:
Lots and lots of details
Language runtimes
How to use Xen/KVM/. . .
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- overview, not specific implementation
 - also: how does this fit into the MOS lecture? ;-
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“Virtual machines have finally arrived. Dismissed for a
number of years as merely academic curiosities, they are
now seen as cost-effective techniques for organizing com-
puter systems resources to provide extraordinary system
flexibility and support for certain unique applications.”

— Goldberg: “Survey of Virtual Machine Research”, 1974
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Early History: IBM

CC
-B

Y,
Er

ik
Pi

tt
i

4 / 60

https://www.flickr.com/photos/epitti/2370873167/


Early History: IBM

Virtualisation was pioneered with IBM’s CP/CMS in ~1967 running on System/360 and
System/370:

CP Control Program that provided System/360 virtual machines
Memory protection between VMs
Preemptive scheduling

CMS Cambridge (later Conversational) Monitor System — single-user OS

At the time more flexible and efficient than time-sharing multi-user systems.

Gave rise to IBM’s VM line of operating systems:
First release: 1972
Latest release: z/VM 7.4 (20 September 2024)
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Virtualisation is Great

Consolidation: improve server utilization
Isolation: isolate services for security reasons or because of incompatibility
Reuse: run legacy software
Development

. . . but was confined to the mainframe world for a very long time.
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Starting Point

You want to write a new operating system that is
secure
trustworthy
small
fast
fancy

but . . .
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Commodity Applications

Users expect to run all the software they are used to (“legacy support”):
Browsers
MS Word
iTunes
certified business applications
new (Windows/DirectX) and ancient (DOS) games

Porting or rewriting all applications is infeasible!
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- infeasible because of effort, closed source, maintenance
 - got easier due to Web-based applications (including games)
 



Commodity Hardware

Users expect to run an (x86) OS on any PC which requires support for:
input devices (USB, PS2, keyboards, mice, tablets, . . . )
graphics adapters (AMD, Intel, nVidia, . . . )
disks (SATA, SAS, USB, Thunderbolt, . . . )
network (Ethernet, Wifi, . . . )
printer, scanner, webcams, . . .

Porting or rewriting all drivers is infeasible!

9 / 60

- Infeasible because of effort, lacking documentation, maintainance
 



One Solution: Virtualisation

“By virtualizing a commodity OS [. . . ] we gain support for legacy applications,
and devices we don’t want to write drivers for.”

“All this allows the research community to finally escape the straitjacket of
POSIX or Windows compatibility [. . . ]”

— Roscoe, Elphinstone, Heiser: “Hype and virtue” (2007)
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Virtualisation

“Virtual is most generally used to describe something as being the same as
something else in almost every way, except perhaps in name or some other
minor, technical sense.” — https://www.dictionary.com/

“A virtual machine is taken to be an efficient, isolated duplicate of the real
machine.” — Popek, Goldberg: “Formal requirements[. . . ]”, 1974

“All problems in computer science can be solved by another level of indirection.”
— Butler Lampson, 1972

“...except for the problem of too many layers of indirection.”
— David Wheeler
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Emulation

Suppose you develop on your x86 workstation (Host) an operating system that is to run
on an ARM-based mobile device (Guest).

An emulator for G running on H precisely emulates G’s:
CPU
Memory subsystem
I/O devices

Ideally, programs running on the emulated G exhibit the same behaviour as when
running on a real G (except for timing).
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Emulation

The emulator
simulates every instruction in software as it is executed,
prevents G from directly accessing to H’s resources,
maps G’s devices onto H’s devices, and
may run multiple times on H.
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Mapping G to H

G and H may have considerably different
instructions sets
hardware devices

making emulation slow and complex (depending on emulation fidelity).
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Virtualisation

What if G == H?

If host and emulated hardware architecture is (about) the same,
interpreting every executed instruction seems unnecessary
near-native execution speed should be possible.

This is (easily) possible, if the architecture is virtualisable.
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Idea: Executing the guest as a user process

Run the guest operating system as a normal user process on the host.

But this is not just about executing instructions!

We need to emulate virtual hardware. The software providing the illusion of a real
machine is the Virtual Machine Monitor (VMM)1.

1Often used synonymously with “hypervisor”. We’ll come back to tht later.
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A hypothetical instruction: OUT

Suppose our system has an instruction OUT that writes to a device register in kernel
mode.

But we run it (virtualised) in user mode. How should OUT behave?

Option 1
Just do nothing!

Option 2
Cause a trap to kernel mode!

Otherwise device access cannot be (easily) virtualized.
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Virtualizability

. . . is a property of the Instruction Set Architecture (ISA).

Instructions are divided into two classes:

Sensitive
A sensitive instruction changes or
depends in its behavior on the
processor’s configuration or mode.

Privileged
A privileged instruction causes a
trap when executed in user mode.
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Trap & Emulate

An ISA is virtualizable, i.e. a VMM can be written, if all sensitive instructions are
privileged.

Approach:
Execute guest in unprivileged mode
Emulate all instructions that cause traps

Popek, Goldberg: “Formal Requirements for Virtualizable Third-Generation
Architectures”, 1973
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VMM

The Virtual Machine Monitor (VMM) needs to handle:
address space changes
device accesses
system calls
. . .

Most of these are not problematic, because they trap to the host kernel.
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Where to put the VMM?

Hardware

Kernel

Application

POSIX API

Application

POSIX API
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Type-1/Bare-Metal/Native Hypervisor
Hardware

T1 Hypervisor

Virtual Hardware

Kernel A

Application

Win32 API

Virtual Hardware

Kernel B

Application

POSIX API

Application

POSIX API

Implemented directly on hardware
No OS overhead
Complete control over host resources
High maintainance effort

Popular examples:
Xen
Hyper-V
VMware ESXi
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Type-2/Hosted Hypervisor
Hardware

Kernel

Application

POSIX API

T2 Hypervisor

POSIX API

Virtual Hardware

Kernel A

Application

Win32 API

T2 Hypervisor

POSIX API

Virtual Hardware

Kernel B

Application

Win32 API

Implemented as normal process on top
of an OS
Doesn’t reinvent the wheel
Performance may suffer
Requires Host-OS support for CPU’s
virtualisation features

Popular examples:
KVM,
VMware
Server/Workstation,
VirtualBox,
. . .
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Paravirtualisation

Why all the trouble?
Just “port” a guest operating system to the interface of your choice.

+ Better performance
+ Simplified VMM
- Maintainance cost
- Source code of guest OS required (& modification allowed)

Compromise: Paravirtualized drivers for I/O performance (KVM virtio, VMware)

Examples: Usermode Linux, L4Linux, Xen/XenoLinux, DragonFlyBSD VKERNEL, . . .
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Virtualised ABI

Why deal with the OS kernel at all? Just reimplement its interface!

Example: Wine
Reimplements (virtualizes) Windows ABI
Run unmodified Windows binaries
Windows API calls are mapped to host OS’s (Linux/MacOS/*BSD/. . . ) equivalents
Huge moving target/maintainance effort

Also: API “virtualisation”: Recompile Windows applications as native applications
linking to winelib
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Recap — Virtualisation

Classification criteria:
Target? Hardware, OS ABI, OS API, . . .
Modified guest? Paravirtualisation
Emulation vs. Virtualisation (Interpret all or only some instructions?)

Popek, Goldberg: “A virtual machine is an efficient, isolated duplicate of a real
machine.” implemented by a Virtual Machine Monitor (hypervisor).

Type 1/bare-metal hypervisors run as kernel
Type 2/hosted hypervisors run as applications on a conventional OS
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Is x86 Virtualizable?

x86 originally not virtualizable (push, pushf/popf, . . . 17 instructions on the
Pentium)
Trapping on every privileged instruction too expensive

First commercial virtualisation solution for x86: VMware Workstation (~1999)

Translate problematic instructions into appropriate calls to the VMM on the fly
(binary rewriting)
Avoid costly traps for privileged instructions
Decent performance but complex runtime translation engine; only common guests
(commercially) supported

Other examples: KQemu, Virtual Box, Valgrind
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Special Hardware Support

“Hardware-assisted virtualisation”
CPU

Virtual CPU mode, including kernel mode
All guest instructions are virtualisable

Memory

Typically, VMs have very few (if any) VM-exits for CPU/memory virtualisation

28 / 60



Special Hardware Support

“Hardware-assisted virtualisation”
CPU

Virtual CPU mode, including kernel mode
All guest instructions are virtualisable

Memory
Typically, VMs have very few (if any) VM-exits for CPU/memory virtualisation

28 / 60



Special Hardware Support

Pentium 4 introduced hardware support for virtualisation in 2004:
Intel VT (AMD-V very similar)

Root mode vs. non-root mode

Duplicate x86 protection rings
Root mode runs hypervisor
Non-root mode runs guest

Situations that Intel VT cannot handle trap to root mode (VM Exit)
Special memory region (VMCS/VMCB) holds guest state
Reduced software complexity

Supported by all major virtualisation solutions today.

29 / 60



Special Hardware Support

Pentium 4 introduced hardware support for virtualisation in 2004:
Intel VT (AMD-V very similar)

Root mode vs. non-root mode
Duplicate x86 protection rings
Root mode runs hypervisor
Non-root mode runs guest

Situations that Intel VT cannot handle trap to root mode (VM Exit)
Special memory region (VMCS/VMCB) holds guest state
Reduced software complexity

Supported by all major virtualisation solutions today.

Hypervisor

user mode

kernel mode

VM

root mode

non-root mode
Kernel

App App
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Instruction Emulation

Intel VT and AMD-V still require an instruction emulator, e.g. for
Running 16-bit code (not in AMD-V, current Intel VT)

BIOS
Boot loaders

Handling memory-mapped I/O
Realized as non-present page
Page fault on access
Emulate offending instruction

. . .
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MMU Virtualisation

Early versions of Intel VT do not completely virtualize the MMU. The VMM has to
handle guest virtual memory.

Four different types of memory addresses:
hPA Host physical address
hVA Host virtual address
gPA Guest physical address
gVA Guest virtual address

Usually GPA == HVA or other simple mapping (e.g. constant offset).

31 / 60



MMU Virtualisation

Early versions of Intel VT do not completely virtualize the MMU. The VMM has to
handle guest virtual memory.

Four different types of memory addresses:
hPA Host physical address
hVA Host virtual address
gPA Guest physical address
gVA Guest virtual address

Usually GPA == HVA or other simple mapping (e.g. constant offset).

31 / 60



MMU Virtualisation

Early versions of Intel VT do not completely virtualize the MMU. The VMM has to
handle guest virtual memory.

Four different types of memory addresses:
hPA Host physical address
hVA Host virtual address
gPA Guest physical address
gVA Guest virtual address

Usually GPA == HVA or other simple mapping (e.g. constant offset).

31 / 60



MMU Virtualisation
Memory VirtualizationVirtualization on x86

MOS - Virtualization slide 42 32 / 60
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Shadow Page Tables

If the hardware can handle only one page table, the hypervisor must maintain a shadow
page table that

maps from GVA to HPA (“merging” guest and host page table),
must be adapted on changes to virtual memory layout.

33 / 60



MMU Virtualisation
Memory VirtualizationVirtualization on x86
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Shadow Paging in a Nutshell
Shadow Paging
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Drawbacks of Shadow Paging

Maintaining shadow page tables causes significant overhead, because they need to be
updated or recreated on

guest page table modification,
guest address space switch.

Certain workloads are penalized.
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Second Level Address Translation (SLAT)

Intel Nehalem (Extended Page Table, EPT) and AMD Barcelona (Nested Paging)
microarchitectures introduced hardware support for MMU virtualisation.

The CPU can handle the guest and host page table at the same time and thus reduce
VM Exits by two orders of magnitude.

This feature introduces a measurable constant overhead (< 1%).

37 / 60



Second Level Address Translation (SLAT)

Intel Nehalem (Extended Page Table, EPT) and AMD Barcelona (Nested Paging)
microarchitectures introduced hardware support for MMU virtualisation.

The CPU can handle the guest and host page table at the same time and thus reduce
VM Exits by two orders of magnitude.

This feature introduces a measurable constant overhead (< 1%).

37 / 60



Second Level Address Translation (SLAT)

Intel Nehalem (Extended Page Table, EPT) and AMD Barcelona (Nested Paging)
microarchitectures introduced hardware support for MMU virtualisation.

The CPU can handle the guest and host page table at the same time and thus reduce
VM Exits by two orders of magnitude.

This feature introduces a measurable constant overhead (< 1%).

37 / 60



Guest Address Translation
Recap: Address Translation
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Guest Address Translation

Guest Address Translation
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2D Page Table Walk

63 48 47              39 38              30 29              21 20              12 11          0

sign ext. idx 4 idx 3 idx 2 idx 1 offset

PTE

CR3

PTE
PTE

PTE

Figure 1: Bare-metal radix page table walk.

63 52 51 12 11 0
0’s padding PPN attributes

Table 1: Radix PTE structure.

Figure 1 depicts the radix page table structure and page
walk process. Current x86-64 processors utilize 48-bit virtual
addresses and no more than 52 bits for the physical addresses.
With 4KB pages, the 48-bit virtual address decomposes into
a 36-bit VPN and a 12-bit page offset. The 36-bit VPN
further decomposes into four 9-bit indexes, such that each
index selects a PTE from its corresponding level in the tree.
Each PTE contains the physical address of a table in the
next level. The topmost, root level table is pointed to by the
CR3 register. PTEs in the lowest level contain the PPNs of
the actual program pages. Since the page indexes consist of
9 bits, there are 29 = 512 PTEs in each tree node, and since
the tree nodes reside in 4KB pages (= 212 bytes), each PTE
consists of 212/29 = 8 bytes. PTEs encode more information
than just the next PPN, in the format shown in Table 1.

Notably, PTEs are stored in the regular L1, L2 and L3
caches to accelerate the page walks [7]. In modern x86-64
processors, these caches consist of 64-byte cache lines. Radix
page tables arrange the PTEs contiguously, one after the
other, so each cache line encapsulates exactly eight PTEs.
Lowest level PTEs that are co-located within a cache line
correspond to eight consecutive pages that are contiguous in
the virtual memory space. Thus, whenever the MMU accesses
a PTE, its seven same-line neighboring PTEs are implicitly
prefetched to the data cache hierarchy, and there is a non-
negligible chance that these seven will be accessed soon due
to spatial locality.

2.2 Two-Dimensional Address Translation
Machine virtualization technology allows multiple guest

OSes to run on the same physical host system encapsulated
within virtual machines (VMs). Guests do not control the
physical host resources, and what they consider to be phys-
ical memory addresses are in fact guest physical addresses.
The host creates this abstraction by introducing another
dimension of address translation, called the nested dimen-
sion. In the past, this abstraction was created using “shadow
page tables,” a software-only technique that involves write-
protecting the memory pages that the guest is using as page
tables [2]. Each update of these pages triggers an exit to
the host, which is thus made aware of the guest’s view of its
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memory. The host in fact maintains another set of pages—the
shadow pages—that serve as the real page table hierarchy of
the guest.

Shadow page tables are difficult to implement and in-
duce substantial overheads caused by the repeated guest-host
switches upon modifications of write-protected pages [12,13].
These drawbacks motivated chip vendors to provide hard-
ware constructs that directly support the host in its efforts to
efficiently maintain the illusion that guest OSes control the
physical memory. Both AMD and Intel have implemented
nested paging [4, 28], which supports two levels of address
translation. The guest maintains a set of page tables that map
between guest virtual addresses (GVAs) to guest physical
addresses (GPAs). The host maintains a different set of page
tables that map GPAs to host physical addresses (HPAs). The
hardware is responsible for seamlessly “concatenating” the
two layers of translation, by performing a two-dimensional
page walk (as opposed to the one-dimensional page walk in
bare-metal setups). Nested paging lets the guest manage its
own page tables and eliminates the need for host intervention.
The downside is that nested paging squares the number of
memory references required to obtain a translation.

Figure 2 outlines a 2D page walk in the x86-64 architecture.
The MMU references the memory hierarchy 24 times in the
order given by the numbered shapes. The squares (numbered
5, 10, 15, and 20) denote the guest PTEs, and the circles
(numbered 1–4, 6–9, 11–14, 16–19, and 21–24) denote the
host PTEs. The four references to guest PTEs are analogous
to the four references in the 1D page walk. Bare-metal page
walks access PTEs by their physical addresses, whereas guests
access PTEs by their GPAs. Each of these four GPAs is
translated with a nested page walk to produce the HPA of
the corresponding PTE. The guest page walk outcome is a
fifth GPA that points to the requested data page. It requires
an additional nested page walk before the page walk process
is complete (numbered 21–24). Note that 2D page walks
make use of two separate CR3 registers for the guest and the
nested dimensions. The guest CR3 register and the virtual
page number combine to start the guest page table walk. The
nested CR3 register is used five times to initialize each of the
five nested page table walks.
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addresses and no more than 52 bits for the physical addresses.
With 4KB pages, the 48-bit virtual address decomposes into
a 36-bit VPN and a 12-bit page offset. The 36-bit VPN
further decomposes into four 9-bit indexes, such that each
index selects a PTE from its corresponding level in the tree.
Each PTE contains the physical address of a table in the
next level. The topmost, root level table is pointed to by the
CR3 register. PTEs in the lowest level contain the PPNs of
the actual program pages. Since the page indexes consist of
9 bits, there are 29 = 512 PTEs in each tree node, and since
the tree nodes reside in 4KB pages (= 212 bytes), each PTE
consists of 212/29 = 8 bytes. PTEs encode more information
than just the next PPN, in the format shown in Table 1.

Notably, PTEs are stored in the regular L1, L2 and L3
caches to accelerate the page walks [7]. In modern x86-64
processors, these caches consist of 64-byte cache lines. Radix
page tables arrange the PTEs contiguously, one after the
other, so each cache line encapsulates exactly eight PTEs.
Lowest level PTEs that are co-located within a cache line
correspond to eight consecutive pages that are contiguous in
the virtual memory space. Thus, whenever the MMU accesses
a PTE, its seven same-line neighboring PTEs are implicitly
prefetched to the data cache hierarchy, and there is a non-
negligible chance that these seven will be accessed soon due
to spatial locality.

2.2 Two-Dimensional Address Translation
Machine virtualization technology allows multiple guest

OSes to run on the same physical host system encapsulated
within virtual machines (VMs). Guests do not control the
physical host resources, and what they consider to be phys-
ical memory addresses are in fact guest physical addresses.
The host creates this abstraction by introducing another
dimension of address translation, called the nested dimen-
sion. In the past, this abstraction was created using “shadow
page tables,” a software-only technique that involves write-
protecting the memory pages that the guest is using as page
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shadow pages—that serve as the real page table hierarchy of
the guest.

Shadow page tables are difficult to implement and in-
duce substantial overheads caused by the repeated guest-host
switches upon modifications of write-protected pages [12,13].
These drawbacks motivated chip vendors to provide hard-
ware constructs that directly support the host in its efforts to
efficiently maintain the illusion that guest OSes control the
physical memory. Both AMD and Intel have implemented
nested paging [4, 28], which supports two levels of address
translation. The guest maintains a set of page tables that map
between guest virtual addresses (GVAs) to guest physical
addresses (GPAs). The host maintains a different set of page
tables that map GPAs to host physical addresses (HPAs). The
hardware is responsible for seamlessly “concatenating” the
two layers of translation, by performing a two-dimensional
page walk (as opposed to the one-dimensional page walk in
bare-metal setups). Nested paging lets the guest manage its
own page tables and eliminates the need for host intervention.
The downside is that nested paging squares the number of
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Figure 2 outlines a 2D page walk in the x86-64 architecture.
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fifth GPA that points to the requested data page. It requires
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addresses and no more than 52 bits for the physical addresses.
With 4KB pages, the 48-bit virtual address decomposes into
a 36-bit VPN and a 12-bit page offset. The 36-bit VPN
further decomposes into four 9-bit indexes, such that each
index selects a PTE from its corresponding level in the tree.
Each PTE contains the physical address of a table in the
next level. The topmost, root level table is pointed to by the
CR3 register. PTEs in the lowest level contain the PPNs of
the actual program pages. Since the page indexes consist of
9 bits, there are 29 = 512 PTEs in each tree node, and since
the tree nodes reside in 4KB pages (= 212 bytes), each PTE
consists of 212/29 = 8 bytes. PTEs encode more information
than just the next PPN, in the format shown in Table 1.

Notably, PTEs are stored in the regular L1, L2 and L3
caches to accelerate the page walks [7]. In modern x86-64
processors, these caches consist of 64-byte cache lines. Radix
page tables arrange the PTEs contiguously, one after the
other, so each cache line encapsulates exactly eight PTEs.
Lowest level PTEs that are co-located within a cache line
correspond to eight consecutive pages that are contiguous in
the virtual memory space. Thus, whenever the MMU accesses
a PTE, its seven same-line neighboring PTEs are implicitly
prefetched to the data cache hierarchy, and there is a non-
negligible chance that these seven will be accessed soon due
to spatial locality.

2.2 Two-Dimensional Address Translation
Machine virtualization technology allows multiple guest

OSes to run on the same physical host system encapsulated
within virtual machines (VMs). Guests do not control the
physical host resources, and what they consider to be phys-
ical memory addresses are in fact guest physical addresses.
The host creates this abstraction by introducing another
dimension of address translation, called the nested dimen-
sion. In the past, this abstraction was created using “shadow
page tables,” a software-only technique that involves write-
protecting the memory pages that the guest is using as page
tables [2]. Each update of these pages triggers an exit to
the host, which is thus made aware of the guest’s view of its
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memory. The host in fact maintains another set of pages—the
shadow pages—that serve as the real page table hierarchy of
the guest.

Shadow page tables are difficult to implement and in-
duce substantial overheads caused by the repeated guest-host
switches upon modifications of write-protected pages [12,13].
These drawbacks motivated chip vendors to provide hard-
ware constructs that directly support the host in its efforts to
efficiently maintain the illusion that guest OSes control the
physical memory. Both AMD and Intel have implemented
nested paging [4, 28], which supports two levels of address
translation. The guest maintains a set of page tables that map
between guest virtual addresses (GVAs) to guest physical
addresses (GPAs). The host maintains a different set of page
tables that map GPAs to host physical addresses (HPAs). The
hardware is responsible for seamlessly “concatenating” the
two layers of translation, by performing a two-dimensional
page walk (as opposed to the one-dimensional page walk in
bare-metal setups). Nested paging lets the guest manage its
own page tables and eliminates the need for host intervention.
The downside is that nested paging squares the number of
memory references required to obtain a translation.

Figure 2 outlines a 2D page walk in the x86-64 architecture.
The MMU references the memory hierarchy 24 times in the
order given by the numbered shapes. The squares (numbered
5, 10, 15, and 20) denote the guest PTEs, and the circles
(numbered 1–4, 6–9, 11–14, 16–19, and 21–24) denote the
host PTEs. The four references to guest PTEs are analogous
to the four references in the 1D page walk. Bare-metal page
walks access PTEs by their physical addresses, whereas guests
access PTEs by their GPAs. Each of these four GPAs is
translated with a nested page walk to produce the HPA of
the corresponding PTE. The guest page walk outcome is a
fifth GPA that points to the requested data page. It requires
an additional nested page walk before the page walk process
is complete (numbered 21–24). Note that 2D page walks
make use of two separate CR3 registers for the guest and the
nested dimensions. The guest CR3 register and the virtual
page number combine to start the guest page table walk. The
nested CR3 register is used five times to initialize each of the
five nested page table walks.
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Shadow Paging vs. SLAT

Event Shadow Paging EPT

vTLB Fill 181,966,391
Guest Page Fault 13,987,802
CR Read/Write 3,000,321
vTLB Flush 2,328,044
Port I/O 723,274 610,589
INVLPG 537,270
Hardware Interrupts 239,142 174,558
Memory-Mapped I/O 75,151 76,285
HLT 4,027 3,738
Interrupt Window 3,371 2,171

Sum 202,864,793 867,341
Runtime (sec) 645 470
Exit/sec 314,519 1,845

— Linux kernel compilation, from Steinberg, Kauer
“NOVA: A Microhypervisor-Based Secure Virtualization Architecture”, 2010
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Arm

Virtualisation Support since Cortex A15 ( 2010)
New processor mode “HYP” (PL2/EL2) — different from x86
Nested paging from the start
No processor-defined state layout (VMCS/VMCB) ⇒ Hypervisor saves/restores all
registers
Interrupt controller (GIC) and generic timer have built-in virtualisation support
Hardware support for nested virtualisation
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TCB of Virtual Machines

The Trusted Computing Base of a Virtual Machine is the hardware and software
components you have to trust to guarantee this VM’s security.

Hypervisor

user mode

kernel mode

VM

root mode

non-root mode
Kernel

App App

For e.g. KVM this
(conservatively) in-
cludes the Linux
kernel and Qemu.
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Small is beautiful: small TCB; security & safety, application-specific TCBs
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L4Re: OS Framework
Fiasco/L4Re Microkernel
L4Re user-level infrastructure
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Shrinking the Hypervisor

Microhypervisor

user mode

kernel mode

VM

tra
p

root mode

non-root mode

Application
Application

Application
Driver

Driver

sy
sca

ll

sy
sca

ll

VMM

sy
sca

ll

What needs to be in the Microhypervisor? Ideally nothing, but
VT-x instructions are privileged
Hypervisor has to validate guest state to enforce isolation
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- externalize virtualisation functions into user application
 - one VMM per VM (possibly specialized)
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Microhypervisor vs. VMM

“Hypervisor” and “VMM” do not need to be synonymous. . .

Microhypervisor
“Kernel part”
Provides & ensures isolation
Enables safe access to virtualisation
features to userspace
Mechanisms, no policies!

VMM
“User-space part”
Platform & device emulation
Design options!

45 / 60

- Take everything from the hypervisor what can be implemented in userspace (without sacrificing performance), call this VMM.
 - The rest is the microhypervisor.
 - Both terms *can* refer to the same software component, if it fulfills both roles.
 



VMM Design Options

VMM Design Options
• Typical: One VMM per VM (multi-VM VMMs possible)


• Application-specific: simple vs. feature-rich


• VMM is an untrusted user application


• Border between guest and 
VMM is not the only one

VM A 
Guest OS

VM B 
Guest OS

VMM A VMM B

L4Re Microkernel / Hypervisor

Typical: One VMM per VM (multi-VM VMMs possible)

Application-specific: simple vs. feature-rich
VMM is an untrusted user application
Border between guest and VMM is not the only one
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L4Re: uvmm

VMM for Arm, MIPS, RISC V, and x86

Small
Uses virtio for guests
Mainly (unmodified) Linux as guest OS, but others on request
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x86
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Uses L4Linux to run KVM + Qemu
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Used in production
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L4Linux

. . . is a paravirtualized Linux running as a user-level application on top
of L4Re; first presented at SOSP’97

Regard “L4Re” as new hardware platform in Linux and implement
Syscall interface: kernel entry, signal delivery, copy from/ to userspace
Hardware access: CPU state/features, MMU, interrupts, MMIO & port I/O

Stub drivers to connect to other L4 services
Slowdown of ~5% for typical loads
Supports x86-32, x86-64, ARM32 and ARM64 (aarch64), including SMP
Actively maintained (latest release based on Linux 6.10) and used in production
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L4Linux Architecture
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Software Abstractions

Interface between kernel/microhypervisor and user-level/VMM

Requirements:
Asynchronous execution model of OS kernels (IRQs)
Paravirtualization + hardware-assisted virtualisation
Smooth integration into system

51 / 60

- requirements for practical system
 - integration: maintain ukernel isolation + small changes to Linux
 -> "Let's see how L4Linux approaches these"
 



Challenges

Fundamental problem: How to map three logical levels of privilege
(Linux application, Linux kernel, L4Re microkernel/hypervisor) onto
the two privilege levels the platform provides (user/kernel mode)?

CPU: Run Linux kernel & applications in
microkernel user land

Memory: Linux kernel manages memory for
Linux applications

Paravirt: Challenges
• Fundamental problem: Mapping 3 logical levels of 

privilege (Linux App, Linux Kernel, L4Re Microkernel/
Hypervisor) onto 2 levels the platform provides (User/
Kernel mode)


• CPU: Run Linux Kernel + App 
in microkernel user land


• Memory: Linux kernel 
manages memory for 
Linux Apps

L4Linux 
Kernel

Linux App

Linux App

L4Re Microkernel / 
Hypervisor
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vCPU

Regular/“Legacy” L4 Thread
Executes XOR waits (for event,
messages, IRQs)
Hard to map OS kernel onto

vCPU
Similar to how a CPU works:
executes AND get interrupts
“Interruptible thread”

L4 thread (any thread can become a vCPU)
Interrupt-style excution

Events transition execution to user-defined entry points (“entry vector”)
Virtual interrupt flag (IRQs disabled == normal thread)

Virtual user mode

vCPU can switch to a different L4 task (address space) for execution
Returns to “home task”/kernel for any received event

State save area: Memory area to hold CPU & message state
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vCPUs in L4Linux

The x86 architecture, though, allows for a pure
user-level implementation as it features the ret in-
struction that changes two registers at once4. The
resume operation first sets the state indicator. From
that point events may arrive and disrupt the oper-
ation. Next it checks if events are marked pend-
ing. If that is the case, it clears the state indicator
and returns back to the threading library, which will
then invoke a syscall to have the pending event deliv-
ered. If no event is marked pending, the resumption
proceeds with restoring the state of the preempted
thread. This operation will load all but one gen-
eral purpose register from the register state. At that
point only eip, esp, and a general purpose register,
say eax, need to be restored. To that end, esp is set
to the value to be loaded. Then eip is pushed onto
the stack. At that point, eax can be reloaded from
the structure it itself points to. The operation is con-
cluded by executing a ret instruction, which loads eip
from the stack and adjusts esp to the expected value.

Special actions need to be taken if an event oc-
curs after the state indicator has been set to enabled
but before the last instruction of the sequence has
completed. The vCPU entry path can detect this
condition reliably as it knows about the start and
end of the resume function. In that case, it does not
save the preempted state, which is reported in the
state save area, into the storage area maintained for
the current (vCPU) thread. This is sound because at
that point the user computation has not progressed
so that the storage area still holds the latest state.
The only modification happened on the users stacks
below its stack pointer, which is of no concern be-
cause the ABI declares that space as undefined.

6 Linux on vCPU

For each logical Linux CPU we employ a vCPU. The
events that a vCPU has to deal with are the same
that a physical CPU encounters: exceptions includ-
ing page faults, interrupts, and system calls.

For each user process a separate address space is
used. The vCPU switches into it whenever user-level
code is to be executed. Control is given to the ad-
dress space in which the Linux kernel resides when
an event occurs.

Fiasco features a kernel interrupt-object that
allow asynchronous interaction between an event
source and consumer. An event is marked pending
and thus does not get lost if the receiver is not ready
to consume it. Events on the interrupt object can
be either triggered through messages or by device
IRQs, which makes virtual and physical devices look

the same. An interrupt object can be associated with
a vCPU, where it raises an (vCPU) event as long as
(interrupt) events are pending.

A special case is the timer interrupt, which is
implemented with a thread that periodically triggers
an interrupt on an interrupt object associated with
the vCPU. The reason for that special treatment is
that timer ticks, unlike device IRQs, are only acces-
sible through IPC timeouts. Future versions of the
Fiasco microkernel might expose timer ticks through
interrupt objects as well.

Microkernel

L4Linux Kernel

L4Linux

Process

L4Linux Kernel

Thread vCPU

L4Linux

Process

L4Linux

Process

L4Linux

Process

L4Linux

Process

L4Linux

Processa) b)

Microkernel

Legend:

FIGURE 3: (a) L4Linux implemented
with threads and (b) L4Linux implemented
with vCPUs.

7 Evaluation

To evaluate our implementation of vCPUs and com-
pare common operating system mechanisms with
standard implementations we employed an AMD
Phenom X3 8450 running at 2.1 GHz.

7.1 Exception Microbenchmarks

When a process that is under the control of a re-
hosted OS causes a hardware fault, then this fault
transfers control to the microkernel, which, in turn,
forwards it to the rehosted OS. Since faults may oc-
cur frequently, it is important that they are handled
efficiently. Our benchmark compares Fiasco.OC us-
ing the vCPU and the IPC model of L4Linux. For
comparison the same functionality has been mod-
elled with Linux functionality to show the induced
cost of the same operation on Linux, such as with
User-Mode Linux[2] (UML).

Linux Fiasco
Host Host

IPC vCPU
Intra exception 2104 1594 870
Inter exception 7456 2433 1663
Inter PF with map 19833 3751 2833
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Event Processing, e.g. Syscalls

Linux syscall interface (int 0x80) causes trap

L4Linux server receives exception IPC
Heavyweight compared to native Linux system
calls:

Two address space switches (native: zero)
Two Fiasco kernel entries + exits (native: one)

⇒ Hardware-assisted virtualisation

Nicely integrates into vCPU abstraction
Nested paging by L4::Task/L4::VM

Fiasco.OC

L4Linux
kernel

L4Linux app

(1)

(2) (3)

(4)
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- native AS switches also 2 with KPTI (kernel page table isolation) = Meltdown mitigation; no longer needed
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Device Access

Options:
Exclusive: Pass-through
SR-IOV: Hardware-assisted sharing (virtualised hardware)
Sharing: Microkernel-based service/driver + guest interface (VirtIO)

Pass through resources:
MMIO (direct mapping)
Interrupts via Microkernel/Hypervisor
Interrupts delivered directly to guest on recent hardware
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- SR-IOV (single-root input/output virtualization), mainly for NICs 
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VirtIO

Standard for virtual devices
Defines common data structures
Widely supported (Linux, *BSD, Windows, QNX, . . . )
Optimised for virtualisation, but also usable for hardware devices

57 / 60



IOMMU

Important hardware building block
MMU for devices
Indirection & Protection

Limit device access to memory → prevents DMA attacks by guests, devices/firmware,
. . .
Guest can use gPA (instead of hPA) to program DMA

Programmed by assigning L4::Task to device

58 / 60



L4Linux as a Toolbox

Reuse large parts of code from Linux:
Filesystems
Network stack
Device drivers
. . .

Hybrid applications can provide these services to native L4 applications.
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Research Paths

Realtime: fully preemptive kernel, realtime drivers & services

Security: capability system, reduced TCB
HPC/Cloud: scalability, OS-noise/execution variability, isolation

Techniques

Combining critical & non-critical applications in a single system
Split off critical parts from applications and run them on L4Re
Use VM to provide comon runtime, then decouple critical applications
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