
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION
Exercise 6: Task #6, Idle Loop, Non-Bl. Thread Sync
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2023-06-14 OSC: Exercise 6 2

Agenda
● Lab Task #6

● Idle-Loop, considered harmful

● Non-Blocking Thread Synchronization

2023-06-14 OSC: Exercise 6 3

Agenda
● Lab Task #6

● Idle-Loop, considered harmful

● Non-Blocking Thread Synchronization

2023-06-14 OSC: Exercise 6 4

Lab Task #6: The Art of Waiting

Organizer Customer

Thread

Application

Guarded_Organizer

Semaphore

Waitingroom

Guarded_Keyboard

Keyboard

Buzzer

Bell

Queue Chain

List

Bellringer

Guarded_Semaphore

...

thread

Scheduler Entrant

device

syscall

user

meeting

object

Guarded_Buzzer

2023-06-14 OSC: Exercise 6 5

Lab Task #6
● Entrant → Customer

– Can wait for specific events
● Each event is assigned to a Waitingroom

– Threads that wait for an event are queued in its Waitingroom
– Synchronization objects are Waitingrooms and can trigger events

● Scheduler → Organizer
– Can block / “put to sleep” a thread (Readylist → Waitingroom)

● block(Thread &, Waitingroom &)

– and “wake it up” again (Waitingroom → Readylist)
● wakeup(Thread &)

● Events in OOStuBS
– Semaphore V() + and other thread is waiting (in P())
– A key was added to the keyboard buffer
– A specific amount of time has passed

2023-06-14 OSC: Exercise 6 6

Synchronization Object Semaphore
● Derived from Waitingroom
● p()

– If == 0: Wait for v() (wait)
● using the Organizer

– Else: decrease by 1
● v()

– If a thread is waiting: Signal the event (signal)
● Wake up waiting thread
● What happens if multiple threads are waiting?

– Else: increase by 1

2023-06-14 OSC: Exercise 6 7

Synchronization Object Keyboard
● Goal: Use the CPU for other purposes while waiting for I/O
● Thread reads from the keyboard

– Keyboard driver’s getkey() returns Keys
– as long as there are some in the (software) keyboard buffer
– When keyboard buffer is empty:

● Thread blocks
● Waits for event “Keyboard buffer filled again” (wait)

– Signaling of this event (signal)
● Keyboard interrupt
● Epilogue, due to access from thread level

● Implementation
– Semaphore that counts keys in the keyboard buffer

2023-06-14 OSC: Exercise 6 8

Synchronization Object Buzzer
● Buzzer: an alarm clock

– With sleep() threads can block and wait until this alarm clock rings
– After a period of time specified in set()
– the ring() method wakes up waiting threads

● derived from Bell
– Has a counter
– that is counted down with tick()
– and calls ring() when run down (run_down() == true)

● Bellringer
– manages Bell objects
– regularly checks whether they have run down and rings them in this case

● Implementation:
– without a detour over Semaphore
– directly with Waitingroom and Organizer (why?)

2023-06-14 OSC: Exercise 6 9

Synchronization Objects in OOStuBS
● … are part of the kernel state

– Keyboard and Buzzer signal events in the epilogue
● Can we also wait for events in the epilogue?

– Semaphore (why?)
● … and therefore must reside on the epilogue level

– Guarded_Semaphore
– Guarded_Buzzer
– Guarded_Keyboard

2023-06-14 OSC: Exercise 6 10

Agenda
● Lab Task #6

● Idle-Loop, considered harmful

● Non-Blocking Thread Synchronization

2023-06-14 OSC: Exercise 6 11

Idling
● All threads, except one, are waiting for an event.
● Now the last thread also blocks. What now?

– Busy waiting until one thread is ready again?
● Definitely makes sure the CPU stays warm …

– Solution: cpu.idle()
● Runs, like cpu.halt(), a hlt instruction, but enables interrupts before

instead of disabling them.
● When an interrupt occurs, its handler runs, and then the CPU continues

execution after the hlt.
● … and then?

while (!(next=readylist.dequeue())
 cpu.idle();

Unfortunately, it’s
not that simple.

cpu_idle:
 sti
 hlt
 ret

2023-06-14 OSC: Exercise 6 12

Agenda
● Lab Task #6

● Idle-Loop, considered harmful

● Non-Blocking Thread Synchronization

2023-06-14 OSC: Exercise 6 13

Thread Synchronization: Assumptions
● Threads can be preempted unpredictably

– at any time (also by external events)
● interrupts

– by any other thread
● of higher, same or lower priority (progress guarantee!)

● Typical assumptions for desktop computers
– probabilistic, interactive, preemptive, online CPU scheduling
– We do not consider other scheduling variants here.

Primarily, progress guarantee is causing the trouble here.

In purely priority-driven systems with sequential thread processing within one priority level, we
can simply extend the interrupt-handling control-flow level model to thread priorities, and
synchronize with comparable mechanisms (explicit level switch, algorithmic).
(event-driven real-time systems)→

2023-06-14 OSC: Exercise 6 14

Why all the Fuss with Threads?
● Assume we don’t need “progress guarantee”
● Several application levels

– Instead of threads: one control flow per level
● Do we still need coroutines?

– What can’t we do without them?
● Example: OSEK / AUTOSAR-OS

– Instead of semaphores or mutexes: so-called “resources”
– Synchronization without blocking

2023-06-14 OSC: Exercise 6 15

OSEK-OS: Resource Management (1)
● Synchronization when accessing shared resources, e.g. global

variables, I/O devices, …
● Avoids known issues of semaphores:

Priority Inversion
Because T4 occupies the
semaphore, T2 and T3 (which
have nothing to do with the
semaphore!) indirectly delay the
higher-prioritized T1 – because T4
holds the semaphore but cannot
continue running yet.

Deadlock
We have a cycle in the resource-
allocation graph. None of the
involved tasks runs anymore.

C S D T E

R A B

F U V

W G

Task

Semaphore

2023-06-14 OSC: Exercise 6 16

OSEK-OS: Resource Management (2)
● The OSEK Priority Ceiling Protocol

– OSEK statically assigns a ceiling priority to each resource:
Maximum of the priorities of all tasks that access the resource

– When a task requests a resource, its priority is raised to the ceiling
priority. Blocking becomes impossible!

– After releasing the resource, the original priority is restored.

'GetResource' never blocks.
Consequently we cannot run
into a deadlock.

As long as T4 occupies the
resource, it cannot be
preempted by T2 or T3.
Therefore we avoid priority
inversion.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

