Nils Asmussen

MKC, 06,/11,/2020

1/43

© Introduction
© Tasks

© Memory

Q VFS

O IPC

@ Security

Q u

2/43

Introduction
°

Outline

0 Introduction

3/43

Introduction
®00

Motivation

Beginning

@ Writing an OS alone? That's way too much work!
@ Port of UNIX32V to ECO32 during my studies
o Started with Escape in October 2008

@ Learn about operating systems and related topics

@ Experiment: What works well and what doesn’t?

@ What problems occur and how can they be solved?

4/43

Introduction
ceo

Overview

Basic Properties

@ UNIX-like microkernel-based OS
@ Open source, available on github.com/Nils-TUD/Escape

@ Mostly written in C++, some parts in C
@ Runs on x86, x86_64, ECO32 and MMIX
@ Only third-party code: libgcc, libsupc++, x86emu, inflate

ECO32

MIPS-like, 32-bit big-endian RISC architecture, developed by Prof.
Geisse for lectures and research

<

MMIX

64-bit big-endian RISC architecture of Donald Knuth as a
successor for MIX (the abstract machine from TAOCP)

5/43

github.com/Nils-TUD/Escape

Introduction
ocoe

Overview

Drivers Applications

’ ext2 ‘ ’ ata ‘ ’ vterm ‘ ’ ls ‘ ’ cat ‘ ’ fileman ‘

’ tcpip ‘ winmng ’ uimng ’ ps ‘ ’ ping ‘ ’ guishell ‘ %
e e | | e e
’ libc ‘ ’ libcpp ‘ ’ libesc ‘ ’ libgui ’ libfs ‘ ’ ‘
p-kernel 3
’ Tasks ‘ ’ Memory ‘ ’ VFS ‘ ‘%
‘ Hardware ‘ g

6/43

Outline

© Tasks

7/43

Processes and Threads

Process

@ Virtual address space

o File descriptors
@ Mountspace

@ Threads (at least one)

@ User and kernel stack

e State (running, ready, blocked, ...)
@ Scheduled by a round-robin scheduler with priorities

@ Signals

A

8/43

Processes and Threads

Synchronization

@ Process-local semaphores (can also be created for interrupts)

@ Global semaphores, named by a path to a file
@ Userspace builds other synchronization primitives on top

o Combination of atomic ops and process-local semaphores
o Readers writer lock
O coo

Priority Management

@ Priorities are dynamically adjusted based on compute intensity
@ High CPU usage — downgrade, low CPU usage — upgrade

9/43

Memory
.

Outline

© Memory

10/43

Memory Management

Physical Memory

@ Mostly, memory is managed by a stack (fast for single frames)

@ A small part handled by a bitmap for contiguous phys. memory

Virtual Memory

@ Kernel part is shared among all processes

@ User part is managed by a region-based concept

o mmap-like interface for the userspace

A\

11/43

Virtual Memory Management

VM 1 VM 2
(proc 1) Jliblibcso {proc2)
OXBFFFFFFF
libc.so (text)
flags=shared,exec
o size=16K, procs=1,2 >
= o r\ libc.so (text) 2
4]
& —] g

dynlink (text) | T~ dynlink (Eext)
0xA0000000 _—]
stack1

stack1
flags=write,grow,stack / l

size=12K, procs=2

|

stack2

Flags=write,grow
size=16K, procs=1

flags=shared,exec data

size=20K, procs=1,2 ™

layouted area
Q.
[T N
5
—
eaJe panoAe]

text text

/bin/hello

0x00000000.

12/43

Outline

Q VFS

13/43

VFS
©0000000000

Basics

@ The kernel provides the virtual file system

@ System-calls: open, read, mkdir, mount, ...
@ It's used for:

@ Provide information about the state of the system
@ Access userspace filesystems

© Access devices

© Access interrupts

14 /43

VFS
0®000000000

Drivers and Devices

Drivers are ordinary user programs
They create devices via the system call createdev
These are usually put into /dev

Devices can also be used to implement on-demand-generated
files (such as /sys/net/sockets)

@ Communication is based on asynchronous message passing

15/43

VFS
00®00000000

Message Passing

Channel

send(id,msg) inbox recv(id | 42,msg)
id | 42
id| 43

Client Driver

recv(id | 42,msg)| | ©UEPOX | [send(id | 42,msg)
id| 43
id | 42

16 /43

VFS
000®0000000

Devices Can Behave Like Files

As in UNIX: Devices should be accessable like files

Messages: FILE_OPEN, FILE READ, FILE WRITE, FILE CLOSE
Devices may support a subset of these message

Kernel handles communication for open/read/write/close

Type of file transparent for applications

17/43

VFS
0000®000000

Devices Can Behave Like Filesystems

@ Messages: FS_OPEN, FS_READ, FS_WRITE, FS_CLOSE, FS_STAT,
FS_SYNC, FS_LINK, FS_UNLINK, FS_RENAME, FS_MKDIR,
FS_RMDIR, FS_CHMOD, FS_CHOWN

@ Kernel handles communication, if syscall refers to userspace fs

@ Filesystems are mounted using the mount system call

18/43

VFS
00000@00000

Achieving Higher Throughput

Copying everything twice hurts for large amounts of data
sharebuf establishes shmem between client and driver

Easy to use: just call sharebuf once and use this as the buffer
Clients don't need to care whether a driver supports it or not
Drivers need to handle DEV_SHFILE to support it

In read/write, they check if SHM should be used

19/43

VFS
000000@0000

Achieving Higher Throughput — Code Example

int fd = open("/dev/zero” ,O.READ);

static char buf[SIZE];

while (read (fd, buf,SIZE)) > 0) {

close (fd);

20/43

VFS
000000@0000

Achieving Higher Throughput — Code Example

int fd = open("/dev/zero” ,O.READ); int fd = open(”/dev/zero” ,O_.READ);

static char buf[SIZE]; void xbuf;
if (sharebuf(fd,6SIZE,&buf,0) < 0) {
if (buf = NULL)
error (" Unable to mmap buf”);

}

while (read (fd, buf,SIZE)) > 0) { while (read(fd,buf,SIZE) > 0) {

destroybuf (buf);
close (fd); close (fd);

20/43

VFS
0000000000

Achieving Higher Throughput — Usage Example

cp

ext2

ata

21/43

cp cp ftpfs

] L]
] ext2 tcpip
L~ [C— |
] ata e1000 | |

22/43

VFS
00000000080

File Exchange

o Files (=capabilities) can be exchanged via channel

@ Client can delegate/obtain files from driver:
e int delegate(int chan,int fd,uint perm,int arg)
e int obtain(int chan,int arg)

@ Used for:
e Establishing shared memory

o Connecting control and event channel of uimng
o Accepting incoming network connections (accept)
]

23/43

VFS
0000000000e

File Descriptors For Everything

Interrupts

@ Escape uses semaphores for interrupts

o For each interrupt, Escape creates a file /sys/irq/$irq
@ Syscall semirqcrt expects fd for IRQ file
@ On an IRQ, all semaphores in the list are up’ed

@ The kill syscall expects fd for process directory

@ Only if it has write permission, the signal can be sent

A\

24 /43

Outline

O IPC

25 /43

IPC
[Ielelololele}

IPC between Client and Driver (Low Level)

driver

int id = createdev("/dev/fo0",...);

creates

foo

dev

26 /43

IPC
0®00000

IPC between Client and Driver (Low Level)

dev

driver
int id = createdev("/dev/fo0",...);
creates
creates
points to client
foo !

channel

int fd = open("/dev/foo",I0_MSGS);

27 /43

IPC
[eeX Yololele}

IPC between Client and Driver (Low Level)

int id = createdev("/dev/fo0",...);

creates

dev

foo

driver

client

creates
points to
I
int fd = open("/dev/foo",I0_MSGS);
channel msg.argl = 10;

mid = send(fd,42,&msg,sizeof(msg));

f— receive(fd,&mid,&msg,sizeof(msg));

28 /43

IPC
[eIeTeY Tolele}

IPC between Client and Driver (Low Level)

int id = createdev("/dev/fo0",...);

creates

dev

creates

driver

points to

client

foo

points to

int fd = open("/dev/foo",I0_MSGS);

channel

msg.argl = 10;

mid = send(fd,42,&msg,sizeof(msg));

f— receive(fd,&mid,&msg,sizeof(msg));

driver

int fd = getwork(id,&mid,&msg,sizeof(msg),0);

29 /43

IPC
0000®00

IPC between Client and Driver (Low Level)

driver
int id = createdev("/dev/fo0",...);
creates
creates
dev
points to client
foo . !
int fd = open("/dev/foo",I0_MSGS);
points to channel msg.argl = 10;

—-{ inbox |-

[outbox

outbox

mid = send(fd,42,&msg,sizeof(msg));

receive(fd,&mid,&msg,sizeof(msg));

driver

int fd = getwork(id,&mid,&msg,sizeof(msg),0);

msg.argl = 1;

send(fd,mid,&msg,sizeof(msg));

30/43

Driver Example: /dev/zero

struct ZeroDevice : public ClientDevice<> {
explicit ZeroDevice(const char xname, mode_t mode)
ClientDevice (name, mode, DEV.TYPE_.BLOCK,DEV_.OPEN | DEV_DELEGATE |
DEV_READ | DEV_CLOSE) {
set (MSG_FILE_READ, std :: make_memfun(this ,&ZeroDevice::read));

}

void read (IPCStream &is) {
static char zeros[BUF_SIZE];
Client *xc = get(is.fd());
FileRead :: Request r;
is >> r;

if (r.shmemoff I= —1)

memset (c—>shm () + r.shmemoff,0,r.count);
is << FileRead :: Response(r.count) << Reply();
if (r.shmemoff =— —1 && r.count)

is << ReplyData(zeros,r.count);

}s

int main() {
ZeroDevice dev("”/dev/zero” ,0400);
dev.loop();
return EXIT_SUCCESS;

31/43

Client Example: vterm

// get console—size
ipc::VTerm vterm(std::env::get("TERM").c_str());
ipc::Screen::Mode mode = vterm.getMode();

// implementation of vterm.getMode():
Mode getMode () {
Mode mode;
int res;
_is << SendReceive (MSGSCR.GETMODE) >> res >> mode;
if(res < 0)
VTHROWE(" getMode ()" ,res);
return mode;

32/43

Security
°

Outline

@ Security

33/43

Security
®000

General ldea

Goals

@ Keep the powerful and convenient UNIX concepts

@ Improve the security, reliability and maintainability

Approach

@ Structure it as a microkernel-based system

@ Permissions can only be downgraded (e.g., no setuid)

@ Mountspace as a first layer: control entire subtrees

@ ACL as a second layer: control at file-level

34 /43

Security
o®00

Mountspaces

Every process has a mountspace, inherited to childs
Mountspace is represented as a directory

Child mountspaces become child directories

Changing a mountspace requires write permission
Mountspace translates: path — (FS, perm, subpath)

perm defines upperbound for files in subpath

® 6 6 66 6 o o

Can be done by unprivileged users

o Filesystems and drivers run in userspace
e ...with the user+group of the mounter
e Overmounting system directories is no security issue

35/43

Security
feYe] Yo)

Mounting for the User

@ mount creates a new FS for a device and makes it visible
o $ mount /dev/hdal /mnt /sbin/ext2

@ bind makes an existing FS visible at a different place
o $ bind /dev/ext2-hdal /home/me/mnt

What does bind do?

int fs = open("/dev/ext2-hdal", ...);

int ms open("/sys/pid/self/ms", O_WRITE) ;
mount (ms, fs, "/home/me/mnt") ;
// open("/home/me/mnt/a/b", ...) -> FS_OPEN("/a/b")

36/43

Security
ocooe

Sandbox

@ Some applications are not trusted

@ Running them as a different user is inconvenient

@ Instead: run with same user, but less permissions

V.

The sandbox tool

@ Allows to leave groups

@ Allows to reduce permissions to entire subtrees
@ Example: sandbox -g netuser -m /home:r app

@ Sandboxes can be nested and used by unprivileged users

\

37/43

Outline

Q u

38/43

Ul Concept

uimng

keyb mouse vga vesa

39/43

Ul Concept

shell ls
vterm
[]

L
r

keyb mouse vga vesa

40/43

Ul Concept

shell ls desktop fileman
™ e
I_H I I
vterm winmng
L] ECE
Bl
uimng
L1
| — ¢

keyb

mouse vga

vesa

41/43

Ul Concept

shell ls desktop fileman
[]
vterm winmng
[l 008
I
unmng
‘1
| {
keyb mouse vga vesa
O

42 /43

Questions

Get the code, ISO images, etc. on:
https://github.com/Nils-TUD/Escape

Questions?

43/43

https://github.com/Nils-TUD/Escape

	Introduction
	

	Tasks
	

	Memory
	

	VFS
	

	IPC
	

	Security
	

	UI
	

