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Motivation

e Microkernel-based systems have proven valuable for several objectives
» Security
» Robustness
> Real time

Flexibility

v

o Recently, new challenges are coming from the hardware side

» Heterogeneous systems
» Third-party components

> Security issues of complex general-purpose cores
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Heterogeneous Systems

Snapdragon
X20 LTE modem

Wi-Fi

"aaon 685 DSP

Quaicomm
Agstic Audio

System Memory

e Demanded by performance and energy requirements
e Big challenge for OSes: single shared kernel on all cores does no longer work

@ OSes need to be prepared for processing elements with different feature sets

Adreno 630

Visual Processing
Subsystem

Qualcomm
Spectra 280 ISP
Kryo 385 CPU

Quaicomm
Mobile Security
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Third-party Components

=]

SAMSUNG

Exynos Modem

e Market pressure forces us to integrate third-party components
e We should not trust these components
e Currently, often no isolation between them

@ Bug in such a component can compromise whole system (see Broadcom incident)
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Security Issues of Complex General-purpose Cores

J ~ \
q io:
4
e 26 known attacks (and counting ...)
e Allow to leak private data, sometimes bypassing all security measures of the core
e Mitigations exist, but these are complex and costly

e These security holes have been lurking in CPUs for many years

e Should we still trust these complex cores to properly enforce the isolation between

different software components?
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Microkernel-based System as Foundation
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Microkernel-based System as Foundation
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Outline

@ The New System Architecture
© Prototype Platforms

© Isolation and Communication
@ Operating System

© OS Services and Accelerators
@ Evaluation

@ Context Switching
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Outline

@ The New System Architecture
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Hardware/Operating System Co-Design
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Hardware/Operating System Co-Design

Core| | \\ GPU // \ TPU/I‘ Key ideas:
A 4 \\’*’

e TCU as new hardware
TCU () TCU( ) TCU( ) component
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Hardware/Operating System Co-Design

Core| GPU TPU Key ideas:
e TCU as new hardware
TC O—C)
vO Teu .TCLJC3:>1 component
Core| | Core| | FPGA
Tcu O [ TeuO—-CQOQTeu)

9/44



Hardware/Operating System Co-Design

Kernel App App

TCU( ) Tcu( O——OTCU CD—l
Serv App Serv

TCU [ OH TCU( O——QTCU( )

Key ideas:
e TCU as new hardware
component

o Kernel on dedicated tile
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Hardware/Operating System Co-Design

Manage

Enforce

App App

EnforceO—OEnforceQ-l

Serv

Enforce( -

App Serv

Enforcel ——Enforce

Key ideas:
e TCU as new hardware
component

o Kernel on dedicated tile

e Kernel manages,
TCU enforces
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Hardware/Operating System Co-Design

Kernel

TCU( )

Hardware challenges:
App App . &
o Heterogeneity:

TCU( (O——TCU @-l Uniform interface

Serv

TCU O

App Serv
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Hardware/Operating System Co-Design
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Hardware/Operating System Co-Design

Kernel App App

TCU( ) Tcu( O——OTCU CD—l
Serv App Serv

TCU [ OH TCU( O——QTCU( )

Hardware challenges:

o Heterogeneity:

Uniform interface

e Untrusted HW comp.:
Protected by TCU

e Side channels:

Physical isolation
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Outline

© Prototype Platforms
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gem>

Modular platform for computer architecture research

Supports various ISAs (x86, ARM, Alpha, RISC-V, ...)

(]

e Provides detailed CPU and memory models
e Cycle-accurate simulation
e Added TCU model to gem5

o Added hardware accelerators
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FPGA

Xilinx VCU118 FPGA

@ RISC-V:in-order Rocket
or out-of-order BOOM

@ Rocket at 100 MHz,
BOOM at 80 MHz

@ 2x16 kB L1,512 kB L2
RISC-V

g
d )

RISC-V .
@ TCU contains 128 EPs
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Outline

© Isolation and Communication
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Isolation

Kernel tile

Kernel
TCU

User tile

Serv

TCU

User tile
App
TCU

User tile
App

TCU

User tile
App

TCU

DRAM

TCU-based isolation:

e Additional protection layer
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Isolation
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Isolation

Kernel tile

Kernel

TCU

User tile
App

TCU (r

User tile

A TCU-based isolation:
pp

e Additional protection layer
TCU Q‘l e Only kernel tile can

User tile

Serv

TCU (X

User tile

App

TCU (X

establish communication

channels

DRAM e User tiles can only use

established channels
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Communication

Kernel

TCU

TCU

TCU provides endpoints to:
e Issue DMA requests to

memory
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Communication

y N AN
Kernel \ | \
\\ /’/ \\\———/
TCU TCU W)
Serv App DRAM
Teu ® e

TCU provides endpoints to:
e Issue DMA requests to

memory

e Receive messages into a

receive buffer

e Send messages to a

receiving endpoint
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Communication

Kernel \\ App //
\\ /’/
Serv App
el [ e

DRAM

TCU provides endpoints to:

e Issue DMA requests to

memory

e Receive messages into a

receive buffer

e Send messages to a
receiving endpoint

e Replies for RPC
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Outline

@ Operating System
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OS Design

e M3: Microkernel-based system for het. manycores
(or L4 £1)

e Implemented from scratch in Rust and C++
e Drivers, filesystems, etc. implemented on user tiles
e Kernel manages permissions, using capabilities

e TCU enforces permissions

(communication, memory access)

e Kernel is independent of other tiles

Kernel M3FS

!

pipes O—O App
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M3 System Call
User tile Kernel tile
App Kernel

TCU TCU Eg
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M3 System Call
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M3 System Call

User tile Kernel tile
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Capabilities Overview

Activity 1 = Activity 2 1
0 0 2
/ =/
/ | /
Kernel /
Act 1 / act2
e[ [¢f |||[alo]e
\ \ 4
\ SO\
Act Send | | Recv | | Act
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Capabilities in M3

e Send: send messages to a receive EP

Receive: receive messages from send EPs
e Memory: issue DMA requests to memory

o Service: create sessions

(]

Session: exchange caps with service
e Endpoint: configure EPs of own or foreign TCU

Tile: create activities

e Activity: executes code on/uses logic of a tile
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Capability Exchange

e Kernel provides syscalls to create, exchange, and revoke caps
e There are two ways to exchange caps:
@ Directly with another activity (typically, a child activity)
@ Over a session with a service
e The kernel offers two operations:
@ Delegate: send capability to somebody else
© Obtain: receive capability from somebody else
e Difference to L4:
» Applications communicate directly, without involving the kernel
— Capability exchange cannot be done during IPC
» Special communication channel between kernel and servers

» Kernel uses this channel to send exchange requests to server
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Outline

© OS Services and Accelerators
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OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.raw
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OS Service Access for all Processing Element Types

Shell Pipes and output redirect
sh$ decode in.png | fft | mul | ifft > out.raw

User program Input file Output file
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OS Service Access for all Processing Element Types

Shell Pipes and output redirect

Challenges:

sh$ decode in.png | fft | mul | ifft > out.raw

User program Input file Output file

Hardware accelerators for

image processing
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OS Service Access for all Processing Element Types

Shell Pipes and output redirect

Challenges:

sh$ decode in.png | fft | mul | ifft > out.raw o OS must provide

User program Input file Output file
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OS Service Access for all Processing Element Types

Shell Pipes and output redirect

Challenges:

sh$ decode in.png | fft | mul | ifft > out.raw

e OS must provide

User program Input file Output file o Accelerators need

support for protocols
Hardware accelerators for PP P

image processing
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Generic Protocols
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Generic Protocols

File protocol:

e Data in memory
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Generic Protocols

File protocol:
Client Server o Data in memory
req(in/out) o RPC between client and server
/\ > req(in/out) requests next piece,
TCU \—/ TCU implicitly commits previous piece
» commit(nbytes) commits nbytes of
resp(pos,len) : .
previous piece

w0 DRAM ]
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Generic Protocols

File protocol:
Client Server o Data in memory
req(in/out) e RPC between client and server

> req(in/out) requests next piece,
TCU @ \/ ® TCU implicitly commits previous piece

» commit(nbytes) commits nbytes of

resp(pos,len) previous piece

e DRAM - e Server configures client’s memory EP

Client accesses data via TCU
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Implementation: M3FS — Overview

(]

M3FS organizes the file’s data in extents

M3ES can be used with a memory and disk backend

» With memory backend, FS image is a contiguous region in DRAM
» Clients get access to parts of the image
» With disk backend, M3FS uses a buffer cache in DRAM

» Clients get access to parts of buffer cache

(]

Two types of sessions: metadata session, file session

Metadata session is created first, allows stat, open, ...

(]

open creates a new file session

Both sessions can be cloned to provide other activities access
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Implementation: M3FS — File Protocol

e The file session implements the file protocol (plus seeking)

File session holds file position and advances it on read/write

req(in/out) request next extent

M3ES configures client’s EP for this extent

Appending reserves new space, invisible to other clients

e commit(nbytes) commits a previous append
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Additions to Accelerator

Scratchpad memory (SPM)

o |l

Accelerator

Off-the-shelf accelerators
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Additions to Accelerator
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o |l

Accelerator
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Accelerator Support Module (ASM):

o Interacts with TCU and accelerator
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Additions to Accelerator

Scratchpad memory (SPM)
Off-the-shelf accelerators

PE TH Accelerator Support Module (ASM):

o Interacts with TCU and accelerator
Accelerator

T

ASM —— TCU

oW EM
t

IN OUT

e Implements file protocol for input and

output channel
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Additions to Accelerator

Scratchpad memory (SPM)
Off-the-shelf accelerators

PE TH Accelerator Support Module (ASM):

o Interacts with TCU and accelerator
Accelerator
e Implements file protocol for input and

f output channel

ASM — TCU
e ASM assumes that endpoints are setup

C%@ C%@ externally by software

IN OUT
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Demo
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Outline

@ Evaluation
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Assisted vs. Autonomous
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Assisted vs. Autonomous
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Assisted vs. Autonomous
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Accelerator Chains

FFT

MUL

IFFT
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Accelerator Chains
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Accelerator Chains

Input — Act — Act — Act —Output

FFT MUL IFFT

Input — Act — Act — Act —Output

FFT MUL IFFT

1..4 chains
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Accelerator Chains: Results

[J Assisted [ Autonomous
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Accelerator Chains: Results
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Accelerator Chains: Results (PCle-like Latency)
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Accelerator Chains: Results (PCle-like Latency)
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Linux Application Workloads

O App O Xfers O OS

—_

e M3wvs. Linux 4.10

e Traced on Linux,
replayed on M3

Time (ms)
SO N OO

x o o x

s 3 g3 g3 g3 g3 g2 3 23 e MS3FS vs. Linux tmpfs
tar untar  shasum sort find SQLite  LvIDB
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Linux Application Workloads

O App O Xfers O OS
e M3 s, Linux 4.10

e Traced on Linux,
D D replayed on M3

5 23 23 e M3FS vs. Linux tmpfs
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Outline

@ Context Switching
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Comparison of Context-Switching Approaches

M3 (ASPLOS’16)
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Comparison of Context-Switching Approaches
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Comparison of Context-Switching Approaches

M3 (ASPLOS’16) M3x (ATC’19) M3v (ASPLOS’22)
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Context Switching vs. Fast-Path Communication

0S App App
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Context Switching vs. Fast-Path Communication
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Context Switching vs. Fast-Path Communication
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Context Switching vs. Fast-Path Communication

(O] App App3 e Suspend App1 until new
message, schedule App2
ULl el TCUO_' e Resume Appl upon new
message
App2 e Multiplexing conflicts with
App1 App App fast-path communication
TCUCH TCU TCU
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Context Switching vs. Isolation
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Context Switching vs. Isolation

oS App App
Oreu.

App App App
TCU TCU TCU

@ Only the OS can provide
access to tile-external

resources

38/44



Context Switching vs. Isolation

oS

TCU

App1| App2
TileMux

TCU

App

TCUO

App

TCU

App

(OTCcu

App

TCU

@ Only the OS can provide

access to tile-external

resources

e Restoring TCU state
provides access to all

resources

38/44



Context Switching vs. Isolation

oS

TCU

App1| App2
TileMux

TCU

App

TCUO

App

TCU

App

(OTCcu

App

TCU

@ Only the OS can provide

access to tile-external

resources

e Restoring TCU state
provides access to all

resources

o TileMux must not restore

TCU state!

38/44



Context Switching vs. Isolation
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Virtualization of the TCU
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Virtualization of the TCU
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Virtualization of the TCU
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Virtualization of the TCU
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Virtualization of the TCU
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Virtualization of the TCU
OS tile

Y

External IF
J

~
App2 Unpriv. IF vICU Priv. IF
[]

“EEeE® e
|

TileMux

A

Y

39/44




vICU Size and Complexity

LUTs [k] FFs[k] BRAMs
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Performance Comparison with Linux

o LevelDB receives requests from remote machine and sends result back
e Requests generated with YCSB; different shares of read/insert/update/scan
e Single BOOM core runs: LevelDB, pager, filesystem, network stack
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Performance Comparison with Linux

o LevelDB receives requests from remote machine and sends result back

e Requests generated with YCSB; different shares of read/insert/update/scan

e Single BOOM core runs: LevelDB, pager, filesystem, network stack
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Ongoing Work at the Barkhausen Insitut

o Connected devices with remote attestation

Turning the FPGA prototype into a silicon chip

Providing real-time guarantees

Running Linux on a user tile
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Conclusion

e M3 explores a system architecture with a new per-tile hardware component
e TCU introduces common interface for all cores/accelerators

e Allows to integrate untrusted cores/accelerators, including OS-service access

(]

General-purpose cores can be multiplexed efficiently

Hardware implementation demonstrates modest additional cost

Complete hardware/software stack available as open source:
https://github.com/Barkhausen-Institut/M3
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More Information

@ Core-Local Reasoning and Predictable Cross-Core Communication with M3
Nils Asmussen, Sebastian Haas, Adam Lackorzynski, Michael Roitzsch
RTAS 2024

@ Efficient and Scalable Core Multiplexing with M3v
Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, Michael Roitzsch
ASPLOS 2022

@ M3X: Autonomous Accelerators via Context-Enabled Fast-Path Communication
Nils Asmussen, Michael Roitzsch, and Hermann Hartig
USENIX ATC 2019

@ SemperOS: Distributed Capability System
Matthias Hille, Nils Asmussen, Pramod Bhatotia, and Hermann Hartig
USENIX ATC 2019

@ M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores
Nils Asmussen, Marcus Volp, Benedikt N6then, Hermann Hartig, and Gerhard Fettweis

ASPLOS 2016
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