Microkernel Construction
Case Study: M3

Nils Asmussen

July 11th 2024

1/44

Motivation

e Microkernel-based systems have proven valuable for several objectives
» Security
» Robustness
> Real time

Flexibility

v

o Recently, new challenges are coming from the hardware side

» Heterogeneous systems
» Third-party components

> Security issues of complex general-purpose cores

2/44

Heterogeneous Systems

Snapdragon
X20 LTE modem

Wi-Fi

"aaon 685 DSP

Quaicomm
Agstic Audio

System Memory

e Demanded by performance and energy requirements
e Big challenge for OSes: single shared kernel on all cores does no longer work

@ OSes need to be prepared for processing elements with different feature sets

Adreno 630

Visual Processing
Subsystem

Qualcomm
Spectra 280 ISP
Kryo 385 CPU

Quaicomm
Mobile Security

3/44

Third-party Components

=]

SAMSUNG

Exynos Modem

e Market pressure forces us to integrate third-party components
e We should not trust these components
e Currently, often no isolation between them

@ Bug in such a component can compromise whole system (see Broadcom incident)

4/44

Security Issues of Complex General-purpose Cores

J ~ \
q io:
4
e 26 known attacks (and counting ...)
e Allow to leak private data, sometimes bypassing all security measures of the core
e Mitigations exist, but these are complex and costly

e These security holes have been lurking in CPUs for many years

e Should we still trust these complex cores to properly enforce the isolation between

different software components?

5/44

Microkernel-based System as Foundation

U
Service Service

Microkernel-based System as Foundation

Service H Service

Microkernel-based System as Foundation

Application (O~ Application

Service OO Service

[Management }

Nicraolkarnal

E Enforcement j

Core | | ‘ ‘ Core [| ‘ ‘ Core [|

6/44

Microkernel-based System as Foundation

Application (O~ Application

Service OO Service

[Management J

Nicraolkarnal

E Enforcement j

Core | | ‘ ‘ Core [| ‘ ‘ Core [|

6/44

Outline

@ The New System Architecture
© Prototype Platforms

© Isolation and Communication
@ Operating System

© OS Services and Accelerators
@ Evaluation

@ Context Switching

7/44

Outline

@ The New System Architecture

8/44

Hardware/Operating System Co-Design

9/44

Hardware/Operating System Co-Design

e o
N K

Hardware/Operating System Co-Design

Il e o
BB ¢

Hardware/Operating System Co-Design

Core| | \\ GPU // \ TPU/I‘ Key ideas:
A 4 \\’*’

e TCU as new hardware
TCU () TCU() TCU() component

Core| | Core| | <>

teuQ [rewQ) [1euO

9/44

Hardware/Operating System Co-Design

Core| GPU TPU Key ideas:
e TCU as new hardware
TC O—C)
vO Teu .TCLJC3:>1 component
Core| | Core| | FPGA
Tcu O [TeuO—-CQOQTeu)

9/44

Hardware/Operating System Co-Design

Kernel App App

TCU() Tcu(O——OTCU CD—l
Serv App Serv

TCU [OH TCU(O——QTCU()

Key ideas:
e TCU as new hardware
component

o Kernel on dedicated tile

9/44

Hardware/Operating System Co-Design

Manage

Enforce

App App

EnforceO—OEnforceQ-l

Serv

Enforce(-

App Serv

Enforcel ——Enforce

Key ideas:
e TCU as new hardware
component

o Kernel on dedicated tile

e Kernel manages,
TCU enforces

9/44

Hardware/Operating System Co-Design

Kernel

TCU()

Hardware challenges:
App App . &
o Heterogeneity:

TCU((O——TCU @-l Uniform interface

Serv

TCU O

App Serv

TCU [O—OTCU(

9/44

Hardware/Operating System Co-Design

Kernel App App

TCU() Tcu(O——OTCU CD—l
Serv App Serv

TCU [OH TCU(O——QTCU()

Hardware challenges:

o Heterogeneity:

Uniform interface

e Untrusted HW comp.:
Protected by TCU

9/44

Hardware/Operating System Co-Design

Kernel App App

TCU() Tcu(O——OTCU CD—l
Serv App Serv

TCU [OH TCU(O——QTCU()

Hardware challenges:

o Heterogeneity:

Uniform interface

e Untrusted HW comp.:
Protected by TCU

e Side channels:

Physical isolation

9/44

Outline

© Prototype Platforms

10/ 44

gem>

Modular platform for computer architecture research

Supports various ISAs (x86, ARM, Alpha, RISC-V, ...)

(]

e Provides detailed CPU and memory models
e Cycle-accurate simulation
e Added TCU model to gem5

o Added hardware accelerators

11/ 44

FPGA

Xilinx VCU118 FPGA

@ RISC-V:in-order Rocket
or out-of-order BOOM

@ Rocket at 100 MHz,
BOOM at 80 MHz

@ 2x16 kB L1,512 kB L2
RISC-V

g
d)

RISC-V .
@ TCU contains 128 EPs

12/ 44

Outline

© Isolation and Communication

13/ 44

Isolation

Kernel tile

Kernel
TCU

User tile

Serv

TCU

User tile
App
TCU

User tile
App

TCU

User tile
App

TCU

DRAM

TCU-based isolation:

e Additional protection layer

14/ 44

Isolation

Kernel tile

Kernel
TCU

User tile

Serv

TCU

User tile
App
TCU

User tile
App

TCU

User tile
App

TCU

DRAM

TCU-based isolation:

e Additional protection layer

14/ 44

Isolation

Kernel tile

Kernel

TCU

User tile
App

TCU (r

User tile

A TCU-based isolation:
pp

e Additional protection layer
TCU Q‘l e Only kernel tile can

User tile

Serv

TCU (X

User tile

App

TCU (X

establish communication

channels

DRAM

14/ 44

Isolation

Kernel tile

Kernel

TCU

User tile
App

TCU (r

User tile

A TCU-based isolation:
pp

e Additional protection layer
TCU Q‘l e Only kernel tile can

User tile

Serv

TCU (X

User tile

App

TCU (X

establish communication

channels

DRAM e User tiles can only use

established channels

14/ 44

Communication

Kernel

TCU

TCU

TCU provides endpoints to:
e Issue DMA requests to

memory

15/ 44

Communication

y N AN
Kernel \ | \
\\ /’/ \\\———/
TCU TCU W)
Serv App DRAM
Teu ® e

TCU provides endpoints to:
e Issue DMA requests to

memory

e Receive messages into a

receive buffer

e Send messages to a

receiving endpoint

15/ 44

Communication

Kernel \\ App //
\\ /’/
Serv App
el [e

DRAM

TCU provides endpoints to:

e Issue DMA requests to

memory

e Receive messages into a

receive buffer

e Send messages to a
receiving endpoint

e Replies for RPC

15/ 44

Outline

@ Operating System

16/ 44

OS Design

e M3: Microkernel-based system for het. manycores
(or L4 £1)

e Implemented from scratch in Rust and C++
e Drivers, filesystems, etc. implemented on user tiles
e Kernel manages permissions, using capabilities

e TCU enforces permissions

(communication, memory access)

e Kernel is independent of other tiles

Kernel M3FS

!

pipes O—O App

17/ 44

M3 System Call
User tile Kernel tile
App Kernel

TCU TCU Eg

18/ 44

M3 System Call
User tile Kernel tile
App Kernel

TCU (5) TCU %

18/ 44

M3 System Call
User tile Kernel tile
App Kernel

TCU (5) TCU %

18/ 44

M3 System Call

User tile Kernel tile

App Kernel

TCU @-l TCU

18/ 44

M3 System Call

User tile Kernel tile

App Kernel

TCU @-l TCU

18/ 44

Capabilities Overview

Activity 1 = Activity 2 1
0 0 2
/ =/
/ | /
Kernel /
Act 1 / act2
e[[¢f |||[alo]e
\ \ 4
\ SO\
Act Send | | Recv | | Act

19/ 44

Capabilities in M3

e Send: send messages to a receive EP

Receive: receive messages from send EPs
e Memory: issue DMA requests to memory

o Service: create sessions

(]

Session: exchange caps with service
e Endpoint: configure EPs of own or foreign TCU

Tile: create activities

e Activity: executes code on/uses logic of a tile

20/ 44

Capability Exchange

e Kernel provides syscalls to create, exchange, and revoke caps
e There are two ways to exchange caps:
@ Directly with another activity (typically, a child activity)
@ Over a session with a service
e The kernel offers two operations:
@ Delegate: send capability to somebody else
© Obtain: receive capability from somebody else
e Difference to L4:
» Applications communicate directly, without involving the kernel
— Capability exchange cannot be done during IPC
» Special communication channel between kernel and servers

» Kernel uses this channel to send exchange requests to server

21/44

Outline

© OS Services and Accelerators

22/44

OS Service Access for all Processing Element Types

sh$ decode in.png | fft | mul | ifft > out.raw

23/44

OS Service Access for all Processing Element Types

Shell

sh$ decode in.png | fft | mul | ifft > out.raw

23/44

OS Service Access for all Processing Element Types

Shell

sh$ decode in.png | fft | mul | ifft > out.raw

User program

23/44

OS Service Access for all Processing Element Types

Shell

sh$ decode in.png | fft | mul | ifft > out.raw

User program Input file

23/44

OS Service Access for all Processing Element Types

Shell

sh$ decode in.png | fft | mul | ifft > out.raw

User program Input file

Hardware accelerators for

image processing

23/44

OS Service Access for all Processing Element Types

Shell

sh$ decode in.png | fft | mul | ifft > out.raw

User program Input file Output file

Hardware accelerators for

image processing

23/44

OS Service Access for all Processing Element Types

Shell Pipes and output redirect
sh$ decode in.png | fft | mul | ifft > out.raw

User program Input file Output file

Hardware accelerators for

image processing

23/44

OS Service Access for all Processing Element Types

Shell Pipes and output redirect

Challenges:

sh$ decode in.png | fft | mul | ifft > out.raw

User program Input file Output file

Hardware accelerators for

image processing

23/44

OS Service Access for all Processing Element Types

Shell Pipes and output redirect

Challenges:

sh$ decode in.png | fft | mul | ifft > out.raw o OS must provide

User program Input file Output file

Hardware accelerators for

image processing

23/44

OS Service Access for all Processing Element Types

Shell Pipes and output redirect

Challenges:

sh$ decode in.png | fft | mul | ifft > out.raw

e OS must provide

User program Input file Output file o Accelerators need

support for protocols
Hardware accelerators for PP P

image processing

23/44

Generic Protocols

24/ 44

Generic Protocols

File protocol:

e Data in memory

24/ 44

Generic Protocols

File protocol:
Client Server o Data in memory
req(in/out) o RPC between client and server
/\ > req(in/out) requests next piece,
TCU \—/ TCU implicitly commits previous piece
» commit(nbytes) commits nbytes of
resp(pos,len) : .
previous piece

w0 DRAM]

24/ 44

Generic Protocols

File protocol:

Client Server o Data in memory

req(in/out) @ RPC between client and server

> req(in/out) requests next piece,
TCU @ \/ ® TCU implicitly commits previous piece

» commit(nbytes) commits nbytes of

resp(pos,len) previous piece

DRAM - e Server configures client’s memory EP

24/ 44

Generic Protocols

File protocol:
Client Server o Data in memory
req(in/out) e RPC between client and server

> req(in/out) requests next piece,
TCU @ \/ ® TCU implicitly commits previous piece

» commit(nbytes) commits nbytes of

resp(pos,len) previous piece

e DRAM - e Server configures client’s memory EP

Client accesses data via TCU

24/ 44

Implementation: M3FS — Overview

(]

M3FS organizes the file’s data in extents

M3ES can be used with a memory and disk backend

» With memory backend, FS image is a contiguous region in DRAM
» Clients get access to parts of the image
» With disk backend, M3FS uses a buffer cache in DRAM

» Clients get access to parts of buffer cache

(]

Two types of sessions: metadata session, file session

Metadata session is created first, allows stat, open, ...

(]

open creates a new file session

Both sessions can be cloned to provide other activities access

25/44

Implementation: M3FS — File Protocol

e The file session implements the file protocol (plus seeking)

File session holds file position and advances it on read/write

req(in/out) request next extent

M3ES configures client’s EP for this extent

Appending reserves new space, invisible to other clients

e commit(nbytes) commits a previous append

26/ 44

Additions to Accelerator

Scratchpad memory (SPM)

o |l

Accelerator

Off-the-shelf accelerators

27/ 44

Additions to Accelerator

Scratchpad memory (SPM)

o |l

Accelerator

Off-the-shelf accelerators

TCU

27/ 44

Additions to Accelerator

Scratchpad memory (SPM)

o |l

Accelerator

T

ASM —— TCU

Off-the-shelf accelerators

Accelerator Support Module (ASM):

o Interacts with TCU and accelerator

27/ 44

Additions to Accelerator

Scratchpad memory (SPM)
Off-the-shelf accelerators

PE TH Accelerator Support Module (ASM):

o Interacts with TCU and accelerator
Accelerator

T

ASM —— TCU

oW EM
t

IN OUT

e Implements file protocol for input and

output channel

27/ 44

Additions to Accelerator

Scratchpad memory (SPM)
Off-the-shelf accelerators

PE TH Accelerator Support Module (ASM):

o Interacts with TCU and accelerator
Accelerator
e Implements file protocol for input and

f output channel

ASM — TCU
e ASM assumes that endpoints are setup

C%@ C%@ externally by software

IN OUT

27/ 44

Demo

28 /44

Outline

@ Evaluation

29/ 44

Assisted vs. Autonomous

Input
DMA
oS
DMA
Driver
DMA
Output

FFT

SPM

MUL

SPM

IFFT

SPM

30/ 44

Assisted vs. Autonomous

Input
DMA
oS
DMA
Driver
DMA
Output

FFT

SPM

MUL

SPM

IFFT

SPM

Input /

oS

Output\

DTU

DTU

DTU

FFT
ASM

SPM

MUL
ASM

SPM

IFFT
ASM

SPM

30/ 44

Assisted vs. Autonomous

Input

l

oS

Output

DMA

FFT

SPM .

DMA

MUL

SPM |

2

DMA

IFFT

SPM |

Input /

oS

Output\

DTU

DTU

DTU

>
%)
<

S

>

S

<

SPM |

= v >z %) —

30/ 44

Assisted vs. Autonomous

Input

l

oS

Driver m—

1

— DMA

r DMA

Output

- DMA

FFT

SPM

MUL

SPM

IFFT

SPM

Input /

oS

Output\

DTU

DTU

DTU

FFT
= ASM

SPM

MUL

= ASM

SPM

IFFT

= ASM
SPM

30/ 44

Accelerator Chains

FFT

MUL

IFFT

31/44

Accelerator Chains

Input —

Act

Act

Act

FFT

MUL

IFFT

31/44

Accelerator Chains

Input — Act — Act — Act —Output

FFT MUL IFFT

Input — Act — Act — Act —Output

FFT MUL IFFT

1..4 chains

31/44

Accelerator Chains: Results

[J Assisted [Autonomous
20

15

10

Time (ms)

1 2 3 4

of parallel chains

32/44

Accelerator Chains: Results

20

15

10

Time (ms)

[J Assisted

1 Autonomous

1 2

3

4

of parallel chains

32/44

Accelerator Chains: Results

20

15

10

Time (ms)

[J Assisted

1 2

3

4

of parallel chains

CPU load

1 Autonomous

1.0 1
0.8 1
0.6 1
0.4 1
0.2 1

IRERERIS

0.0

1 2 3 4

of parallel chains

32/44

Accelerator Chains: Results (PCle-like Latency)

[J Assisted [Autonomous

80 - 1.0 -
6ol 0.8 -
n B
é o 0.6
< 40 -
£ é 0.4-
I—

20 0.2 -

0- 0.0 -

1 2 3 4 1 2 3 4

of parallel chains # of parallel chains

33/44

Accelerator Chains: Results (PCle-like Latency)

[J Assisted [Autonomous

80 — 1.0 1 =
60- - 0.8
0 o
E 3 06-
o 40 -
£ é 0.4-
I—
"Inlnliin
0 0.0 ===
1T 2 3 4 1T 2 3 4

of parallel chains # of parallel chains

33/44

Linux Application Workloads

O App O Xfers O OS

—_

e M3wvs. Linux 4.10

e Traced on Linux,
replayed on M3

Time (ms)
SO N OO

x o o x

s 3 g3 g3 g3 g3 g2 3 23 e MS3FS vs. Linux tmpfs
tar untar shasum sort find SQLite LvIDB

34/ 44

Linux Application Workloads

O App O Xfers O OS

—_

e M3wvs. Linux 4.10

e Traced on Linux,
replayed on M3

Time (ms)
SO N OO

o x

s 3 g3 g3 g3 g3 g2 3 23 e MS3FS vs. Linux tmpfs
tar untar shasum sort find SQLite LvIDB

Kernel App | <=——— M3: 1+3 cores

Pager | | M3FS Linux: 1 core ™ | Linux

34/ 44

Linux Application Workloads

O App O Xfers O OS
e M3 s, Linux 4.10

e Traced on Linux,
D D replayed on M3

5 23 23 e M3FS vs. Linux tmpfs

Time (ms)
SN O X® S

tar untar shasum sort find SQLite LvIDB

Kernel App | <=——— M3: 1+3 cores

Pager M3FS Linux: 1T core — | Linux

34/ 44

Outline

@ Context Switching

35/44

Comparison of Context-Switching Approaches

M3 (ASPLOS’16)

Core

(O

TCU

Core/Accel

App

36/ 44

Comparison of Context-Switching Approaches

M3 (ASPLOS’16) M3x (ATC’19)
Core Core
oS
0s Mux

TCU TC

Core/Accel Core/Accel

1l

App App1| App2

.

36/ 44

Comparison of Context-Switching Approaches

M3 (ASPLOS’16) M3x (ATC’19) M3v (ASPLOS’22)
Core Core Core
OS
oS m oS
ux
TCU TCU
Core/Accel Core/Accel Core
App1 | App2
App App1 Appz‘ _ | |
TileMux

%

.

36/ 44

Context Switching vs. Fast-Path Communication

0S App App
TCU TCU TCU
App App App

TCU TCU TCU

37/44

Context Switching vs. Fast-Path Communication

oS App App3
TCU TCU TCU
TCU TCU TCU

37/44

Context Switching vs. Fast-Path Communication

TCU - TCUO

App1

] - 8
0O

(@

>

T

<

>

T

T

TCUO TCU TCU

37/44

Context Switching vs. Fast-Path Communication

(0N App App3
TCU TCU TCUQ—l
App2
A A
App1 pp pp
TCUCH TCU TCU

e Suspend Appl until new
message, schedule App2

37/44

Context Switching vs. Fast-Path Communication

(O] App App3 e Suspend App1 until new
message, schedule App2
ULl el TCUQ_' e Resume Appl upon new
message
App2
A A
App1 PP pp
TCUCH TCU TCU

37/44

Context Switching vs. Fast-Path Communication

(O] App App3 e Suspend App1 until new
message, schedule App2
ULl el TCUO_' e Resume Appl upon new
message
App2 e Multiplexing conflicts with
App1 App App fast-path communication
TCUCH TCU TCU

37/44

Context Switching vs. Isolation

oS App App
TCU TCU TCU
App App App

TCU TCU TCU

38/44

Context Switching vs. Isolation

oS App App
TCU TCU TCU

App App App
TCU TCU TCU

38/44

Context Switching vs. Isolation

oS App App
Oreu.

App App App
TCU TCU TCU

@ Only the OS can provide
access to tile-external

resources

38/44

Context Switching vs. Isolation

oS

TCU

App1| App2
TileMux

TCU

App

TCUO

App

TCU

App

(OTCcu

App

TCU

@ Only the OS can provide

access to tile-external

resources

e Restoring TCU state
provides access to all

resources

38/44

Context Switching vs. Isolation

oS

TCU

App1| App2
TileMux

TCU

App

TCUO

App

TCU

App

(OTCcu

App

TCU

@ Only the OS can provide

access to tile-external

resources

e Restoring TCU state
provides access to all

resources

o TileMux must not restore

TCU state!

38/44

Context Switching vs. Isolation

oS

TCU

App1| App2
TileMux

viCU

App

TCUO

App

TCU

App

(OTCcu

App

TCU

@ Only the OS can provide

access to tile-external

resources

e Restoring TCU state
provides access to all

resources

o TileMux must not restore

TCU state!

38/44

Virtualization of the TCU

viCU

39/44

Virtualization of the TCU

viCU

ep| [ep] [ep] [ep] [ep] [ep] [EP)

Virtualization of the TCU

OS tile

External IF

viCU

'EP| |EP| |EP| |EP| |EP| |EP| |EP

39/44

Virtualization of the TCU

OS tile

External IF

viCU

Ep) (ep) [s) [er] [Ep) [R [EP)

39/44

Virtualization of the TCU

OS tile

External IF

App > Unpriv. IF vICU

Ep) (ep) [s) [er] [Ep) [R [EP)

39/44

Virtualization of the TCU

N

OS tile

SA

App2

> d

App3

External IF

» Unpriv. IF vICU

(k) [ep) (5] [ep) [ep) (®) (ep)

39/44

Virtualization of the TCU

N

OS tile

SA

App2

> d

App3

External IF

:@ vICU Priv. IF
er) [ep) (5] (ep] (eP]

R | |EP

TileMux

39/44

Virtualization of the TCU
OS tile

Y

External IF
J

~
App2 Unpriv. IF vICU Priv. IF
[]

“EEeE® e
|

TileMux

A

Y

39/44

vICU Size and Complexity

LUTs [k] FFs[k] BRAMs

BOOM
Rocket
NoC router
vTCU
Control Unit
NoC CTRL
CMD CTRL
Unpriv. IF
Priv. IF
Register file
Memory mapper + PMP
[/0O FIFOs

143.8
46.6
3.4
15.2
10.3
3.2
7.1
6.2
0.9
2.0
0.6
2.3

71.8
22.0

2.2
5.8
3.3
1.5
2.8
2.5
0.3
1.0
0.2
0.3

159
152
0
0.5
0.5

40/ 44

vICU Size and Complexity

LUTs [k] FFs[k] BRAMs

BOOM
Rocket
NoC router
vTCU
Control Unit
NoC CTRL
CMD CTRL
Unpriv. IF
Priv. IF
Register file
Memory mapper + PMP
[/0O FIFOs

143.8
46.6
3.4
15.2
10.3
3.2
7.1
6.2
0.9
2.0
0.6
2.3

71.8
22.0

2.2
5.8
3.3
1.5
2.8
2.5
0.3
1.0
0.2
0.3

159
152
0
0.5
0.5

40/ 44

vICU Size and Complexity

LUTs [k] FFs[k] BRAMs

BOOM
Rocket
NoC router
vTCU
Control Unit
NoC CTRL
CMD CTRL
Unpriv. IF
Priv. IF
Register file
Memory mapper + PMP
[/0O FIFOs

143.8
46.6
3.4
15.2
10.3
3.2
7.1
6.2
0.9
2.0
0.6
2.3

71.8
22.0

2.2
5.8
3.3
1.5
2.8
2.5
0.3
1.0
0.2
0.3

159
152
0
0.5
0.5

40/ 44

vICU Size and Complexity

LUTs [k] FFs[k] BRAMs

BOOM
Rocket
NoC router
vTCU
Control Unit
NoC CTRL
CMD CTRL
Unpriv. IF
Priv. IF
Register file
Memory mapper + PMP
[/0O FIFOs

143.8
46.6
3.4
15.2
10.3
3.2
7.1
6.2
0.9
2.0
0.6
2.3

71.8
22.0

2.2
5.8
3.3
1.5
2.8
2.5
0.3
1.0
0.2
0.3

159
152
0
0.5
0.5

40/ 44

Performance Comparison with Linux

o LevelDB receives requests from remote machine and sends result back
e Requests generated with YCSB; different shares of read/insert/update/scan
e Single BOOM core runs: LevelDB, pager, filesystem, network stack

41/44

Performance Comparison with Linux

o LevelDB receives requests from remote machine and sends result back
e Requests generated with YCSB; different shares of read/insert/update/scan
e Single BOOM core runs: LevelDB, pager, filesystem, network stack

5 30
— 4 20
2y
= 10
0 0 -
:v>> X m> x m> x c\,)> x m> x
= 2 = 2 = 2 = 2 = 2
-l - - - -l
Read Insert Update Mixed Scan

41/44

Performance Comparison with Linux

o LevelDB receives requests from remote machine and sends result back

e Requests generated with YCSB; different shares of read/insert/update/scan

e Single BOOM core runs: LevelDB, pager, filesystem, network stack

5 —
— 4 T
‘2
o 3] 1 1
Ee) b
1 - = T
0
:v>> X m> x m> x c\,)> x
S 8 =2 E 2 E = E
-l - - -
Read Insert Update Mixed

30 -
20 4 I
T (1
10+
0
m> >
> E
|
Scan

41/44

Ongoing Work at the Barkhausen Insitut

o Connected devices with remote attestation

Turning the FPGA prototype into a silicon chip

Providing real-time guarantees

Running Linux on a user tile

42/ 44

Conclusion

e M3 explores a system architecture with a new per-tile hardware component
e TCU introduces common interface for all cores/accelerators

e Allows to integrate untrusted cores/accelerators, including OS-service access

(]

General-purpose cores can be multiplexed efficiently

Hardware implementation demonstrates modest additional cost

Complete hardware/software stack available as open source:
https://github.com/Barkhausen-Institut/M3

43/ 44

https://github.com/Barkhausen-Institut/M3

More Information

@ Core-Local Reasoning and Predictable Cross-Core Communication with M3
Nils Asmussen, Sebastian Haas, Adam Lackorzynski, Michael Roitzsch
RTAS 2024

@ Efficient and Scalable Core Multiplexing with M3v
Nils Asmussen, Sebastian Haas, Carsten Weinhold, Till Miemietz, Michael Roitzsch
ASPLOS 2022

@ M3X: Autonomous Accelerators via Context-Enabled Fast-Path Communication
Nils Asmussen, Michael Roitzsch, and Hermann Hartig
USENIX ATC 2019

@ SemperOS: Distributed Capability System
Matthias Hille, Nils Asmussen, Pramod Bhatotia, and Hermann Hartig
USENIX ATC 2019

@ M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores
Nils Asmussen, Marcus Volp, Benedikt N6then, Hermann Hartig, and Gerhard Fettweis

ASPLOS 2016
44/ 44

	The New System Architecture
	Prototype Platforms
	Isolation and Communication
	Operating System
	OS Services and Accelerators
	Evaluation
	Context Switching

