
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION

Exercise 4: Task #4, Assembler Programming
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2023-05-09 OSC: Exercise 4 2

Overview
● Task #3: Tips & Tricks
● Task #4

– Overview
– x86-64 Assembler Programming
– C / Assembler Interfacing

2023-05-09 OSC: Exercise 4 3

Overview
● Task #3: Tips & Tricks
● Task #4

– Overview
– x86-64 Assembler Programming
– C / Assembler Interfacing

2023-05-09 OSC: Exercise 4 4

Pro/Epilogue Model – Sequence Example

1 Application control flow enters epilogue level L½ (enter).

2 Interrupt is signaled on level L1, execute prologue.

3 Prologue requests epilogue for delayed execution (relay).
4 Prologue terminates, interrupted L½ control flow (application) continues.

5 Application control flow leaves epilogue level L½ (leave),

process meanwhile accumulated epilogues.
6 Epilogue terminates, application control flow continues on L0.

t1 t2 t3 t4 t6t5

Interrupt-handler
activation latency is
minimal.

L1 interrupts are
never disabled.

L1

L½

L0

buf[...]

produce

epilogue

prologue

handler

enter

relay

leave

consume

2023-05-09 OSC: Exercise 4 5

Task #3: Tips and Tricks
● Epilogue queue

– Accesses must be synchronized! How?
● Guard::leave()

– Which condition must hold when leaving
this function?

● Gate::queued()
– What’s this there for?

● Interactions between
prologue and epilogue
– Do we need to synchronize here as well?

Queue

Locker

Guard Secure

Gate
Chain

Keyboard

guard

device

object

Panic

2023-05-09 OSC: Exercise 4 6

Overview
● Task #3: Tips & Tricks
● Task #4

– Overview
– x86-64 Assembler Programming
– C / Assembler Interfacing

2023-05-09 OSC: Exercise 4 7

Dispatcher

toc

Coroutine

Application

Scheduler Entrant

Chain

Queue

...

user

machine

thread object

Task #4: Overview

A cooperative
scheduler (FCFS)

A first control-flow
abstraction.

2023-05-09 OSC: Exercise 4 8

Scheduler
Description
The scheduler manages the ready list (a private Queue member of this class), which is the list of
processes of type Entrant that are ready to run. The list is processed from front to back. [...]

Public methods
void ready (Entrant& that)

This method registers the process that with the scheduler. It is appended to the end of the ready list.

void schedule ()

This method starts up scheduling by removing the first process from the ready list and activating it.

void exit ()

With this method a process can terminate itself. […]

void kill (Entrant& that)

With this method a process can terminate another one (that). [...]

void resume ()

This method allows to trigger a context switch without the calling Entrant having to know which
other Entrant objects exist in the system, and which of these should be activated. [...]

2023-05-09 OSC: Exercise 4 9

Overview
● Task #3: Tips & Tricks
● Task #4

– Overview
– x86-64 Assembler Programming
– C / Assembler Interfacing

2023-05-09 OSC: Exercise 4 10

What is an Assembler?
● (Simple) compiler: transforms code of an assembler program machine code→

– Assembler program = human-readable instructions
– Machine code = binary representation of instructions (opcodes)

● More comfortable to write:
– Instead of a bit string 01001000 00000101 11101000 00000011

the programmer can write:
add rax, 1000

● (Almost …) bijective mapping:
assembler instructions binary machine-code instructions

● Each CPU architecture has its specific assembler.

Symbolic assembler instruction Machine code

add rax 01001000 00000101

1000 (decimal) 00000011 11101000

2023-05-09 OSC: Exercise 4 11

What is an assembler capable of?
● Understands only a few complex expressions

– Input language corresponds to CPU instruction set!
– … sometimes additionally simple calculations and preprocessing at

assembly time (see OOStuBS startup.asm, exercise #3)

● Constructs of higher programming languages are translated to
simpler instructions by the compiler:
– no complex statements
– no comfortable loops – usually only “goto” equivalents
– no structured data types
– no subroutines with parameter passing

2023-05-09 OSC: Exercise 4 12

C/C++ Build Process
● Preprocessing, compilation, assembly and linkage in one

step: gcc hello1.c
– Generates file a.out

(name can be changed with parameter -o)

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("Hello World\n");
 return 0;
}

hello1.c

cpp cc1 as ld a.out
gcc

hello1.i hello1.s hello1.o

C without
macros
(gcc -E)

Assembler
code

(gcc -S)

Machine code:
Object file

(gcc -c)

Assembler: Component between compiler and linker
● Reads compiler-generated assembler source code
● Generates object file

(binary machine instructions and data)

2023-05-09 OSC: Exercise 4 13

Example
● C statement:

– Too complex for the assembler,
must be broken down to multiple steps!

● x86-64 assembler can only add two numbers and store the
result in one of the two used “variables” (accumulator register)

● This C program is structurally closer to an assembler
program:

sum = a + b + c + d;

sum = a;
sum = sum + b;
sum = sum + c;
sum = sum + d;

2023-05-09 OSC: Exercise 4 14

Example
● This program

would look e.g. like this in x86-64 assembler:

● An assembler …
– supports only primitive operations
– works in a line-oriented fashion (line = machine instruction)

mov rax, [a]
add rax, [b]
add rax, [c]
add rax, [d]

sum = a;
sum = sum + b;
sum = sum + c;
sum = sum + d;

2023-05-09 OSC: Exercise 4 15

Control structures: “if”
● Simple if-then-else constructs are already too complex for an

assembler:

● In x86-64 assembler, this looks as follows:

if (a == 4711) {
...

} else {
...

}

cmp rax, 4711 ; compare rax to 4711
jne unequal ; unequal -> jump

equal: ... ; else continue here
jmp cont ; skip over else branch

unequal: ... ; else branch
cont: ... ; continue with other stuff

2023-05-09 OSC: Exercise 4 16

Loops: Simple “for” Loop
● A simple counting loop is actually better supported:

● … in x86-64 assembler:

● loop instruction:
– Implicitly decrements RCX register
– Jumps only if RCX ≠ 0

for (i = 0; i < 100; i++) {
 sum = sum + a;
}

 mov rcx, 100
repeat: add rax, [a]
 loop repeat

2023-05-09 OSC: Exercise 4 17

What is a Register?
● Extremely fast, very small storage within the CPU that can (in

x86-64 CPUs) store 64 bits
● Compiler: Mapping of high-level language variables to

storage locations in the data/BSS segment of an object file
● Calculations with variables: Usually beforehand loading

memory register necessary→
– Not all variables fit into the low number of registers at the same time!
– Mapping registers variables changes over time

2023-05-09 OSC: Exercise 4 18

8086: Register File

IP
SP

015
Instruction and Stack Pointer

AH AL
015

General-purpose registers

BH BL
CH CL
DH DL
SI
DI
BP

FLAGS
015

Flags register

CS
015

Segment registers

SS
DS
ES

Code
Stack
Data
Extra

2023-05-09 OSC: Exercise 4 19

8086: Register File

IP
SP

015
Instruction and Stack Pointer

AH AL
015

General-purpose registers

BH BL
CH CL
DH DL
SI
DI
BP

FLAGS
015

Flags register

CS
015

Segment registers

SS
DS
ES

Code
Stack
Data
Extra

AX: Accumulator Register
● arithmetic + logical operations
● I/O
● shortest machine code

BP: Base Pointer

CX: Count Register
● for LOOP instruction
● for string operations with REP
● for bit-shift and rotate

DX: Data Register
● DX:AX have 32 bits for MUL/DIV
● port number for IN and OUT

SI, DI: Index Register
● for array accesses (displacement)

BX: Base Address Register

Each “general-purpose” register
fulfills a specific purpose

2023-05-09 OSC: Exercise 4 20

x86-64: Register File (Extensions)
● Extended registers prefixed with R… for compatibility

063
Instruction and stack pointerGeneral-purpose registers

Status register

CS
015

Segment registers

SS
DS
ES

Code
Stack
Data
Extra

1516

AX
BX

CX
DX

063 1516
RIP
RSP

RAX
RBX
RCX
RDX
RSI
RDI
RBP

FS
GS

063 1516

IP
SP

SI

DI
BP

 FLAGSRFLAGS

Extended in
cmp. to 8086

Extra
Extra

 ⋮

R8

R15
 ⋮
R8

015

2023-05-09 OSC: Exercise 4 21

Memory
● In most of the cases, registers do not suffice to implement an

algorithm
– Memory access is necessary

● Main memory: Functionally like a gigantic array of registers,
selectively 8, 16, 32 or 64 bits “wide”
– smallest addressable unit: Byte
– memory cells numbered consecutively index→
– accesses are several 100x slower than to registers

● Access via addresses

2023-05-09 OSC: Exercise 4 22

Memory
● Example:

A bug hides here:
It should say mov eax, [million]

[SECTION .data]
greeting: db 'hello, world'
answer: dw 42
million: dd 1000000

[SECTION .text]
mov ax, [million]

h
e
l
l
o
,

w
o
r
l
d

42

1000000

greeting:

answer:

million:

low addresses

high addresses

2023-05-09 OSC: Exercise 4 23

The Stack
● Variables stored at fixed memory addresses are accessible

from all parts of the assembler program
– via address or symbolic names (“labels”) → global variables

● However, for particular purposes we need non-global
variables
– Isolation between functions / objects
– Recursively callable functions

● Stack: Temporary LIFO storage for values “as long as they are
needed”
– allows dynamic allocation of variables
– addressed with relative addresses

2023-05-09 OSC: Exercise 4 24

The Stack
● Push operation: Store values “on top” of the stack

(inverse: Pop)
– memory address at which push/pop operate: special register, the so-

called stack pointer (x86-64: rsp)
– No need to care about concrete value of stack pointer; only

remember order in which we pushed values!

2023-05-09 OSC: Exercise 4 25

Addressing Modes
● Most instructions can use registers, memory, or constants as

operands
● The mov instruction allows the following modes (among others)

(1st operand: target, 2nd operand: source):
– Register addressing – transfer value of a register to another: mov rbx, rdi
– Immediate – transfer a constant to a register: mov rbx, 1000
– Direct memory addressing – transfer the value stored at the address

(supplied as a constant) to a register: mov rbx, [1000]
– Register indirect – transfer the value stored at the address

(supplied in a register) to a register: mov rbx, [rax]
– Direct offset addressing – transfer the value stored at the address (supplied

as a sum of a constant and an address) to a register: mov rax,[10+rsi]

2023-05-09 OSC: Exercise 4 26

x86-64: Addressing Modes
● The CPU calculates effective addresses (EA) along a simple

formula
– all general-purpose registers can be used equally (!)

● Example: MOV RAX, array[RSI * 4]
– Read from array with 4-byte elements, using RSI as index

● New with x86-64: IP-relative addressing

EA := Base-Reg. + (Index-Reg. * Scale) + Displacement

1/2/4/8 ---
1/2/4 bytes

EA

EA := RIP + Displacement

2023-05-09 OSC: Exercise 4 27

Functions
● … known from higher-level programming languages …

– Advantage compared to goto: Call from arbitrary location in your
program, return/continue the calling program part

– The function itself doesn’t need to know where it was called from, and
where to return afterwards (this happens automatically – how?)

● Not only data but also your program lies in main memory
 → each machine-code instruction has its own address

● Special Instruction Pointer register (rip) points to the next
instruction to be executed

2023-05-09 OSC: Exercise 4 28

Functions
● Processor executes instruction, then usually increases rip by

the length of the instruction
 → rip points to the next instruction

● Jump instruction: Changes rip to target address (absolute, or
rip-relative)

● Function call: like a jump, plus saves the return address
– old rip value (plus instruction length) is saved on the stack

● Function return: ret pops address from stack, jumps there

2023-05-09 OSC: Exercise 4 29

Functions
● x86-64: Implicitly save/restore the return address on the

stack by using the call and ret instructions

; ----- Main program ----
;
main: ...

call f1

xy: ...

; ----- Function f1
f1: ...
 ret

2023-05-09 OSC: Exercise 4 30

Functions

2023-05-09 OSC: Exercise 4 31

Functions
● Parameters: the first 6 in registers, further ones on the stack
● Parameters on the stack must be removed again afterwards

(with pop, or by directly modifying rsp)

mov rdi,rax ; first parameter for f1 in rdi
mov rsi,rbx ; second parameter in rsi
mov rdx,r13 ; third parameter in rdx
; … …
push r15 ; seventh parameter on the stack
call f1
add rsp, 8 ; remove seventh param. from stack

2023-05-09 OSC: Exercise 4 32

Functions
● Access to parameters within the function:

– Simplified by using the base pointer rbp
– Convention: Save rbp at the beginning of a function, set to rsp

 → access the 7th parameter via [rbp+16]
 access the 8→ th parameter via [rbp+24] …

– … independently from whether rsp was changed in the meantime
(e.g. using push or pop)

f2: push rbp
 mov rbp,rsp

 ...
 mov rbx,[rbp+16] ; load 7th parameter to rbx
 mov rax,[rbp+24] ; load 8th parameter to rax
 ...
 pop rbp
 ret

2023-05-09 OSC: Exercise 4 33

Functions

2023-05-09 OSC: Exercise 4 34

Nested Function Calls

2023-05-09 OSC: Exercise 4 35

Overview
● Task #3: Tips & Tricks
● Task #4

– Overview
– x86-64 Assembler Programming
– C / Assembler Interfacing

2023-05-09 OSC: Exercise 4 36

Calling Assembler Functions
● An assembler-code label can be exported to the linker – also

a function address:
; EXPORTED FUNCTIONS
[GLOBAL toc_switch]
[GLOBAL toc_go]
toc_go: ...

● Now a C++ program can call the function
– However, the compiler needs a (matching) declaration:

extern "C" void toc_go(struct toc* regs);

● The assembler code can expect the parameter in rdi.
● Non-volatile registers may need to be saved/restored!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	OOStubs Aufgabe 4
	Scheduler
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

