
Introduction Tasks Memory VFS IPC Security UI

Escape

Nils Asmussen

MKC, 06/11/2020

1 / 43

Introduction Tasks Memory VFS IPC Security UI

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 IPC

6 Security

7 UI

2 / 43

Introduction Tasks Memory VFS IPC Security UI

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 IPC

6 Security

7 UI

3 / 43

Introduction Tasks Memory VFS IPC Security UI

Motivation

Beginning

Writing an OS alone? That’s way too much work!

Port of UNIX32V to ECO32 during my studies

Started with Escape in October 2008

Goals

Learn about operating systems and related topics

Experiment: What works well and what doesn’t?

What problems occur and how can they be solved?

4 / 43

Introduction Tasks Memory VFS IPC Security UI

Overview

Basic Properties

UNIX-like microkernel-based OS

Open source, available on github.com/Nils-TUD/Escape

Mostly written in C++, some parts in C

Runs on x86, x86 64, ECO32 and MMIX

Only third-party code: libgcc, libsupc++, x86emu, inflate

ECO32

MIPS-like, 32-bit big-endian RISC architecture, developed by Prof.
Geisse for lectures and research

MMIX

64-bit big-endian RISC architecture of Donald Knuth as a
successor for MIX (the abstract machine from TAOCP)

5 / 43

github.com/Nils-TUD/Escape

Introduction Tasks Memory VFS IPC Security UI

Overview

Hardware

µ-kernel

Tasks Memory VFS

libc libcpp libgui

p
rivileg

ed
 m

o
d

e
u

ser m
o

d
evesa

tcpip

ataext2

Drivers

vterm fileman

ping

catls

ps

Applications

winmng uimng

ps2

guishell

head less

...libfslibesc

6 / 43

Introduction Tasks Memory VFS IPC Security UI

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 IPC

6 Security

7 UI

7 / 43

Introduction Tasks Memory VFS IPC Security UI

Processes and Threads

Process

Virtual address space

File descriptors

Mountspace

Threads (at least one)

. . .

Thread

User and kernel stack

State (running, ready, blocked, . . .)

Scheduled by a round-robin scheduler with priorities

Signals

. . .

8 / 43

Introduction Tasks Memory VFS IPC Security UI

Processes and Threads

Synchronization

Process-local semaphores (can also be created for interrupts)

Global semaphores, named by a path to a file

Userspace builds other synchronization primitives on top

Combination of atomic ops and process-local semaphores
Readers writer lock
. . .

Priority Management

Priorities are dynamically adjusted based on compute intensity

High CPU usage → downgrade, low CPU usage → upgrade

9 / 43

Introduction Tasks Memory VFS IPC Security UI

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 IPC

6 Security

7 UI

10 / 43

Introduction Tasks Memory VFS IPC Security UI

Memory Management

Physical Memory

Mostly, memory is managed by a stack (fast for single frames)

A small part handled by a bitmap for contiguous phys. memory

Virtual Memory

Kernel part is shared among all processes

User part is managed by a region-based concept

mmap-like interface for the userspace

11 / 43

Introduction Tasks Memory VFS IPC Security UI

Virtual Memory Management

dynlink (text)

VM (proc 1) VM (proc 2)

flags=shared,exec
size=16K, procs=1,2

flags=write,grow,stack
size=12K, procs=2

flags=write,grow
size=16K, procs=1

flags=shared,exec
size=20K, procs=1,2

0x00000000

text

0xBFFFFFFF

0xA0000000

data

stack1

stack2

libc.so (text)

text

data

stack1

libc.so (text)
MMIO

fr
ee

 a
re

a
la

yo
u

te
d

 a
re

a

free area
layo

u
ted

 area

/bin/hello

/lib/libc.so

dynlink (text)

12 / 43

Introduction Tasks Memory VFS IPC Security UI

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 IPC

6 Security

7 UI

13 / 43

Introduction Tasks Memory VFS IPC Security UI

Basics

The kernel provides the virtual file system

System-calls: open, read, mkdir, mount, . . .

It’s used for:
1 Provide information about the state of the system
2 Access userspace filesystems
3 Access devices
4 Access interrupts

14 / 43

Introduction Tasks Memory VFS IPC Security UI

Drivers and Devices

Drivers are ordinary user programs

They create devices via the system call createdev

These are usually put into /dev

Devices can also be used to implement on-demand-generated
files (such as /sys/net/sockets)

Communication is based on asynchronous message passing

15 / 43

Introduction Tasks Memory VFS IPC Security UI

Message Passing

inbox

outbox

send(id,msg) recv(id | 42,msg)

recv(id | 42,msg) send(id | 42,msg)

Channel

Client Driver

id | 42
id | 43

id | 42
id | 43

16 / 43

Introduction Tasks Memory VFS IPC Security UI

Devices Can Behave Like Files

As in UNIX: Devices should be accessable like files

Messages: FILE OPEN, FILE READ, FILE WRITE, FILE CLOSE

Devices may support a subset of these message

Kernel handles communication for open/read/write/close

Type of file transparent for applications

17 / 43

Introduction Tasks Memory VFS IPC Security UI

Devices Can Behave Like Filesystems

Messages: FS OPEN, FS READ, FS WRITE, FS CLOSE, FS STAT,
FS SYNC, FS LINK, FS UNLINK, FS RENAME, FS MKDIR,
FS RMDIR, FS CHMOD, FS CHOWN

Kernel handles communication, if syscall refers to userspace fs

Filesystems are mounted using the mount system call

18 / 43

Introduction Tasks Memory VFS IPC Security UI

Achieving Higher Throughput

Copying everything twice hurts for large amounts of data

sharebuf establishes shmem between client and driver

Easy to use: just call sharebuf once and use this as the buffer

Clients don’t need to care whether a driver supports it or not

Drivers need to handle DEV SHFILE to support it

In read/write, they check if SHM should be used

19 / 43

Introduction Tasks Memory VFS IPC Security UI

Achieving Higher Throughput – Code Example

i n t f d = open (”/dev/ z e r o ” ,O READ) ;

s t a t i c char buf [SIZE] ;

wh i l e (r ead (fd , buf , SIZE)) > 0) {
// . . .

}

c l o s e (fd) ;

i n t f d = open (”/dev/ ze r o ” ,O READ) ;

vo id ∗buf ;
i f (s h a r e bu f (fd , SIZE ,&buf , 0) < 0) {

i f (buf == NULL)
e r r o r (”Unable to mmap buf ”) ;

}

wh i l e (r ead (fd , buf , SIZE) > 0) {
// . . .

}

d e s t r o y bu f (buf) ;
c l o s e (fd) ;

20 / 43

Introduction Tasks Memory VFS IPC Security UI

Achieving Higher Throughput – Code Example

i n t f d = open (”/dev/ z e r o ” ,O READ) ;

s t a t i c char buf [SIZE] ;

wh i l e (r ead (fd , buf , SIZE)) > 0) {
// . . .

}

c l o s e (fd) ;

i n t f d = open (”/dev/ z e r o ” ,O READ) ;

vo id ∗buf ;
i f (s h a r e bu f (fd , SIZE ,&buf , 0) < 0) {

i f (buf == NULL)
e r r o r (”Unable to mmap buf ”) ;

}

wh i l e (r ead (fd , buf , SIZE) > 0) {
// . . .

}

d e s t r o y bu f (buf) ;
c l o s e (fd) ;

20 / 43

Introduction Tasks Memory VFS IPC Security UI

Achieving Higher Throughput – Usage Example

cp

ext2

ata

21 / 43

Introduction Tasks Memory VFS IPC Security UI

Achieving Higher Throughput – Usage Example

cp

ext2

ata

ftpfs

tcpip

e1000

cp

22 / 43

Introduction Tasks Memory VFS IPC Security UI

File Exchange

Files (=capabilities) can be exchanged via channel

Client can delegate/obtain files from driver:

int delegate(int chan,int fd,uint perm,int arg)

int obtain(int chan,int arg)

Used for:

Establishing shared memory
Connecting control and event channel of uimng
Accepting incoming network connections (accept)
. . .

23 / 43

Introduction Tasks Memory VFS IPC Security UI

File Descriptors For Everything

Interrupts

Escape uses semaphores for interrupts

For each interrupt, Escape creates a file /sys/irq/$irq

Syscall semirqcrt expects fd for IRQ file

On an IRQ, all semaphores in the list are up’ed

Signals

The kill syscall expects fd for process directory

Only if it has write permission, the signal can be sent

24 / 43

Introduction Tasks Memory VFS IPC Security UI

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 IPC

6 Security

7 UI

25 / 43

Introduction Tasks Memory VFS IPC Security UI

IPC between Client and Driver (Low Level)

dev

foo

int id = createdev("/dev/foo",...);

driver

creates

26 / 43

Introduction Tasks Memory VFS IPC Security UI

IPC between Client and Driver (Low Level)

dev

foo

int id = createdev("/dev/foo",...);

driver

creates

int fd = open("/dev/foo",IO_MSGS);

points to

creates

inbox

client

channel

outbox

27 / 43

Introduction Tasks Memory VFS IPC Security UI

IPC between Client and Driver (Low Level)

dev

foo

int id = createdev("/dev/foo",...);

driver

creates

int fd = open("/dev/foo",IO_MSGS);

points to

creates

inbox

client

channel

outbox

msg.arg1 = 10;
mid = send(fd,42,&msg,sizeof(msg));

receive(fd,&mid,&msg,sizeof(msg));

28 / 43

Introduction Tasks Memory VFS IPC Security UI

IPC between Client and Driver (Low Level)

dev

foo

int id = createdev("/dev/foo",...);

driver

creates

int fd = open("/dev/foo",IO_MSGS);

points to

creates

inbox

client

channel

outbox

msg.arg1 = 10;
mid = send(fd,42,&msg,sizeof(msg));

receive(fd,&mid,&msg,sizeof(msg));

points to

driver

int fd = getwork(id,&mid,&msg,sizeof(msg),0);

29 / 43

Introduction Tasks Memory VFS IPC Security UI

IPC between Client and Driver (Low Level)

dev

foo

int id = createdev("/dev/foo",...);

driver

creates

int fd = open("/dev/foo",IO_MSGS);

points to

creates

inbox

client

channel

outbox

msg.arg1 = 10;
mid = send(fd,42,&msg,sizeof(msg));

receive(fd,&mid,&msg,sizeof(msg));

points to

driver

int fd = getwork(id,&mid,&msg,sizeof(msg),0);

msg.arg1 = 1;
send(fd,mid,&msg,sizeof(msg));

30 / 43

Introduction Tasks Memory VFS IPC Security UI

Driver Example: /dev/zero

s t r u c t ZeroDev i ce : pub l i c C l i e n tDev i c e<> {
e x p l i c i t ZeroDev i ce (const char ∗name , mode t mode)

: C l i e n tD e v i c e (name , mode ,DEV TYPE BLOCK,DEV OPEN | DEV DELEGATE |
DEV READ | DEV CLOSE) {

s e t (MSG FILE READ , s td : : make memfun (t h i s ,& ZeroDev i ce : : r ead)) ;
}

vo id r ead (IPCStream &i s) {
s t a t i c char z e r o s [BUF SIZE] ;
C l i e n t ∗c = get (i s . f d ()) ;
F i l eRead : : Request r ;
i s >> r ;

i f (r . shmemoff != −1)
memset (c−>shm () + r . shmemoff , 0 , r . count) ;

i s << F i l eRead : : Response (r . count) << Rep ly () ;
i f (r . shmemoff == −1 && r . count)

i s << ReplyData (ze ro s , r . count) ;
}

} ;

i n t main () {
ZeroDev i ce dev (”/dev / z e r o ” ,0400) ;
dev . l oop () ;
r e t u r n EXIT SUCCESS ;

}

31 / 43

Introduction Tasks Memory VFS IPC Security UI

Client Example: vterm

// get conso l e−s i z e
i p c : : VTerm vterm (s td : : env : : ge t (”TERM”) . c s t r ()) ;
i p c : : Sc reen : : Mode mode = vterm . getMode () ;

// imp l ementa t i on o f vterm . getMode () :
Mode getMode () {

Mode mode ;
i n t r e s ;
i s << SendRece ive (MSG SCR GETMODE) >> r e s >> mode ;

i f (r e s < 0)
VTHROWE(”getMode () ” , r e s) ;

r e t u r n mode ;
}

32 / 43

Introduction Tasks Memory VFS IPC Security UI

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 IPC

6 Security

7 UI

33 / 43

Introduction Tasks Memory VFS IPC Security UI

General Idea

Goals

Keep the powerful and convenient UNIX concepts

Improve the security, reliability and maintainability

Approach

Structure it as a microkernel-based system

Permissions can only be downgraded (e.g., no setuid)

Mountspace as a first layer: control entire subtrees

ACL as a second layer: control at file-level

34 / 43

Introduction Tasks Memory VFS IPC Security UI

Mountspaces

Every process has a mountspace, inherited to childs

Mountspace is represented as a directory

Child mountspaces become child directories

Changing a mountspace requires write permission

Mountspace translates: path → (FS, perm, subpath)

perm defines upperbound for files in subpath

Can be done by unprivileged users

Filesystems and drivers run in userspace
. . . with the user+group of the mounter
Overmounting system directories is no security issue

35 / 43

Introduction Tasks Memory VFS IPC Security UI

Mounting for the User

Tools

mount creates a new FS for a device and makes it visible

$ mount /dev/hda1 /mnt /sbin/ext2

bind makes an existing FS visible at a different place

$ bind /dev/ext2-hda1 /home/me/mnt

What does bind do?

int fs = open("/dev/ext2 -hda1", ...);

int ms = open("/sys/pid/self/ms", O_WRITE);

mount(ms , fs , "/home/me/mnt");

// open ("/ home/me/mnt/a/b", ...) -> FS_OPEN ("/a/b")

36 / 43

Introduction Tasks Memory VFS IPC Security UI

Sandbox

Reasoning

Some applications are not trusted

Running them as a different user is inconvenient

Instead: run with same user, but less permissions

The sandbox tool

Allows to leave groups

Allows to reduce permissions to entire subtrees

Example: sandbox -g netuser -m /home:r app

Sandboxes can be nested and used by unprivileged users

37 / 43

Introduction Tasks Memory VFS IPC Security UI

Outline

1 Introduction

2 Tasks

3 Memory

4 VFS

5 IPC

6 Security

7 UI

38 / 43

Introduction Tasks Memory VFS IPC Security UI

UI Concept

uimng

keyb mouse vga vesa

39 / 43

Introduction Tasks Memory VFS IPC Security UI

UI Concept

uimng

keyb mouse vga vesa

shell ls

vterm ...

40 / 43

Introduction Tasks Memory VFS IPC Security UI

UI Concept

uimng

keyb mouse vga vesa

shell ls

vterm ...

desktop fileman

winmng

41 / 43

Introduction Tasks Memory VFS IPC Security UI

UI Concept

uimng

keyb mouse vga vesa

shell ls

vterm ...

desktop fileman

winmng

42 / 43

Introduction Tasks Memory VFS IPC Security UI

Questions

Get the code, ISO images, etc. on:

https://github.com/Nils-TUD/Escape

Questions?

43 / 43

https://github.com/Nils-TUD/Escape

	Introduction
	

	Tasks
	

	Memory
	

	VFS
	

	IPC
	

	Security
	

	UI
	

