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Overview
● Interrupts

– Purpose
● General Discussion

– Prioritization, Lost Interrupts, Dispatch, Saving State, Nested 
Interrupts, Interrupts in Multiprocessor Systems

● Hazards
– “Spurious Interrupts”, “Interrupt Storms”

● Hardware-Architecture Examples
– Motorola 68K, Pentium APIC
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Purpose of Interrupts
Looking back in history …

● Overlapped I/O
– Input: Wasting CPU cycles by (unpredictably long) busy waiting
– Output: Autonomous device behavior (e.g. DMA) unloads CPU

● Time sharing
– Timer interrupts allow the operating system to …

● preempt processes
● run time-driven activities
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Prioritization
● Problem:

– Multiple interrupt requests can be signaled at once. Which one is more 
important?

– While the CPU handles the most important request, further requests can 
be signaled.

● Solution: a prioritization mechanism …
– in software: The CPU only has one IRQ (interrupt request) line and 

queries/services devices in a defined order.
– in hardware: A prioritization circuit assigns priorities to devices and only 

forwards the most urgent request for handling.
– with static priorities: each device statically gets assigned a priority
– with dynamic priorities: priorities can be changed dynamically, e.g. cyclic
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Lost Interrupts
● Problem:

– During interrupt handling, and/or while interrupts are disabled, the 
CPU cannot handle new interrupts.

– Memory for IRQs is (very!) limited
● usually 1 bit per interrupt line

● Solution: in software
– Interrupt handler routine should be as (temporally) short as possible 

to minimize probability for lost interrupts.
– Interrupts should not be disabled longer than necessary by the CPU.
– A device driver must handle the situation that an interrupt signals 

more than one completed I/O operation.
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Interrupt Dispatch
● Problem:

– Determine with little effort which device triggered the interrupt
● Sequential querying:

Time-consuming, modifies state of I/O buses and uninvolved devices

● Solution: Interrupt vector
– Assign a number to each interrupt  index into vector→

● Vector number not necessarily related to priority
● In practice, devices may have to share a vector number

(interrupt chaining)

– CPU-specific vector-table structure
● Usually contains pointers to functions, rarely machine instructions



2023-04-18 OSC: L03 Interrupts – Hardware 11

Saving State
● Problem:

– After running the handler routine, we want to return to normal 
context

– Transparency: Interrupt handling supposed to happen unnoticed
● Solution: State save

– by hardware
● Only essential state: e.g. return address and status register
● State restore by special instruction, e.g. IRET, RTE, …

– by software
● Interrupts may occur at any time  handler routine also must save and →

restore state
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Nested Interrupt Handling
● Problem:

– To react promptly to important events, interrupt handlers should be 
interruptible.

– … but we should avoid unlimited nesting. (Why?)

● Solution:
– CPU only allows interrupts with higher priority
– Current priority in status register
– Previous priority on a stack
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Multiprocessor Systems
● Problem:

– Each interrupt can only be handled by one CPU. But which one?
– Additional interrupt category: Inter-processor interrupts (IPIs)

● Solution: More complex interrupt-handling hardware for 
multiprocessors; design variants:
– static destination
– random destination
– programmable destination
– destination depending on current CPU load

… and combinations thereof.
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Hazard: Spurious Interrupts
● Problem: Interrupt-handling mechanism can be presented 

with spurious* interrupts, caused e.g. by …
– Hardware errors
– Incorrectly programmed devices

● Solution:
– Avoid hardware and software errors
– Program OS “defensively”

● expect spurious interrupts

* “spurious” ≈ „falsch“, „unecht”
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Hazard: Interrupt Storms
● Problem:

– High interrupt frequency can overload or “freeze” a computer
– Cause: Spurious interrupts, or too high I/O load
– Can be mistaken for thrashing (similar symptoms).

● Solution: in the OS
– Detect interrupt storms
– Deactivate culprit device
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Interrupts in the MC68000
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Interrupts in the MC68000

Priority
encoder

IACK

... N interrupt sources

Acknowledge: CPU
starts handler

&

IPL2 IPL1 IPL0  Priority
0 0 0 --
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7 (NMI)

FC2 FC1 FC0 Address Space Type
0 0 0 reserved
0 0 1 User Data
0 1 0 User Program
0 1 1 reserved
1 0 0 reserved
1 0 1 Supervisor Data
1 1 0 Supervisor Program
1 1 1 Interrupt Acknowledge

MC68000
 

FC0
FC1
FC2

 

IPL0
IPL1
IPL2
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MC68000 Status Register (SR)
● Contains current interrupt mask (among other things)

– Interrupt  CPU tests whether IPL→ 0-2 > I0-2i
No?  Interrupt is inhibited → (for now).

– However, interrupt with IPL0-2 = 7 is always handled (NMI)

T S I2 I1 I0 X N Z V C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Trace := 0

Supervisor state := 1

Interrupt mask := IPL0-2

Condition codes

Assignments in case the 
interrupt gets handled
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MC68000 Interrupt Vectors
Index Address Assignment

0 0x000 Reset: Initial Supervisor Stack Pointer
1 0x004 Reset: Initial PC
2 0x008 Bus Error
3 0x00c Address Error
4 0x010 Illegal Instruction
5 0x014 Zero Divide
...
24 0x060 Spurious Interrupt
25 0x064 Level 1 Interrupt Autovector
26 0x068 Level 2 Interrupt Autovector
...
30 0x078 Level 6 Interrupt Autovector
31 0x07c Level 7 Interrupt Autovector (NMI)

32-47 0x080 TRAP Instruction Vectors
48-63 0x0c0 reserved

64-255 0x100 User Interrupt Vectors
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Autovectored Interrupts

Priority
encoder

IACK

... N interrupt sources

Acknowledge: CPU
starts handler

&

Problem: Only 6 vectors available. With 
more devices, sharing is unavoidable.

External circuitry signals via VPA that the 
CPU should calculate the vector number 
automatically:

Index = 24 + IPL0-2

MC68000
AS

FC0
FC1
FC2
VPA

IPL0
IPL1
IPL2
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Non-Autovectored Interrupts

MC68000
AS

FC0
FC1
FC2

DTACK

IPL0
IPL1
IPL2

IACK&

External circuitry signals via DTACK that the 
CPU should read the vector number from 
the data bus.

Index = 64 + D0-7

Data bus

Priority
encoder

and

Vector
generator

     Int. + 64

...

Interrupt 0

Interrupt 191
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MC68000 State Save
● Previous SR value and PC are saved on supervisor stack
● RTE instruction restores state

Stack  gro w
th

Level 2

Level 1

PC0

SR0

Level 5

PC2

SR2

RTE RTE

PC0

SR0

PC0

SR0

Level 1delayed

PC0

SR0

RTE
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MC68000 – Summary
● 6 priority levels for hardware interrupts + NMI

– Interrupt level 1–6, NMI level 7
– Masking possible via status register I0-2

● Only interrupts with higher priority and NMI can interrupt running 
interrupt handler
– Status register is adapted automatically

● Automatic state save on supervisor stack,
nested handling possible

● Vector number generation …
– either autovectored: Index = Priority + 24
– or non-autovectored (by external hardware): Index = 64 … 255

● No multiprocessor support
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Interrupts in x86 CPUs
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Interrupts in x86 CPUs
● Up and including i486, x86 CPUs had only 1 IRQ and 1 NMI line
● External hardware: prioritization, vector number generation

– by a chip named PIC 8259A
● 8 interrupt lines
● 15 lines when cascading 2 PICs
● no multiprocessor support

● Today’s x86 processors contain the much more capable
”Advanced Programmable Interrupt Controller” (APIC)
– necessary for multiprocessor systems
– completely superseded classic PIC 8259A

● Compatibility: PIC interface still available in chipsets
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APIC Architecture
● APIC interrupt system: Local APIC on each CPU, I/O APIC

Pentium
(primary)

local
APIC

I/O APIC

8259A

Interrupt Requests

Pentium
(secondary)

local
APIC

APIC Bus

Dual-processor 
Pentium system 
with distributed 
APIC interrupt 
system

LINT0

LINT1

LINT0

LINT1

local interrupts

local 
interrupts
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I/O APIC
● Typically integrated in PC chipset’s Southbridge
● Usually 24 interrupt lines

– cyclic sensing (round-robin prioritization)
● Interrupt Redirection Table:

64-bit entry for each interrupt line
– Describes interrupt signal
– Used for generating APIC bus message
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I/O APIC
Structure (bits) of an Interrupt Redirection Table entry

63:56 Destination Field – R/W. 8-bit destination address
depending on bit 11: APIC ID of a CPU (physical mode) or CPU group (logical mode)

55:17 reserved
16 Interrupt Mask – R/W. 1 = Do not forward this interrupt to a CPU.
15 Trigger Mode – R/W. 0 = Edge sensitive, 1 = Level sensitive
14 Remote IRR – RO. Type of received acknowledgment
13 Interrupt Pin Polarity – R/W. Signal polarity (high/low is active)
12 Delivery Status – RO. Interrupt message in flight?
11 Destination Mode – R/W. 0 = Physical mode, 1 = Logical mode
10:8  Delivery Mode – R/W. Affects destination APIC

000 – Fixed Deliver to all destination CPUs
001 – Lowest Priority Deliver to CPU with currently lowest priority
010 – SMI System Management Interrupt
100 – NMI Non-Maskable Interrupt
101 – INIT Initialize destination CPUs (reset)
111 – ExtINT Answer to PIC 8259A

7:0 Interrupt Vector – R/W. 8-bit Vector number between 16 and 254
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Local APICs
● Receive IRQs through APIC bus
● Also select/prioritize
● Can directly handle two local interrupts (lint0/lint1)
● Contain further functionality

– Built-in timer, performance counters, thermal sensor
– Command register:

● Send own APIC messages
● especially Inter-Processor Interrupt (IPI)

● Programmable via 32-bit registers (starting at 0xfee00000)
– memory mapped (no external bus cycles)

– Each CPU programs its own Local APIC
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LINT0/1

Local APICs – Registers

Current Count Reg.
Initial Count Reg.
Divide Config. Reg.

Version Register

Timer
Local Interrupt 0, 1
Performance Mon.
Error

Int. Command Reg.

Dest. Format Reg.

Logical Dest. Reg.

APIC ID Register

Timer

Local Vector Table

D
at

a/
A

dd
re

ss
 B

us

APIC Bus
Send/Receive Logic

EOI Register

Prioritizer

Processor
Priority

Acceptance
Logic

Arb. ID Reg. Vector Decode

APIC Bus

TMR
IRR
ISR

Task Priority
Register

INTA EXTINT INTR

INIT
NMI
SMI
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APIC Architecture – Summary
● Flexible IRQ distribution to CPUs in x86 MP system

– fixed, groups, lowest task priority
– multiple IRQs at once: prioritization with vector number

● Vector numbers 16–254 can be freely assigned
– should be enough to avoid sharing

● Local APIC expects explicit EOI
– Software must take care of this!

● With APIC, x86 in principle also supports priority levels
– System software must act accordingly

(re-enable interrupts, possibly use task priority register)
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IRQ Sharing
● In practice, 24 IRQ lines proved to be insufficient
● … especially 4/8 lines for PCI devices:

● Message-Signalled Interrupts (MSIs) finally resolved this.

PIRQ Line #A #B #C #D #E #F #G #H
AGP slot shared
PCI 1 shared
PCI 2 used
PCI 3 used
PCI 4 shared
PCI 5 shared
PCI 6 shared
1. USB 1.1 shared
2. USB 1.1 used
3. USB 1.1 shared
USB 2.0 shared
AC-97 Sound shared
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Summary
● Interrupt-handling hardware implements …

– Prioritization
– Dispatch/execution of a handler routine
– State save and nested execution

● Modern interrupt-handling hardware can …
– freely assign interrupt vectors,
– avoid sharing vectors,
– flexibly dispatch interrupts in multiprocessor systems.

● The operating system must …
– expect problems (spurious interrupts, interrupt storms)
– pass on the signaled event to higher levels and finally to the application 

process.
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