
Microkernel Construction
Case Study: M3

Nils Asmussen

July 11th 2024

1 / 44



Motivation

Microkernel-based systems have proven valuable for several objectives
▶ Security
▶ Robustness
▶ Real time
▶ Flexibility

Recently, new challenges are coming from the hardware side
▶ Heterogeneous systems
▶ Third-party components
▶ Security issues of complex general-purpose cores

2 / 44



Heterogeneous Systems

Demanded by performance and energy requirements

Big challenge for OSes: single shared kernel on all cores does no longer work

OSes need to be prepared for processing elements with different feature sets

3 / 44



Third-party Components

Market pressure forces us to integrate third-party components

We should not trust these components

Currently, often no isolation between them

Bug in such a component can compromise whole system (see Broadcom incident)

4 / 44



Security Issues of Complex General-purpose Cores

26 known attacks (and counting . . . )

Allow to leak private data, sometimes bypassing all security measures of the core

Mitigations exist, but these are complex and costly

These security holes have been lurking in CPUs for many years

Should we still trust these complex cores to properly enforce the isolation between
different software components?

5 / 44



Microkernel-based System as Foundation

Microkernel

CoreCore Core

Service Service

Application Application

Management

Enforcement

FPGA TPU GPU

6 / 44



Microkernel-based System as Foundation

Microkernel

CoreCore Core

Service Service

Application Application

Management

Enforcement

FPGA TPU GPU

6 / 44



Microkernel-based System as Foundation

Microkernel

CoreCore Core

Service Service

Application Application

Management

Enforcement

FPGA TPU GPU

6 / 44



Microkernel-based System as Foundation

Microkernel

CoreCore Core

Service Service

Application Application

Management

Enforcement

FPGA TPU GPU

6 / 44



Outline

1 The New System Architecture

2 Prototype Platforms

3 Isolation and Communication

4 Operating System

5 OS Services and Accelerators

6 Evaluation

7 Context Switching

7 / 44



Outline

1 The New System Architecture

2 Prototype Platforms

3 Isolation and Communication

4 Operating System

5 OS Services and Accelerators

6 Evaluation

7 Context Switching

8 / 44



Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

9 / 44



Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

9 / 44



Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

9 / 44



Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

9 / 44



Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

9 / 44



Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App

Manage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

9 / 44



Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

AppManage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Key ideas:

TCU as new hardware
component

Kernel on dedicated tile

Kernel manages,
TCU enforces

9 / 44



Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App

Manage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Hardware challenges:

Heterogeneity:
Uniform interface

Untrusted HW comp.:
Protected by TCU

Side channels:
Physical isolation

9 / 44



Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App

Manage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Hardware challenges:

Heterogeneity:
Uniform interface

Untrusted HW comp.:
Protected by TCU

Side channels:
Physical isolation

9 / 44



Hardware/Operating System Co-Design

Core

Core

Core

GPU

FPGA

TPU

TCU

TCU

TCU

TCU

TCU

TCU

Serv

Kernel

App

App

Serv

App

Manage

Enforce

Enforce

Enforce

Enforce

Enforce

Enforce

Hardware challenges:

Heterogeneity:
Uniform interface

Untrusted HW comp.:
Protected by TCU

Side channels:
Physical isolation

9 / 44



Outline

1 The New System Architecture

2 Prototype Platforms

3 Isolation and Communication

4 Operating System

5 OS Services and Accelerators

6 Evaluation

7 Context Switching

10 / 44



gem5

Modular platform for computer architecture research

Supports various ISAs (x86, ARM, Alpha, RISC-V, . . . )

Provides detailed CPU and memory models

Cycle-accurate simulation

Added TCU model to gem5

Added hardware accelerators

11 / 44



FPGA

RISC-V
TCU TCU TCU TCU

R R

R R

RISC-V

RISC-VUDP/IP

RISC-V

RISC-V RISC-V RISC-V

RISC-V

DDR4 IF

DDR4 IF

NIC

DRAM

Gbit Ethernet
DRAM

Debug IF

TCU

TCU

TCU TCUTCUTCU

TCU

Xilinx VCU118 FPGA

RISC-V: in-order Rocket
or out-of-order BOOM

Rocket at 100 MHz,
BOOM at 80 MHz

2x16 kB L1, 512 kB L2

TCU contains 128 EPs

12 / 44



Outline

1 The New System Architecture

2 Prototype Platforms

3 Isolation and Communication

4 Operating System

5 OS Services and Accelerators

6 Evaluation

7 Context Switching

13 / 44



Isolation

User tile

TCU

Kernel tile

TCU

User tile

TCU

User tile

TCU

User tile

TCU

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App TCU-based isolation:

Additional protection layer

Only kernel tile can
establish communication
channels

User tiles can only use
established channels

14 / 44



Isolation

User tile

TCU

Kernel tile

TCU

User tile

TCU

User tile

TCU

User tile

TCU

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App TCU-based isolation:

Additional protection layer

Only kernel tile can
establish communication
channels

User tiles can only use
established channels

14 / 44



Isolation

User tile

TCU

Kernel tile

TCU

User tile

TCU

User tile

TCU

User tile

TCU

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App TCU-based isolation:

Additional protection layer

Only kernel tile can
establish communication
channels

User tiles can only use
established channels

14 / 44



Isolation

User tile

TCU

Kernel tile

TCU

User tile

TCU

User tile

TCU

User tile

TCU

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App TCU-based isolation:

Additional protection layer

Only kernel tile can
establish communication
channels

User tiles can only use
established channels

14 / 44



Communication

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

TCU

TCU

TCU

TCU TCUMM

S

R

S

R

TCU provides endpoints to:

Issue DMA requests to
memory

Receive messages into a
receive buffer

Send messages to a
receiving endpoint

Replies for RPC

15 / 44



Communication

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

TCU

TCU

TCU

TCU TCUMM S

R

S

R

TCU provides endpoints to:

Issue DMA requests to
memory

Receive messages into a
receive buffer

Send messages to a
receiving endpoint

Replies for RPC

15 / 44



Communication

Core

Core

Core

GPU

DRAM

TPU

Serv

Kernel

App

App App

TCU

TCU

TCU

TCU TCUMM S

R

S

R

TCU provides endpoints to:

Issue DMA requests to
memory

Receive messages into a
receive buffer

Send messages to a
receiving endpoint

Replies for RPC

15 / 44



Outline

1 The New System Architecture

2 Prototype Platforms

3 Isolation and Communication

4 Operating System

5 OS Services and Accelerators

6 Evaluation

7 Context Switching

16 / 44



OS Design

M3: Microkernel-based system for het. manycores
(or L4 ± 1)

Implemented from scratch in Rust and C++

Drivers, filesystems, etc. implemented on user tiles

Kernel manages permissions, using capabilities

TCU enforces permissions
(communication, memory access)

Kernel is independent of other tiles

Kernel M3FS

pipes App

App App

17 / 44



M3 System Call

User tile

PE

TCU

Kernel tile

PE

TCU

KernelApp

R

S

18 / 44



M3 System Call

User tile

PE

TCU

Kernel tile

PE

TCU

KernelApp

RS

18 / 44



M3 System Call

User tile

PE

TCU

Kernel tile

PE

TCU

KernelApp

RS

18 / 44



M3 System Call

User tile

PE

TCU

Kernel tile

PE

TCU

KernelApp

RS

18 / 44



M3 System Call

User tile

PE

TCU

Kernel tile

PE

TCU

KernelApp

RS

18 / 44



Capabilities Overview

0 2 0 2
1Activity 1 Activity 2

Kernel

Act 2Act 1

Act Send Recv Act

19 / 44



Capabilities in M3

Send: send messages to a receive EP

Receive: receive messages from send EPs

Memory: issue DMA requests to memory

Service: create sessions

Session: exchange caps with service

Endpoint: configure EPs of own or foreign TCU

Tile: create activities

Activity: executes code on/uses logic of a tile

20 / 44



Capability Exchange

Kernel provides syscalls to create, exchange, and revoke caps
There are two ways to exchange caps:

1 Directly with another activity (typically, a child activity)
2 Over a session with a service

The kernel offers two operations:
1 Delegate: send capability to somebody else
2 Obtain: receive capability from somebody else

Difference to L4:
▶ Applications communicate directly, without involving the kernel
→ Capability exchange cannot be done during IPC
▶ Special communication channel between kernel and servers
▶ Kernel uses this channel to send exchange requests to server

21 / 44



Outline

1 The New System Architecture

2 Prototype Platforms

3 Isolation and Communication

4 Operating System

5 OS Services and Accelerators

6 Evaluation

7 Context Switching

22 / 44



OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.rawsh$ decode in.png | fft | mul | ifft > out.raw

Shell

User program Input file

Hardware accelerators for
image processing

Output file

Pipes and output redirect

Challenges:

OS must provide generic
protocols

Accelerators need
support for protocols

23 / 44



OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.rawsh$ decode in.png | fft | mul | ifft > out.raw

Shell

User program Input file

Hardware accelerators for
image processing

Output file

Pipes and output redirect

Challenges:

OS must provide generic
protocols

Accelerators need
support for protocols

23 / 44



OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.rawsh$ decode in.png | fft | mul | ifft > out.raw

Shell

User program

Input file

Hardware accelerators for
image processing

Output file

Pipes and output redirect

Challenges:

OS must provide generic
protocols

Accelerators need
support for protocols

23 / 44



OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.rawsh$ decode in.png | fft | mul | ifft > out.raw

Shell

User program Input file

Hardware accelerators for
image processing

Output file

Pipes and output redirect

Challenges:

OS must provide generic
protocols

Accelerators need
support for protocols

23 / 44



OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.rawsh$ decode in.png | fft | mul | ifft > out.raw

Shell

User program Input file

Hardware accelerators for
image processing

Output file

Pipes and output redirect

Challenges:

OS must provide generic
protocols

Accelerators need
support for protocols

23 / 44



OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.rawsh$ decode in.png | fft | mul | ifft > out.raw

Shell

User program Input file

Hardware accelerators for
image processing

Output file

Pipes and output redirect

Challenges:

OS must provide generic
protocols

Accelerators need
support for protocols

23 / 44



OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.rawsh$ decode in.png | fft | mul | ifft > out.raw

Shell

User program Input file

Hardware accelerators for
image processing

Output file

Pipes and output redirect

Challenges:

OS must provide generic
protocols

Accelerators need
support for protocols

23 / 44



OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.rawsh$ decode in.png | fft | mul | ifft > out.raw

Shell

User program Input file

Hardware accelerators for
image processing

Output file

Pipes and output redirect

Challenges:

OS must provide generic
protocols

Accelerators need
support for protocols

23 / 44



OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.rawsh$ decode in.png | fft | mul | ifft > out.raw

Shell

User program Input file

Hardware accelerators for
image processing

Output file

Pipes and output redirect

Challenges:

OS must provide generic
protocols

Accelerators need
support for protocols

23 / 44



OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.rawsh$ decode in.png | fft | mul | ifft > out.raw

Shell

User program Input file

Hardware accelerators for
image processing

Output file

Pipes and output redirect

Challenges:

OS must provide generic
protocols

Accelerators need
support for protocols

23 / 44



Generic Protocols

Client Server

DRAM

TCU TCU

S R

req(in/out)

resp(pos,len)
MM

File protocol:

Data in memory
RPC between client and server

▶ req(in/out) requests next piece,
implicitly commits previous piece

▶ commit(nbytes) commits nbytes of
previous piece

Server configures client’s memory EP

Client accesses data via TCU

24 / 44



Generic Protocols

Client Server

DRAM

TCU TCU

S R

req(in/out)

resp(pos,len)
MM

File protocol:

Data in memory

RPC between client and server
▶ req(in/out) requests next piece,

implicitly commits previous piece
▶ commit(nbytes) commits nbytes of

previous piece

Server configures client’s memory EP

Client accesses data via TCU

24 / 44



Generic Protocols

Client Server

DRAM

TCU TCUS R

req(in/out)

resp(pos,len)

MM

File protocol:

Data in memory
RPC between client and server

▶ req(in/out) requests next piece,
implicitly commits previous piece

▶ commit(nbytes) commits nbytes of
previous piece

Server configures client’s memory EP

Client accesses data via TCU

24 / 44



Generic Protocols

Client Server

DRAM

TCU TCUS R

req(in/out)

resp(pos,len)
MM

File protocol:

Data in memory
RPC between client and server

▶ req(in/out) requests next piece,
implicitly commits previous piece

▶ commit(nbytes) commits nbytes of
previous piece

Server configures client’s memory EP

Client accesses data via TCU

24 / 44



Generic Protocols

Client Server

DRAM

TCU TCUS R

req(in/out)

resp(pos,len)
MM

File protocol:

Data in memory
RPC between client and server

▶ req(in/out) requests next piece,
implicitly commits previous piece

▶ commit(nbytes) commits nbytes of
previous piece

Server configures client’s memory EP

Client accesses data via TCU

24 / 44



Implementation: M3FS – Overview

M3FS organizes the file’s data in extents
M3FS can be used with a memory and disk backend

▶ With memory backend, FS image is a contiguous region in DRAM
▶ Clients get access to parts of the image
▶ With disk backend, M3FS uses a buffer cache in DRAM
▶ Clients get access to parts of buffer cache

Two types of sessions: metadata session, file session

Metadata session is created first, allows stat, open, . . .

open creates a new file session

Both sessions can be cloned to provide other activities access

25 / 44



Implementation: M3FS – File Protocol

The file session implements the file protocol (plus seeking)

File session holds file position and advances it on read/write

req(in/out) request next extent

M3FS configures client’s EP for this extent

Appending reserves new space, invisible to other clients

commit(nbytes) commits a previous append

26 / 44



Additions to Accelerator

Scratchpad memory (SPM)

PE

Accelerator

TCUASM

S M S M

IN OUT

Off-the-shelf accelerators

Accelerator Support Module (ASM):

Interacts with TCU and accelerator

Implements file protocol for input and
output channel

ASM assumes that endpoints are setup
externally by software

27 / 44



Additions to Accelerator

Scratchpad memory (SPM)

PE

Accelerator

TCU

ASM

S M S M

IN OUT

Off-the-shelf accelerators

Accelerator Support Module (ASM):

Interacts with TCU and accelerator

Implements file protocol for input and
output channel

ASM assumes that endpoints are setup
externally by software

27 / 44



Additions to Accelerator

Scratchpad memory (SPM)

PE

Accelerator

TCUASM

S M S M

IN OUT

Off-the-shelf accelerators

Accelerator Support Module (ASM):

Interacts with TCU and accelerator

Implements file protocol for input and
output channel

ASM assumes that endpoints are setup
externally by software

27 / 44



Additions to Accelerator

Scratchpad memory (SPM)

PE

Accelerator

TCUASM

S M S M

IN OUT

Off-the-shelf accelerators

Accelerator Support Module (ASM):

Interacts with TCU and accelerator

Implements file protocol for input and
output channel

ASM assumes that endpoints are setup
externally by software

27 / 44



Additions to Accelerator

Scratchpad memory (SPM)

PE

Accelerator

TCUASM

S M S M

IN OUT

Off-the-shelf accelerators

Accelerator Support Module (ASM):

Interacts with TCU and accelerator

Implements file protocol for input and
output channel

ASM assumes that endpoints are setup
externally by software

27 / 44



Demo

28 / 44



Outline

1 The New System Architecture

2 Prototype Platforms

3 Isolation and Communication

4 Operating System

5 OS Services and Accelerators

6 Evaluation

7 Context Switching

29 / 44



Assisted vs. Autonomous

FFT

SPM
DMA

MUL

SPM
DMA

IFFT

SPM
DMA

OS

Driver

Input

Output

FFT

SPM
DTU

MUL

SPM
DTU

IFFT

SPM
DTU

OS

Input

Output

ASM

ASM

ASM

30 / 44



Assisted vs. Autonomous

FFT

SPM
DMA

MUL

SPM
DMA

IFFT

SPM
DMA

OS

Driver

Input

Output

FFT

SPM
DTU

MUL

SPM
DTU

IFFT

SPM
DTU

OS

Input

Output

ASM

ASM

ASM

30 / 44



Assisted vs. Autonomous

FFT

SPM
DMA

MUL

SPM
DMA

IFFT

SPM
DMA

OS

Driver

Input

Output

FFT

SPM
DTU

MUL

SPM
DTU

IFFT

SPM
DTU

OS

Input

Output

ASM

ASM

ASM

30 / 44



Assisted vs. Autonomous

FFT

SPM
DMA

MUL

SPM
DMA

IFFT

SPM
DMA

OS

Driver

Input

Output

FFT

SPM
DTU

MUL

SPM
DTU

IFFT

SPM
DTU

OS

Input

Output

ASM

ASM

ASM

30 / 44



Accelerator Chains

FFT MUL IFFT

Act Act ActInput Output

FFT MUL IFFT

Act Act ActInput Output

1..4 chains

31 / 44



Accelerator Chains

FFT MUL IFFT

Act Act ActInput Output

FFT MUL IFFT

Act Act ActInput Output

1..4 chains

31 / 44



Accelerator Chains

FFT MUL IFFT

Act Act ActInput Output

FFT MUL IFFT

Act Act ActInput Output

1..4 chains

31 / 44



Accelerator Chains: Results

Assisted Autonomous

1

T
im

e 
(m

s)

0

5

10

15

20

2 3 4

# of parallel chains

1

C
P

U
 l

o
a
d

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4

# of parallel chains

32 / 44



Accelerator Chains: Results

Assisted Autonomous

1

T
im

e 
(m

s)

0

5

10

15

20

2 3 4

# of parallel chains

1

C
P

U
 l

o
a
d

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4

# of parallel chains

32 / 44



Accelerator Chains: Results

Assisted Autonomous

1

T
im

e 
(m

s)

0

5

10

15

20

2 3 4

# of parallel chains

1

C
P

U
 l

o
a
d

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4

# of parallel chains

32 / 44



Accelerator Chains: Results (PCIe-like Latency)

Assisted Autonomous

1

T
im

e 
(m

s)

0

20

40

60

80

2 3 4

# of parallel chains

1

C
P

U
 l

o
a
d

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4

# of parallel chains

33 / 44



Accelerator Chains: Results (PCIe-like Latency)

Assisted Autonomous

1

T
im

e 
(m

s)

0

20

40

60

80

2 3 4

# of parallel chains

1

C
P

U
 l

o
a
d

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4

# of parallel chains

33 / 44



Linux Application Workloads

M
3

L
x

tar  

0
2
4
6
8

10

T
im

e 
(m

s)

M
3

L
x

untar  

M
3

L
x

shasum  

M
3

L
x

sort  

M
3

L
x

find  

M
3

L
x

SQLite  

M
3

L
x

LvlDB  

App Xfers OS

M3 vs. Linux 4.10

Traced on Linux,
replayed on M3

M3FS vs. Linux tmpfs

Kernel App

Pager M3FS

M3: 1+3 cores

LinuxLinux: 1 core

34 / 44



Linux Application Workloads

M
3

L
x

tar  

0
2
4
6
8

10

T
im

e 
(m

s)

M
3

L
x

untar  

M
3

L
x

shasum  

M
3

L
x

sort  

M
3

L
x

find  

M
3

L
x

SQLite  

M
3

L
x

LvlDB  

App Xfers OS

M3 vs. Linux 4.10

Traced on Linux,
replayed on M3

M3FS vs. Linux tmpfs

Kernel App

Pager M3FS

M3: 1+3 cores

LinuxLinux: 1 core

34 / 44



Linux Application Workloads

M
3

L
x

tar  

0
2
4
6
8

10

T
im

e 
(m

s)

M
3

L
x

untar  

M
3

L
x

shasum  

M
3

L
x

sort  

M
3

L
x

find  

M
3

L
x

SQLite  

M
3

L
x

LvlDB  

App Xfers OS

M3 vs. Linux 4.10

Traced on Linux,
replayed on M3

M3FS vs. Linux tmpfs

Kernel App

Pager M3FS

M3: 1+3 cores

LinuxLinux: 1 core

34 / 44



Outline

1 The New System Architecture

2 Prototype Platforms

3 Isolation and Communication

4 Operating System

5 OS Services and Accelerators

6 Evaluation

7 Context Switching

35 / 44



Comparison of Context-Switching Approaches

M3 (ASPLOS’16)

TCU

TCU

Core

OS

Core/Accel

App

M3x (ATC’19)

TCU

TCU

Core

OS
Mux

Core/Accel

App1 App2

M3v (ASPLOS’22)

vTCU

TCU

Core

OS

Core

App1 App2

TileMux

36 / 44



Comparison of Context-Switching Approaches

M3 (ASPLOS’16)

TCU

TCU

Core

OS

Core/Accel

App

M3x (ATC’19)

TCU

TCU

Core

OS
Mux

Core/Accel

App1 App2

M3v (ASPLOS’22)

vTCU

TCU

Core

OS

Core

App1 App2

TileMux

36 / 44



Comparison of Context-Switching Approaches

M3 (ASPLOS’16)

TCU

TCU

Core

OS

Core/Accel

App

M3x (ATC’19)

TCU

TCU

Core

OS
Mux

Core/Accel

App1 App2

M3v (ASPLOS’22)

vTCU

TCU

Core

OS

Core

App1 App2

TileMux

36 / 44



Context Switching vs. Fast-Path Communication

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

App2

App1

App3 Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

37 / 44



Context Switching vs. Fast-Path Communication

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

App2

App1

App3

Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

37 / 44



Context Switching vs. Fast-Path Communication

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

App2

App1

App3

Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

37 / 44



Context Switching vs. Fast-Path Communication

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

App2

App1

App3 Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

37 / 44



Context Switching vs. Fast-Path Communication

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

App2

App1

App3 Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

37 / 44



Context Switching vs. Fast-Path Communication

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

App2

App1

App3 Suspend App1 until new
message, schedule App2

Resume App1 upon new
message

Multiplexing conflicts with
fast-path communication

37 / 44



Context Switching vs. Isolation

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

OS

App1 App2

TileMux

vTCU

38 / 44



Context Switching vs. Isolation

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

OS

App1 App2

TileMux

vTCU

38 / 44



Context Switching vs. Isolation

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

OS

App1 App2

TileMux

vTCU

Only the OS can provide
access to tile-external
resources

Restoring TCU state
provides access to all
resources

TileMuxmust not restore
TCU state!

38 / 44



Context Switching vs. Isolation

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

OS

App1 App2

TileMux

vTCU

Only the OS can provide
access to tile-external
resources

Restoring TCU state
provides access to all
resources

TileMuxmust not restore
TCU state!

38 / 44



Context Switching vs. Isolation

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

OS

App1 App2

TileMux

vTCU

Only the OS can provide
access to tile-external
resources

Restoring TCU state
provides access to all
resources

TileMuxmust not restore
TCU state!

38 / 44



Context Switching vs. Isolation

App

OS

App

App

App

App

TCU

TCU

TCU

TCU

TCU

TCU

OS

App1 App2

TileMux

vTCU

Only the OS can provide
access to tile-external
resources

Restoring TCU state
provides access to all
resources

TileMuxmust not restore
TCU state!

38 / 44



Virtualization of the TCU

vTCU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

39 / 44



Virtualization of the TCU

vTCU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

39 / 44



Virtualization of the TCU

vTCU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

39 / 44



Virtualization of the TCU

vTCU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

39 / 44



Virtualization of the TCU

vTCU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFApp

App2

App3

App1

Priv. IF TileMux

S R

39 / 44



Virtualization of the TCU

vTCU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

39 / 44



Virtualization of the TCU

vTCU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

39 / 44



Virtualization of the TCU

vTCU

EPEP EPEP EP EPEP

External IF

OS tile

S R

Unpriv. IFAppApp2

App3

App1

Priv. IF TileMux

S R

39 / 44



vTCU Size and Complexity

LUTs [k] FFs [k] BRAMs
BOOM 143.8 71.8 159
Rocket 46.6 22.0 152
NoC router 3.4 2.2 0
vTCU 15.2 5.8 0.5
Control Unit 10.3 3.3 0.5
NoC CTRL 3.2 1.5 0
CMD CTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0

40 / 44



vTCU Size and Complexity

LUTs [k] FFs [k] BRAMs
BOOM 143.8 71.8 159
Rocket 46.6 22.0 152
NoC router 3.4 2.2 0
vTCU 15.2 5.8 0.5
Control Unit 10.3 3.3 0.5
NoC CTRL 3.2 1.5 0
CMD CTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0

40 / 44



vTCU Size and Complexity

LUTs [k] FFs [k] BRAMs
BOOM 143.8 71.8 159
Rocket 46.6 22.0 152
NoC router 3.4 2.2 0
vTCU 15.2 5.8 0.5
Control Unit 10.3 3.3 0.5
NoC CTRL 3.2 1.5 0
CMD CTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0

40 / 44



vTCU Size and Complexity

LUTs [k] FFs [k] BRAMs
BOOM 143.8 71.8 159
Rocket 46.6 22.0 152
NoC router 3.4 2.2 0
vTCU 15.2 5.8 0.5
Control Unit 10.3 3.3 0.5
NoC CTRL 3.2 1.5 0
CMD CTRL 7.1 2.8 0.5
Unpriv. IF 6.2 2.5 0.5
Priv. IF 0.9 0.3 0

Register file 2.0 1.0 0
Memory mapper + PMP 0.6 0.2 0
I/O FIFOs 2.3 0.3 0

40 / 44



Performance Comparison with Linux

LevelDB receives requests from remote machine and sends result back
Requests generated with YCSB; different shares of read/insert/update/scan
Single BOOM core runs: LevelDB, pager, filesystem, network stack

41 / 44



Performance Comparison with Linux

LevelDB receives requests from remote machine and sends result back
Requests generated with YCSB; different shares of read/insert/update/scan
Single BOOM core runs: LevelDB, pager, filesystem, network stack

M
³v

L
in

u
x

Read

0

1

2

3

4

5

T
im

e
 (

s
)

M
³v

L
in

u
x

Insert

M
³v

L
in

u
x

Update

M
³v

L
in

u
x

Mixed

M
³v

L
in

u
x

Scan

0

10

20

30

41 / 44



Performance Comparison with Linux

LevelDB receives requests from remote machine and sends result back
Requests generated with YCSB; different shares of read/insert/update/scan
Single BOOM core runs: LevelDB, pager, filesystem, network stack

M
³v

L
in

u
x

Read

0

1

2

3

4

5

T
im

e
 (

s
)

M
³v

L
in

u
x

Insert

M
³v

L
in

u
x

Update

M
³v

L
in

u
x

Mixed

M
³v

L
in

u
x

Scan

0

10

20

30

41 / 44



Ongoing Work at the Barkhausen Insitut

Connected devices with remote attestation

Turning the FPGA prototype into a silicon chip

Providing real-time guarantees

Running Linux on a user tile

42 / 44



Conclusion

M3 explores a system architecture with a new per-tile hardware component

TCU introduces common interface for all cores/accelerators

Allows to integrate untrusted cores/accelerators, including OS-service access

General-purpose cores can be multiplexed efficiently

Hardware implementation demonstrates modest additional cost

Complete hardware/software stack available as open source:
https://github.com/Barkhausen-Institut/M3

43 / 44

https://github.com/Barkhausen-Institut/M3


More Information

Core-Local Reasoning and Predictable Cross-Core Communication with M3

Nils Asmussen, Sebastian Haas, Adam Lackorzyński, Michael Roitzsch

RTAS 2024

Efficient and Scalable Core Multiplexing with M3v
Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, Michael Roitzsch

ASPLOS 2022

M3X: Autonomous Accelerators via Context-Enabled Fast-Path Communication
Nils Asmussen, Michael Roitzsch, and Hermann Härtig

USENIX ATC 2019

SemperOS: Distributed Capability System
Matthias Hille, Nils Asmussen, Pramod Bhatotia, and Hermann Härtig

USENIX ATC 2019

M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores
Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and Gerhard Fettweis

ASPLOS 2016
44 / 44


	The New System Architecture
	Prototype Platforms
	Isolation and Communication
	Operating System
	OS Services and Accelerators
	Evaluation
	Context Switching

