
Microkernel Construction
Threads and Address Spaces

Nils Asmussen

04/21/2022

1 / 27



Outline

Threads
Definition
Concepts in NOVA
Thread Switch in NOVA

FPU Handling

Address Spaces

2 / 27



What is a Thread?

An independent flow of control inside an address space

Communicates with other threads using IPC

Characterized by a set of registers and the thread state

Dispatched by the kernel according to a defined schedule

Each thread is bound to one core at a time

Only one thread per core is running at one point in time

With n cores, n threads can run at once

All other threads are inactive, waiting inside the kernel

3 / 27



What is a Thread?

An independent flow of control inside an address space

Communicates with other threads using IPC

Characterized by a set of registers and the thread state

Dispatched by the kernel according to a defined schedule

Each thread is bound to one core at a time

Only one thread per core is running at one point in time

With n cores, n threads can run at once

All other threads are inactive, waiting inside the kernel

3 / 27



Implementation in NOVA

Execution Context:

Register state

Continuation

Address Space (PD)

UTCB (message buffer)

IPC partner

FPU state

prev/next pointer

Scheduling Context:

Execution Context

Priority

Budget

Remaining budget

prev/next pointer

4 / 27



Thread Variants

Global Thread

Needs an scheduling context, i.e., CPU time, to execute

Causes exception on startup to let creator set register state

Local Thread

Has no scheduling context

Are only used to handle portal calls

Waits in the kernel until someone called an associated portal

5 / 27



Portals

A portal is an IPC endpoint

Executed by local threads

CPU time is donated from caller

Called via system call

Message is transferred from sender UTCB to receiver UTCB

6 / 27



Overview

Portal Portal

Local
Thread

Local
Thread

Global
Thread

Global
Thread

Portal

calls

Local
Thread

callscalls

Sched
Context

Sched
Context

Sched
Context

Kernel schedules

7 / 27



Thread Switch: Conventional

Address
Space

Address
Space

Kernel

CPU

User
StackA

User
StackB

Kernel
StackA

Kernel
StackB

User
Stack

User
Stack

8 / 27



Thread Switch: Conventional

Address
Space

Address
Space

Kernel

CPU

User
StackA

User
StackB

Kernel
StackA

Kernel
StackB

User
Stack

User
Stack

Regs

8 / 27



Thread Switch: Conventional

Address
Space

Address
Space

Kernel

CPU

User
StackA

User
StackB

Kernel
StackA

Kernel
StackB

User
Stack

User
Stack

Regs

8 / 27



Thread Switch: Conventional

Address
Space

Address
Space

Kernel

CPU

User
StackA

User
StackB

Kernel
StackA

Kernel
StackB

User
Stack

User
Stack

8 / 27



Thread Switch: Continuation Style

Address
Space

Address
Space

Kernel

CPU

User
StackA

User
StackB

Kernel
Stack

User
Stack

User
Stack

ECA ECB

9 / 27



Thread Switch: Continuation Style

Address
Space

Address
Space

Kernel

CPU

User
StackA

User
StackB

Kernel
Stack

User
Stack

User
Stack

ECA ECB

Regs

9 / 27



Thread Switch: Continuation Style

Address
Space

Address
Space

Kernel

CPU

User
StackA

User
StackB

Kernel
Stack

User
Stack

User
Stack

ECA ECB

Regs Regs

9 / 27



Thread Switch: Continuation Style

Address
Space

Address
Space

Kernel

CPU

User
StackA

User
StackB

Kernel
Stack

User
Stack

User
Stack

ECA ECB

9 / 27



Thread Switch: In-Kernel Switch

Traditional kernels save/restore the current CPU state

Each thread has own stack → stack frames are kept

In NOVA, stack frames and CPU state are lost

Part of sys call

current->cont = ret_user_sysexit;

current->set_partner (ec);

ec->cont = recv_user;

ec->regs.set_ip (pt->ip);

ec->regs.set_pt (pt->id);

ec->make_current();

10 / 27



Thread Switch: In-Kernel Switch

Switching to an Ec

void Ec::make_current()

{

current = this;

Tss::run.sp0 = reinterpret_cast<mword>(exc_regs());

pd->make_current();

asm volatile (

"mov %0, %%rsp;"

"jmp *%1;"

:

: "g" (CPU_LOCAL_STCK + PAGE_SIZE),

"rm" (cont)

: "memory"

);

UNREACHED;

}

11 / 27



Outline

Threads

FPU Handling
General Idea
x86 Details
Implementation in NOVA

Address Spaces

12 / 27



Floating Point Unit

CPU has dedicated functional units for FP computations

Are accessed with specific instructions

Have their own state, which is large (512 bytes)

Each thread has its own FPU state

→ Save/restore FPU on each context switch is expensive

→ However, many OSes on x86 today save it on every switch
(vector instructions, LazyFPU vulnerability)

13 / 27



FPU Switch: General Idea

We want to know if/when a thread uses the FPU

We only want to save the FPU state if it has been modified

We don’t want to save the FPU state when switching from a
thread that used the FPU to a thread that is not going to use
the FPU and then later restore the old (unmodified) FPU state

14 / 27



Lazy FPU Switch on x86

P
E

A
M

W
P

N
W

C
D

P
G

N
E
E
T
T
S
E
M
M
P

ReservedReservedCR0

If CR0.TS (Task Switched) flag is set, FPU instructions are not
executed, but cause #NM exception.

15 / 27



Implementation in NOVA

Handling the #NM exception

void handle_exc_nm() {

CR0.TS = 0;

hzd |= HZD_FPU;

if (current == fpowner)

return;

if (fpowner)

fpowner->fpu->save();

if (current->fpu)

current->fpu->load();

else {

current->fpu = new Fpu;

Fpu::init();

}

fpowner = current;

}

Before leaving to user

void handle_hazards() {

if ((hzd & HZD_FPU) &&

current != fpowner) {

CR0.TS = 1;

hzd &= ~HZD_FPU;

}

}

16 / 27



Outline

Threads

FPU Handling

Address Spaces
Virtual Memory Recap
x86 Data Structures
x86 TLB
Implementation in NOVA

17 / 27



Virtual Memory

10 10

11

12

13

14

15

10 10

11 11 11

14

16

15

17

12

16

17

18

Physical Memory

16

Virtual Memory

18 / 27



Paging (x86)

Translation of linear to physical addresses

Done by memory management unit (MMU)

Hardware defines data structures:

Page Directory Base Register (CR3)
Page Directory (PDIR)

4KiB page containing 1024 page directory entries (PDEs)

Page Table (PTAB)

4KiB page containing 1024 page table entries (PTEs)

Paging data structures use physical addresses

19 / 27



Address Translation: 4 KiB pages (x86)

Directory OffsetTable

32 Bit Linear Address

Page Directory
Page Table

4 KB Page Frame
Page Directory Entry

Page Table Entry

Physical Address

CR3 (PDBR)

20

20

32

10 10 12

1024 PDE * 1024 PTE = 220 Pages

20 / 27



Address Translation: 4 MiB superpages (x86)

Directory Offset

32 Bit Linear Address

Page Directory

4 MB Superpage FramePage Directory Entry

Physical Address

CR3 (PDBR)

10

32

10 22

1024 PDE = 210 Superpages

21 / 27



PDEs and PTEs (x86)

P
R
/

W

U
/
K

P
W
T

P
C
D

A0
P
S

(G)AvailPage Table Base Address

P
R
/

W

U
/
K

P
W
T

P
C
D

AD
P
A
T

GAvailPage Base Address

PDE (4 KB Page Table)

PDE (4 MB Superpage)

PTE (4 KB Page)

P
R
/

W

U
/
K

P
W
T

P
C
D

AD
P
S

GAvailPage Base Address Reserved
P
A
T

0

1

22 / 27



Translation Lookaside Buffer (x86)

Caches recent linear-to-physical translations

Avoids expensive page-table walk

Must be kept consistent with the page tables by the OS

No TLB coherency protocol

On modifications, OS must flush relevant TLB entries

TLB flush triggered by CR3 reload or INVLPG instruction

No TLB flush required when upgrading page attributes

CR3 reload does not flush global pages

TLB shootdowns for page tables active on other cores

Expensive signaling and synchronization
Inter-Processor-Interrupt (IPI)

23 / 27



Implementation in NOVA – Memory Space

Memory space of a protection domain

class Space_mem : public Space {

public:

Hpt hpt; // master page table

Hpt loc[NUM_CPU]; // per-core PTs; synced from master

Dpt dpt; // DMA PT for IOMMU

union {

Ept ept; // nested PT for Intel (VMX)

Hpt npt; // nested PT for AMD (SVM)

};

Cpuset htlb; // CPUs using this AS

};

24 / 27



Implementation in NOVA – PTEs

Generic page table entry handling

template <typename P, typename E, unsigned L, unsigned B>

class Pte {

E val;

P *walk (E virt, unsigned long level, bool add);

size_t lookup (E virt, Paddr &phys, mword &attr);

void update (E virt, mword size, E phys,

mword attr, bool add);

};

class Hpt : public Pte<Hpt, uint32, 2, 10>;

class Dpt : public Pte<Dpt, uint64, 4, 9>;

class Ept : public Pte<Ept, uint64, 4, 9>;

25 / 27



Implementation in NOVA – TLB Shootdown

TLB Shootdown on revoked memory mappings

for (unsigned cpu = 0; cpu < NUM_CPU; cpu++) {

Pd *pd = Pd::remote (cpu);

if (!pd->htlb.chk (cpu))

continue;

if (Cpu::id == cpu) {

Cpu::hazard |= HZD_SCHED;

continue;

}

unsigned ctr = Counter::remote (cpu, 1);

Lapic::send_ipi (cpu, VEC_IPI_RKE);

while (Counter::remote (cpu, 1) == ctr)

pause();

}

26 / 27



Implementation in NOVA – Memory Layout

Start End core-local Usage

0000 0000 BFFF FFFF No User space

C000 0000 CFBF FFFF No Code, static data, heap

CFFF D000 CFFF DFFF Yes Kernel stack

CFFF E000 CFFF EFFF Yes LAPIC

CFFF F000 CFFF FFFF Yes Kernel data

D000 0000 D000 1FFF No I/O Bitmap

E000 0000 FFFF FFFF No Capabilities

27 / 27


