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Motivation

Microkernel-based systems have proven valuable for several objectives
▶ Security
▶ Robustness
▶ Real time
▶ Flexibility

Recently, new challenges are coming from the hardware side
▶ Heterogeneous systems
▶ Third-party components
▶ Security issues of complex general-purpose cores
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Heterogeneous Systems

Demanded by performance and energy requirements

Big challenge for OSes: single shared kernel on all cores does no longer work

OSes need to be prepared for processing elements with different feature sets
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Third-party Components

Market pressure forces us to integrate third-party components

We should not trust these components

Currently, often no isolation between them

Bug in such a component can compromise whole system (see Broadcom incident)
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Security Issues of Complex General-purpose Cores

26 known attacks (and counting . . . )

Allow to leak private data, sometimes bypassing all security measures of the core

Mitigations exist, but these are complex and costly

These security holes have been lurking in CPUs for many years

Should we still trust these complex cores to properly enforce the isolation between
different software components?
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Microkernel-based System as Foundation
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gem5

Modular platform for computer architecture research

Supports various ISAs (x86, ARM, Alpha, RISC-V, . . . )

Provides detailed CPU and memory models

Cycle-accurate simulation

Added TCU model to gem5

Added hardware accelerators
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FPGA
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TCU contains 128 EPs
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OS Design

M3: Microkernel-based system for het. manycores
(or L4 ± 1)

Implemented from scratch in Rust and C++

Drivers, filesystems, etc. implemented on user tiles

Kernel manages permissions, using capabilities

TCU enforces permissions
(communication, memory access)

Kernel is independent of other tiles

Kernel M3FS

pipes App

App App
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M3 System Call
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Capabilities Overview

0 2 0 2
1Activity 1 Activity 2

Kernel

Act 2Act 1

Act Send Recv Act
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Capabilities in M3

Send: send messages to a receive EP

Receive: receive messages from send EPs

Memory: issue DMA requests to memory

Service: create sessions

Session: exchange caps with service

Endpoint: configure EPs of own or foreign TCU

Tile: create activities

Activity: executes code on/uses logic of a tile
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Capability Exchange

Kernel provides syscalls to create, exchange, and revoke caps
There are two ways to exchange caps:

1 Directly with another activity (typically, a child activity)
2 Over a session with a service

The kernel offers two operations:
1 Delegate: send capability to somebody else
2 Obtain: receive capability from somebody else

Difference to L4:
▶ Applications communicate directly, without involving the kernel
→ Capability exchange cannot be done during IPC
▶ Special communication channel between kernel and servers
▶ Kernel uses this channel to send exchange requests to server
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OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.rawsh$ decode in.png | fft | mul | ifft > out.raw

Shell

User program Input file

Hardware accelerators for
image processing

Output file

Pipes and output redirect

Challenges:

OS must provide generic
protocols

Accelerators need
support for protocols
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Generic Protocols

Client Server

DRAM

TCU TCU

S R

req(in/out)

resp(pos,len)
MM

File protocol:

Data in memory
RPC between client and server

▶ req(in/out) requests next piece,
implicitly commits previous piece

▶ commit(nbytes) commits nbytes of
previous piece

Server configures client’s memory EP

Client accesses data via TCU
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Implementation: M3FS – Overview

M3FS organizes the file’s data in extents
M3FS can be used with a memory and disk backend

▶ With memory backend, FS image is a contiguous region in DRAM
▶ Clients get access to parts of the image
▶ With disk backend, M3FS uses a buffer cache in DRAM
▶ Clients get access to parts of buffer cache

Two types of sessions: metadata session, file session

Metadata session is created first, allows stat, open, . . .

open creates a new file session

Both sessions can be cloned to provide other activities access
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Implementation: M3FS – File Protocol

The file session implements the file protocol (plus seeking)

File session holds file position and advances it on read/write

req(in/out) request next extent

M3FS configures client’s EP for this extent

Appending reserves new space, invisible to other clients

commit(nbytes) commits a previous append
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Additions to Accelerator

Scratchpad memory (SPM)

PE

Accelerator

TCUASM

S M S M

IN OUT

Off-the-shelf accelerators

Accelerator Support Module (ASM):

Interacts with TCU and accelerator

Implements file protocol for input and
output channel

ASM assumes that endpoints are setup
externally by software
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Accelerator Chains
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Accelerator Chains: Results
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Accelerator Chains: Results (PCIe-like Latency)
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Linux Application Workloads
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Comparison of Context-Switching Approaches
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Context Switching vs. Fast-Path Communication
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Context Switching vs. Isolation
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Virtualization of the TCU
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vTCU Size and Complexity

LUTs [k] FFs [k] BRAMs
BOOM 143.8 71.8 159
Rocket 46.6 22.0 152
NoC router 3.4 2.2 0
vTCU 15.2 5.8 0.5
Control Unit 10.3 3.3 0.5
NoC CTRL 3.2 1.5 0
CMD CTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0
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Performance Comparison with Linux

LevelDB receives requests from remote machine and sends result back
Requests generated with YCSB; different shares of read/insert/update/scan
Single BOOM core runs: LevelDB, pager, filesystem, network stack
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Ongoing Work at the Barkhausen Insitut

Connected devices with remote attestation

Turning the FPGA prototype into a silicon chip

Providing real-time guarantees

Running Linux on a user tile
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Conclusion

M3 explores a system architecture with a new per-tile hardware component

TCU introduces common interface for all cores/accelerators

Allows to integrate untrusted cores/accelerators, including OS-service access

General-purpose cores can be multiplexed efficiently

Hardware implementation demonstrates modest additional cost

Complete hardware/software stack available as open source:
https://github.com/Barkhausen-Institut/M3
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More Information

Core-Local Reasoning and Predictable Cross-Core Communication with M3

Nils Asmussen, Sebastian Haas, Adam Lackorzyński, Michael Roitzsch

RTAS 2024

Efficient and Scalable Core Multiplexing with M3v
Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, Michael Roitzsch

ASPLOS 2022

M3X: Autonomous Accelerators via Context-Enabled Fast-Path Communication
Nils Asmussen, Michael Roitzsch, and Hermann Härtig

USENIX ATC 2019

SemperOS: Distributed Capability System
Matthias Hille, Nils Asmussen, Pramod Bhatotia, and Hermann Härtig

USENIX ATC 2019

M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores
Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and Gerhard Fettweis

ASPLOS 2016
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