
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION

Operating-System Development 101
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

https://pingo.coactum.de/816711

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

https://pingo.coactum.de/816711

2023-04-11 OSC: L02 Operating-System Development 101 2

OS Development (Not Always Comfy)
● First Steps

How to get your OS onto the target hardware?
– Compilation/Linking
– Boot process

● Testing and Debugging
What to do if your system doesn’t respond?
– “printf debugging”
– Emulators, virtual machines
– Debuggers
– Remote Debugging
– Hardware support

2023-04-11 OSC: L02 Operating-System Development 101 3

OS Development (Not Always Comfy)
● First Steps

How to get your OS onto the target hardware?
– Compilation/Linking
– Boot process

● Testing and Debugging
What to do if your system doesn’t respond?
– “printf debugging”
– Emulators, virtual machines
– Debuggers
– Remote Debugging
– Hardware support

2023-04-11 OSC: L02 Operating-System Development 101 4

Compilation/Linking – Hello, World

● Assumption:
– Development system runs an x86 Linux
– Target system also is a PC

● Does this program also run on bare metal?
● Is OS development in a high-level programming language

possible at all?

#include <iostream>

int main () {
 std::cout << "Hello, World" << std::endl;
}

$ g++ -o hello hello.cc

2023-04-11 OSC: L02 Operating-System Development 101 5

Compilation/Linking – Problems and Solutions

● No dynamic linker available
➔ link all necessary libraries statically

● libstdc++ and libc use Linux system calls
(e.g., write)

➔ We cannot use regular C/C++ runtime libraries.
(We usually don’t have alternatives either.)

● Generated addresses refer to virtual memory
("nm hello | grep main" yields "0000000000404745 T main")

➔ We cannot use standard linker settings but need a custom linker config.

● High-level language code: environment expectations
(CPU-register usage, address mapping, runtime environment, stack, …)

➔ Own startup code (written in assembler) must prepare high-level language
code execution.

2023-04-11 OSC: L02 Operating-System Development 101 6

The term is sometimes attributed to a story in Rudolf Erich Raspe's The
Surprising Adventures of Baron Munchausen, but in that story Baron
Munchausen pulls himself (and his horse) out of a swamp by his hair (specifically,
his pigtail), not by his bootstraps – and no explicit reference to bootstraps has
been found elsewhere in the various versions of the Munchausen tales.

Booting
“Boot is short for bootstrap or bootstrap load and derives from
the phrase to pull oneself up by one's bootstraps.”

”Booting is the process of starting a computer, specifically with
regard to starting its software. The process involves a chain of
stages, in which at each stage, a smaller, simpler program loads
and then executes the larger, more complicated program of the
next stage.”

en.wikipedia.org

2023-04-11 OSC: L02 Operating-System Development 101 7

Booting
Jump via RESET vector or
directly to fixed address

BIOS or firmware start /
ROM OS start

Copy data segments,
initialize BSS

Hardware init
and test

Search for boot medium,
load and start system

Error!

BIOS

OS came
from ROM

Error!

OS
loaded

System start

System stop
let’s go

2023-04-11 OSC: L02 Operating-System Development 101 8

PC Booting – Boot Sector
● PC BIOS loads 1st block (512 bytes) of boot drive at address

0x7c00 and jumps there (“blindly”)
● Boot-sector layout Offset Inhalt

0x0000
0x0003 System name and version
0x000b Bytes per sector
0x000d Sectors per cluster
0x000e reserved sectors (for boot record)
0x0010 number of FATs
0x0011 number of root-directory entries
0x0013 number of logical sectors
0x0015 media descriptor byte
0x0016 sectors per FAT
0x001a number of heads
0x001c number of hidden sectors
0x001e

0x01fe 0xaa55

jmp boot; nop; (ebxx90)

boot:
 ...

FAT disk (DOS/Windows)

2023-04-11 OSC: L02 Operating-System Development 101 9

PC Booting – Boot Sector
● PC BIOS loads 1st block (512 bytes) of boot drive at address

0x7c00 and jumps there (“blindly”)
● Boot-sector layout Offset Inhalt

0x0000
0x0003 System name and version
0x000b Bytes per sector
0x000d Sectors per cluster
0x000e reserved sectors (for boot record)
0x0010 number of FATs
0x0011 number of root-directory entries
0x0013 number of logical sectors
0x0015 media descriptor byte
0x0016 sectors per FAT
0x001a number of heads
0x001c number of hidden sectors
0x001e

0x01fe 0xaa55

jmp boot; nop; (ebxx90)

boot:
 ...

Alternative (OOStuBS)

In fact, only the beginning
and the “signature”
(0xaa55) at the end
matters. Everything else is
used by the boot loader
to load the actual system.

2023-04-11 OSC: L02 Operating-System Development 101 10

PC Booting – Boot Loader
● Simple, system-specific boot loaders

– Define hardware/software state
– If necessary: Load further blocks with boot-loader code
– Pinpoint the actual system on the boot media
– Load the system (via BIOS functions)
– Jump into loaded system

● Boot loader on disks not flagged as “bootable”
– Error message, halt / reboot

● Boot loader with boot menu (e.g., GRUB)
(for example in the Master Boot Record of a HDD)
– Display a menu
– Emulate BIOS when booting the selected system

(load boot block to 0x7c00, jump)

2023-04-11 OSC: L02 Operating-System Development 101 11

OS Development (Not Always Comfy)
● First Steps

How to get your OS onto the target hardware?
– Compilation/Linking
– Boot process

● Testing and Debugging
What to do if your system doesn’t respond?
– “printf debugging”
– Emulators, virtual machines
– Debuggers
– Remote Debugging
– Hardware support

2023-04-11 OSC: L02 Operating-System Development 101 12

Debugging

Admiral Grace Hopper
Source: Wikipedia

1947

2023-04-11 OSC: L02 Operating-System Development 101 13

“printf Debugging”
● Not that simple – if you don’t have a (working) printf

– Often you don’t even have a display.
● printf() often changes the debuggee’s behavior

– Problem vanishes / changes symptoms
– Unfortunately particularly true for OS development

● Last resort:
– blinking LED
– serial interface

2023-04-11 OSC: L02 Operating-System Development 101 14

(Software) Emulators
● Emulate real hardware in software

– Simplifies debugging
(Emulation software usually more communicative than real HW)

– Shorter development cycles
● Careful: In the end, the system must run on real hardware!

– Emulator and real hardware may differ in details!
– Harder to find bugs in a complete system than during incremental

development
● Emulation: a special case of virtualization

– Provides a virtual resource Y (e.g., an Arm CPU)
based on a resource X (e.g., the systems x86-64 host CPU)

2023-04-11 OSC: L02 Operating-System Development 101 15

Emulators – Example “Bochs”
● Emulates i386, …, Pentium, x86-64 (interpreter loop)

– plus MMX, SSE–SSE4, 3DNow! instructions
– Multiprocessor emulation

● Emulates a complete PC
– Memory, devices (including

sound, networking, …)
– Capable to run Windows, Linux

● Implemented in C++
● Development support

– Logs helpful info, e.g. from crash
– Built-in debugger (GDB stub)

Bochs in Bochs

2023-04-11 OSC: L02 Operating-System Development 101 16

Debugging
● Debugger helps locating software bugs by tracing/controlling the

debuggee:
– Single-step mode
– Breakpoints: trigger when reaching a particular machine instruction
– Watchpoints: trigger when a particular data element is accessed

● Careful: Bug-hunting might take longer when using a debugger
– Taking a break and thinking about the problem can be more time-efficent

● Single-stepping costs a lot of time
● Often no way back in case you miss the problematic instruction

– “printf debugging” allows better control over output format
– Synchronization / race-condition bugs are impractical to debug with a debugger

● helpful: “Core dump” analysis
– but of little relevance during OS development :-(

2023-04-11 OSC: L02 Operating-System Development 101 17

Debugging – Example Session
$ g++ -static -g -o hello hello.cc
$ gdb hello
GNU gdb (Ubuntu 11.1-0ubuntu2) 11.1
...
(gdb) break main
Breakpoint 1 at 0x40474d: file hello.cc, line 4.
(gdb) run
Starting program: hello

Breakpoint 1, main () at hello.cc:4
4 std::cout << "Hello, World" << std::endl;
(gdb) next
Hello, World
5 }
(gdb) next
0x00000000004a7f4a in __libc_start_call_main ()
(gdb) continue
Continuing.
[Inferior 1 (process 663394) exited normally]
(gdb) quit

Setting a
breakpoint

Running the
program

Single-stepping

Continuing

2023-04-11 OSC: L02 Operating-System Development 101 18

Debugging – Technical Background (1)
● Practically all CPUs support debugging
● Example: Intel x86

– INT3 instruction triggers a “breakpoint interrupt” (in fact a trap)
● User “sets breakpoint”, debugger (at runtime) places INT3 in program code
● Trap handler redirects control flow to debugger

– enabled Trap Flag (TF) in status register (EFLAGS / RFLAGS):
trigger “debug interrupt” after every instruction

● Can be used for implementing single-stepping in the debugger
● Trap handler is not executed in single-stepping mode

– Debug Registers DR0–DR7 can monitor up to 4 breakpoints or watchpoints
● No code manipulation necessary: breakpoints in ROM/FLASH

or read-only memory segments (e.g. shared libraries!)
● Efficient watchpoints only possible through this mechanism

2023-04-11 OSC: L02 Operating-System Development 101 19

Debugging – Technical Background (2)

breakpoint 0: linear address
breakpoint 1: linear address
breakpoint 2: linear address
breakpoint 3: linear address
reserved
reserved

DR0
DR1
DR2
DR3
DR4
DR5

80386 Debug Registers

DR7
031

LEN
3

LEN
2

LEN
1

LEN
0

RW
3

RW
2

RW
1

RW
0

- - - - -
G
D

G
E

L
E

G
3

L
3

G
2

L
2

G
1

L
1

G
0

L
0

DR6
031

- - - -
B
D

B
3

B
2

B
1

B
0

B
T

B
S

- - - - - -

1516

1516

Breakpoint Register

Debug Status register

Debug Control register

2023-04-11 OSC: L02 Operating-System Development 101 20

Debugging – Technical Background (2)

breakpoint 0: linear address
breakpoint 1: linear address
breakpoint 2: linear address
breakpoint 3: linear address
reserved
reserved

DR0
DR1
DR2
DR3
DR4
DR5

80386 Debug Registers

DR7
031

LEN
3

LEN
2

LEN
1

LEN
0

RW
3

RW
2

RW
1

RW
0

- - - - -
G
D

G
E

L
E

G
3

L
3

G
2

L
2

G
1

L
1

G
0

L
0

DR6
031

- - - -
B
D

B
3

B
2

B
1

B
0

B
T

B
S

- - - - - -

1516

1516

Breakpoint Register

Debug Status register

Debug Control register

Breakpoint enable
(local, global)

exact data breakpoint (local, global)

Access control
for DR0-7

Length of monitored memory area

Aborting event
00: Instr. execution
01: Memory write
10: I/O (>=Pentium)
11: Mem. write or read

2023-04-11 OSC: L02 Operating-System Development 101 21

Debugging – Technical Background (2)

breakpoint 0: linear address
breakpoint 1: linear address
breakpoint 2: linear address
breakpoint 3: linear address
reserved
reserved

DR0
DR1
DR2
DR3
DR4
DR5

80386 Debug Registers

DR7
031

LEN
3

LEN
2

LEN
1

LEN
0

RW
3

RW
2

RW
1

RW
0

- - - - -
G
D

G
E

L
E

G
3

L
3

G
2

L
2

G
1

L
1

G
0

L
0

DR6
031

- - - -
B
D

B
3

B
2

B
1

B
0

B
T

B
S

- - - - - -

1516

1516

Breakpoint Register

Debug Status register

Debug Control register

Provides information
about trigger event to
the trap handler

Breakpoint 0-3Single step

2023-04-11 OSC: L02 Operating-System Development 101 22

Debugging – Technical Background (3)
● For debugging regular user-space applications, the OS

must provide an interface
– e.g. Linux: ptrace (2)

#include <sys/ptrace.h>
long ptrace(enum __ptrace_request request, pid_t pid,
 void *addr, void *data);

Request (PTRACE_...) Semantics

TRACEME Indicate that this process is to be traced by its parent

ATTACH, DETACH Seize control over another process (alt. to TRACEME)

PEEKTEXT, PEEKDATA, PEEKUSER Read data from debuggee’s address space

POKETEXT, POKEDATA, POKEUSER Change data in debuggee’s address space

SYSCALL, CONT Monitor system calls and continue

SINGLESTEP Single-stepping mode (machine instruction granularity)

KILL Abort debuggee

2023-04-11 OSC: L02 Operating-System Development 101 23

Debugging – Technical Background (4)
int main(void) {
 long long counter = 0; /* machine instruction counter */
 int wait_val; /* child's return value */
 int pid; /* child's process id */

 puts("Please wait");
 pid = fork(); /* create child process */
 if (pid == -1) /* failed to create child process */
 perror("fork");
 else if (pid == 0) { /* child process starts */
 ptrace(PTRACE_TRACEME, 0, 0, 0); /* allow parent to control child */
 execl("/bin/ls", "ls", NULL); /* run child program (ls) and terminate*/
 }
 else { /* parent process starts */
 /* wait for SIGTRAP */
 while (wait(&wait_val) != 1 && WIFSTOPPED(wait_val) && WSTOPSIG(wait_val)) {
 counter++;
 if (ptrace(PTRACE_SINGLESTEP, pid, 0, 0) != 0) { /* enable single step mode */
 perror("ptrace");
 break;
 }
 }
 printf("Number of machine instructions : %lld\n", counter);
 return 0;
} }

ptrace(2)
example

2023-04-11 OSC: L02 Operating-System Development 101 24

Debugging – Technical Background (5)
● User expects source-code visualization: source-level debugging

– Prerequisites: access to sources, (compiler-generated) debug information
$ g++ -g -o hello hello.cc
$ objdump --section-headers hello
hello: file format elf64-x86-64
Sections:
Idx Name Size VMA LMA File off Algn
...
 24 .data 00000010 0000000000004000 0000000000004000 00003000 2**3
 CONTENTS, ALLOC, LOAD, DATA
 25 .bss 00000118 0000000000004040 0000000000004040 00003010 2**6
 ALLOC
 26 .comment 00000025 0000000000000000 0000000000000000 00003010 2**0
 CONTENTS, READONLY
 27 .debug_aranges 00000030 0000000000000000 0000000000000000 00003035 2**0
 CONTENTS, READONLY, DEBUGGING, OCTETS
 28 .debug_info 000023bb 0000000000000000 0000000000000000 00003065 2**0
 CONTENTS, READONLY, DEBUGGING, OCTETS
 29 .debug_abbrev 0000059b 0000000000000000 0000000000000000 00005420 2**0
 CONTENTS, READONLY, DEBUGGING, OCTETS
 30 .debug_line 0000014a 0000000000000000 0000000000000000 000059bb 2**0
 CONTENTS, READONLY, DEBUGGING, OCTETS
 31 .debug_str 0000120b 0000000000000000 0000000000000000 00005b05 2**0
 CONTENTS, READONLY, DEBUGGING, OCTETS
 32 .debug_line_str 0000028b 0000000000000000 0000000000000000 00006d10 2**0
 CONTENTS, READONLY, DEBUGGING, OCTETS
$

2023-04-11 OSC: L02 Operating-System Development 101 25

Remote Debugging
● Allows debugging programs on platforms we cannot (yet)

work on interactively
– Requires communications link (serial, Ethernet, …)
– … which in turn necessitates a device driver
– Target “device” can also be an emulator (e.g., QEMU)

● Debugging component on the target system (“stub”) should
be as simple as possible

Computer
gdb

"target"

"host"

2023-04-11 OSC: L02 Operating-System Development 101 26

Remote Debugging – Example GDB (1)
● Communication protocol

(“GDB Remote Serial Protocol” – RSP)
– Reflects requirements on GDB stub
– Based on transferring ASCII strings
– Message format: $<command or reply>#<checksum>
– Messages are directly acknowledged with + (OK) or – (error)

● Examples:
– $g#67 Read contents of all registers►

● Reply: + $123456789abcdef0...#... Reg. 1 = 0x12345678, 2 = 0x9...►
– $G123456789abcdef0...#... ► Set register contents

● Reply: + $OK#9a Success►
– $m4015bc,2#5a Read 2 bytes starting at address 0x4015bc►

● Reply: + $2f86#06 Value 0x2f86►

2023-04-11 OSC: L02 Operating-System Development 101 27

Remote Debugging – Example GDB (2)
● Communication protocol – all command categories:

– Register and memory commands
● read/write all registers
● read/write single register
● read/write memory area

– Controlling program execution
● request reason for latest interruption
● single-step
● continue execution

– Miscellaneous
● Print to debug console
● Error messages

Minimum stub functionality

2023-04-11 OSC: L02 Operating-System Development 101 28

Remote Debugging – with QEMU
● With the right command-line parameters, QEMU offers a

GDB stub communicating via TCP
$ make qemu-gdb
...

2023-04-11 OSC: L02 Operating-System Development 101 29

Remote Debugging – with Bochs
$ gdb build/system
GNU gdb (Ubuntu 11.1-0ubuntu2) 11.1
...
Reading symbols from build/system...
(gdb) break main
Breakpoint 1 at 0x10167f: file main.cc, line 11.
(gdb) target remote localhost:2024
Remote debugging using localhost:2024
0x000000000000fff0 in ?? ()
(gdb) continue
Continuing.

Breakpoint 1, main () at main.cc:4
4 {
(gdb) next
11 return 0;
(gdb) continue
Continuing.

Automated in OOStuBS
Makefile to prevent TCP-port
collisions:

make gdb
(and skip the target remote … step)

2023-04-11 OSC: L02 Operating-System Development 101 30

Debugging Deluxe
● Many chip manufacturers integrate hardware support for

debugging (OCDS – On Chip Debug System)
– BDM, OnCE, MPD, JTAG

● Usually simple serial protocols between debugging unit and
external debugger (save chip pins!)

● Advantages:
– Debug Monitor (e.g. gdb stub) does not use any application memory
– Debug Monitor implementation unnecessary
– ROM/FLASH breakpoints using hardware breakpoints
– Concurrent access to memory and CPU registers
– Specialized hardware partially allows to record a control-flow trace

(ex post analysis)

2023-04-11 OSC: L02 Operating-System Development 101 31

Debugging Deluxe – Example BDM
● “Background Debug Mode” – on-chip debug solution by Motorola
● Serial communication via 3 lines (DSI, DSO, DSCLK)
● BDM commands of 68k and ColdFire processors:

– RAREG/RDREG – Read Register
● read particular data or address register

– WAREG/WDREG – Write Register
● write particular data or address register

– READ/WRITE – Read Memory/Write Memory
● read/write specific memory location

– DUMP/FILL – Dump Memory/Fill Memory
● read/fill block of memory

– BGND/GO – Enter BDM/Resume
● stop/continue execution

2023-04-11 OSC: L02 Operating-System Development 101 32

Debugging Deluxe – Hardware Solution

Lauterbach trace module
(256 MB trace memory)

Lauterbach preprocessor

Development board / Debuggee
(Infineon TriCore 1796)

Communication link to PC
(TCP/IP)

● Lauterbach hardware debugger

2023-04-11 OSC: L02 Operating-System Development 101 33

Debugging Deluxe – Lauterbach Frontend

2023-04-11 OSC: L02 Operating-System Development 101 34

Debugging Deluxe – Lauterbach Frontend

“TRACE32” allows tracing
program executions. Time

stamps with high resolution
get logged.

2023-04-11 OSC: L02 Operating-System Development 101 35

Debugging Deluxe – Lauterbach Frontend

● All hardware registers accessible (also on-chip periphery)
● Flexible conditional breakpoints
● Scripting language
● Tracing unit

● Cycle-exact timing measurements
● Exact control-flow tracing also during interrupt/exception

handling or task switching
● Single-stepping “backwards in time”
● …

2023-04-11 OSC: L02 Operating-System Development 101 36

Summary
● Operating-system development differs significantly from

regular application development:
– No libraries
– Bare metal is the basis we build upon

● The first steps are often the hardest
– Compilation/linking, booting, system initialization

● Comfortable bug hunting necessitates infrastructure
– Device drivers for “printf debugging”
– Stub and communication link/driver for remote debugging
– Hardware debugging support like with BDM
– Ideal: Professional hardware debuggers (e.g. Lauterbach)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

