Microkernel Construction

Interprocess Communication

Nils Asmussen

05/11,/2023

1/34



Lecture Feedback

https://befragung.zqa.tu-dresden.de/uz/de/sl/Rj4eSnXkeQh9

Valid until June 16th!

2/34


https://befragung.zqa.tu-dresden.de/uz/de/sl/Rj4eSnXkeQh9

e Introduction

e Microkernel vs. Monolithic kernel
e Synchronous vs. Asynchronous
o Different Implementations

o Synchronous IPC in NOVA
o Asynchronous IPC in NOVA
o Userspace API

3/34



Microkernel vs. Monolithic: Syscalls

@ Monolithic kernel: 2 kernel entries/exits

@ Microkernel: 4 kernel entries/exits + 2 context switches

Application Application

\
Yy

Driver @ @ Driver

\

@ @
‘

Monolithic kernel Microkernel

Hardware Hardware

4/34



Microkernel vs. Monolithic: Calls Between Services

@ Monolithic kernel: 2 function calls/returns

@ Microkernel: 4 kernel entries/exits + 2 context switches

Network

Driver

]

Monolithic kernel

Network

Driver

\

@l ool |o

Microkernel

Hardware

Hardware

5/34



Synchronous vs. Asynchronous

@ Synchronous

o Sender is blocked until receiver is ready

e Data and control transfer directly from sender to receiver
@ Asynchronous

e Data is transferred to temporary location

o Sender continues execution
o If receiver arrives, the data is transferred to him

Comparison

@ Synchronous is typically simpler and faster (no buffering)
@ Synchronous is less prone to DoS attacks (buffer memory)
@ Asynchronous is typically more flexible

@ Asynchronous allows to do other work instead of waiting

6/34



Register |IPC

Sender Receiver

|

User ?i ? User

Stacka Stackg
Z . 3
e AN
(1) save (3) restore
EC, Kernel | EC,
(2) copy
CPU

7/34



User Memory IPC

Sender Receiver

w, Buffer

Data |
(2) receive
(1) send
\ /
N y
EC Kernel EC

CPU

8/34



Kernel Memory IPC

Sender Receiver
Data
1+ (1)send P
Buf EC Kernel EC Buf
(2) copy .
CPU

9/34



Comparison

@ Register IPC

+ Very fast

— Amount of data limited to CPU registers
@ User Memory IPC

+ Amount of data not limited

+ No copy to special location first
Pagefaults can occur
— Slower (no direct copy)

e Kernel Memory IPC
+ Fast
+ No pagefaults
— Amount of data limited
— Copy to special location first

10/34



o Introduction
e Synchronous IPC in NOVA

e Synchronous IPC in General
e Exception IPC

o Asynchronous IPC in NOVA
o Userspace API

11/34



Introduction to IPC in NOVA

@ NOVA uses synchronous kernel memory IPC to

e Exchange data
e Exchange capabilities

@ Asynchronous IPC by semaphores for
e Signaling
o Deliver interrupts to user space

@ Synchronous IPC is core-local

@ Asynchronous IPC can be used cross-core

12/34



Synchronous IPC

Uses kernel memory IPC

Message buffer is called User Thread Control Block (UTCB)
Each EC has exactly one UTCB

A UTCB is one pagg, i.e., 4 KiB large

All UTCBs are mapped in kernel space

On EC creation, a UTCB is allocated and mapped to a
specified address in user space

UTCBs are pinned — no pagefaults

13/34



Overview

@

\
1
:caus calls
1

Local
Thread

r > .
! 1
! 1
! 1
' 1 calls
! 1

Global
Thread

Global Local Local
Thread Thread Thread

N

A

Sched
Context

Sched
Context

Sched

Context Kernel schedules

14/34



Properties

@ Local Thread, that handles the portal
@ Instruction Pointer (address of portal function)

@ Id, delivered to the portal (parameter of portal function)

.

Code example from NRE

PORTAL static void portal_echo(void *id) {
}

int main() {
Reference<LocalThread> 1t = LocalThread: :create();
Pt echo(lt, portal_echo);
echo.set_i1d(0x1234);
echo.call();

15/34



Priority Inversion

ECL ECM ECH
e
s @ High-priority ECyy blocked
7 .
VZ by low-priority EC;

Portal | @ Unbounded priority inversion
if ECpy prevents ECs from
running

ECs

16 /34



Timeslice Donation and Helping
? @ @ @ Timeslice donation:

o EC; calls portal with SC;
o SC; is donated to EC3

@ Helping:
o If SC; has no time left,
SCy helps EG3
o EGC; runs with SCy
EC,

17/34



Timeslice Donation and Helping
@ @ Timeslice donation:

EC, EC, _
o EC; calls portal with SC;
o SC; is donated to EC3
@ Helping:

o If SC; has no time left,

SCy helps EG3
o EGC; runs with SCy

EC,

17/34



Timeslice Donation and Helping
EC1 Ecg : @ Timeslice donation:

o EC; calls portal with SC;

/ o SC; is donated to EC3
/
y
@ Helping:

o If SC; has no time left,

SCy helps EG3
o EGC; runs with SCy

17/34



Timeslice Donation and Helping

@ Timeslice donation:

EC1 ECZ/ o EC; calls portal with SC;
/ o SC; is donated to EG3
/
’ @ Helping:

o If SC; has no time left,

SCy helps ECG3
? @ @ o EGC;3 runs with SCy

17 /34



UTCB Layout

4096

hotspot 0 ‘ flags 0‘
CRDO

T QA

untyped word 1

untyped word 0

thread local storage

CRD for delegates

CRD for translates

S T ¢ T = T V¢ R

untyped words typed words 0

18/34



Syscall: Call Portal (1)

Sys_call *s = static_cast<Sys_call *>(current->sys_regs());
Kobject *obj = Space_obj::lookup (s->pt()).obj();

Pt *pt = static_cast<Pt *>(obj);

Ec *ec = pt->ec;

if (EXPECT_FALSE (current->cpu != ec->xcpu))
sys_finish<Sys_regs::BAD_CPU>();

if (EXPECT_TRUE ('ec->cont)) {
current->cont = ret_user_sysexit;
current->set_partner (ec); // sets Ec::rcap
ec->cont = recv_user;
ec->regs.set_pt (pt->id);
ec->regs.set_ip (pt->ip);
ec—>make_current();

}

ec->help (sys_call);
19 /34



Syscall: Call Portal (2)

void Ec::recv_user() {
Ec *ec = current->rcap;
ec—>utcb->save (current->utcb);
if (EXPECT_FALSE (ec—>utcb->tcnt()))
delegate<true>();
ret_user_sysexit();

3

void Ec::help (void (xc)()) {
current->cont = c;
if (EXPECT_TRUE (++Sc::ctr_loop < 100)) {
Ec *ec = this;
while(ec->partner)
ec = ec->partner;
ec->make_current () ;
}
die ("Livelock");

20/34



Exception IPC

The kernel should have no policy

Userland should decide what to do in case of an exception

°
°
@ In particular, memory management is done in userland
@ Each EC has an exception portal selector offset

°

At this offset, portals are expected for all exceptions

21/34



Exception IPC: Details

void Ec::handle_exc (Exc_regs *r) {
switch (r->vec) {
case Cpu::EXC_NM:
handle_exc_nm();
return;

case Cpu::EXC_PF:
if (handle_exc_pf (r))
return;
break;

3

send_msg<ret_user_iret>();

22/34



Exception IPC: Details

template <void (*C)()>
void Ec::send_msg() {

3

Exc_regs *r = &current->regs;
Kobject *obj = Space_obj::lookup (
current->evt + r->dst_portal).obj();
Pt *pt = static_cast<Pt *>(obj);
Ec *ec = pt->ec;
if (EXPECT_TRUE (!ec->cont)) {
ec->cont = recv_kern;

}
ec—>help (send_msg<C>);

void Ec::recv_kern() {

Ec *ec = current->rcap;
current->utcb->load_exc (&ec->regs);
ret_user_sysexit();

23/34



e Introduction

e Synchronous IPC in NOVA
o Asynchronous IPC in NOVA

e Synchronization
e Interrupts

o Userspace API

24 /34



@ A semaphore is a kernel object
@ Properties:

o Counter

o Queue of ECs
e Operations (via syscall):

e Down

e Down to zero

o Up

25/34



Semaphores: Usecases

@ Synchronization with shared memory (e.g., multithreading)

e Typically combined with atomic operations
e Atomic operations in case of no contention
e System call in case of contention

e Signaling (e.g., producer-consumer scenarios)

@ Delivery of interrupts to userspace

26 /34



Interrupt Semaphores

@ Object cap space of root PD has semaphore per interrupt
@ Can be delegated to device drivers, ...

@ Is up’'ed by the kernel on IRQ

Usage example: Keyboard driver in NRE

static void kbhandler (void*) {
Gsi gsi(KEYBOARD_IRQ);
while(1) {
gsi.down(Q) ;

Keyboard: :Packet data;
if (hostkb->read(data))
broadcast (kbsrv, data);

27 /34



Semaphore Operations

void Sm::dn (bool zero) {
Ec *e = Ec::current;
{ Lock_guard <Spinlock> guard (lock);
if (counter) {
counter = zero ? 0 : counter - 1;
return;
}
enqueue (e);
}
e->block_sc();
}

void Sm::up() {
Ec x*e;
{ Lock_guard <Spinlock> guard (lock);
if (!(e = dequeue())) { counter++; return; }
}

e->release();

28/34



e Introduction
o Synchronous IPC in NOVA

o Asynchronous IPC in NOVA

o Userspace API

e UTCB Frames
e IPC with C++ shift operators

29/34



Many Approaches

Plain C API
C+-+ shift operators to get/put values from/into UTCB
C++ templates generate server and client stubs

IDL compiler

30/34



NOVA Runtime Environment (NRE)

Uses C++ shift operators:
+ No external tool required
+ No separate language to learn
+ Rather simple to implement
+ Much simpler to use than C implementations
— Need to implement stub functions manually, if desired

— Need to keep client and server consistent (types, order, ...)

Supports multiple frames within one UTCB:
@ Allows nested usages of the UTCB

@ Important for calling library functions

31/34



NRE UTCB Frames

Sender Receiver
g EC, S EC,
UTCB, UTCB,
push | ... EC T
23 Frame
2 {0
Cap(2)
36 i
[o] oI i rame
pop Cap(14)
EERE 0 0

32/34



NRE UTCB Frames

Sender
EEC1
uTCB,
push | ... EC T
23
2 {0
Cap(2)
36
o koo
pop Cap(14)
1 2

Receiver
SEC2
UTCB,
Frame
call()
Frame
0o . 0

32/34



NRE UTCB Frames

push

pop

Sender

EC,

UTCB,

Frame

call()

Frame

Receiver

EC,

UTCB,

Frame

32/34



Usage Example

UtcbFrame uf;

uf << 1 << String("foo");
portal.call(uf);

int res;

uf >> res;

v
PORTAL static void myportal(void*) {
UtcbFrameRef uf;
int i; String s;
uf >> i >> s;

// handle the request
uf << 0;

33/34



Implementation

template<typename T>
UtcbFrameRef & operator<<(const T& value) {
const size_t words =
(sizeof (T) + sizeof(word_t) - 1) / sizeof(word_t);
*reinterpret_cast<T>(
_utcb->msg + untyped() * sizeof(word_t)) = value;
_utcb->untyped += words;
return *this;

}

template<typename T>
UtcbFrameRef & operator>>(T &value) {
const size_t words =
(sizeof (T) + sizeof(word_t) - 1) / sizeof(word_t);
value = *reinterpret_cast<T*>(
_utcb->msg + _upos * sizeof (word_t));
_upos += words;
return *this;

34 /34



