
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION

Interrupts – Hardware
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2023-04-18 OSC: L03 Interrupts – Hardware 2

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Interrupt
handling

Inter-process
communication

Control-flow
abstraction

Interrupt
synchronization

Process management

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

2023-04-18 OSC: L03 Interrupts – Hardware 3

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Inter-process
communication

Control-flow
abstraction

Interrupt
synchronization

Process management

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

Topic of today’s lecture

Interrupt
handling

Hardware

2023-04-18 OSC: L03 Interrupts – Hardware 4

Overview
● Interrupts

– Purpose
● General Discussion

– Prioritization, Lost Interrupts, Dispatch, Saving State, Nested
Interrupts, Interrupts in Multiprocessor Systems

● Hazards
– “Spurious Interrupts”, “Interrupt Storms”

● Hardware-Architecture Examples
– Motorola 68K, Pentium APIC

2023-04-18 OSC: L03 Interrupts – Hardware 5

Overview
● Interrupts

– Purpose
● General Discussion

– Prioritization, Lost Interrupts, Dispatch, Saving State, Nested
Interrupts, Interrupts in Multiprocessor Systems

● Hazards
– “Spurious Interrupts”, “Interrupt Storms”

● Hardware-Architecture Examples
– Motorola 68K, Pentium APIC

2023-04-18 OSC: L03 Interrupts – Hardware 6

Purpose of Interrupts
Looking back in history …

● Overlapped I/O
– Input: Wasting CPU cycles by (unpredictably long) busy waiting
– Output: Autonomous device behavior (e.g. DMA) unloads CPU

● Time sharing
– Timer interrupts allow the operating system to …

● preempt processes
● run time-driven activities

2023-04-18 OSC: L03 Interrupts – Hardware 7

Overview
● Interrupts

– Purpose
● General Discussion

– Prioritization, Lost Interrupts, Dispatch, Saving State, Nested
Interrupts, Interrupts in Multiprocessor Systems

● Hazards
– “Spurious Interrupts”, “Interrupt Storms”

● Hardware-Architecture Examples
– Motorola 68K, Pentium APIC

2023-04-18 OSC: L03 Interrupts – Hardware 8

Prioritization
● Problem:

– Multiple interrupt requests can be signaled at once. Which one is more
important?

– While the CPU handles the most important request, further requests can
be signaled.

● Solution: a prioritization mechanism …
– in software: The CPU only has one IRQ (interrupt request) line and

queries/services devices in a defined order.
– in hardware: A prioritization circuit assigns priorities to devices and only

forwards the most urgent request for handling.
– with static priorities: each device statically gets assigned a priority
– with dynamic priorities: priorities can be changed dynamically, e.g. cyclic

2023-04-18 OSC: L03 Interrupts – Hardware 9

Lost Interrupts
● Problem:

– During interrupt handling, and/or while interrupts are disabled, the
CPU cannot handle new interrupts.

– Memory for IRQs is (very!) limited
● usually 1 bit per interrupt line

● Solution: in software
– Interrupt handler routine should be as (temporally) short as possible

to minimize probability for lost interrupts.
– Interrupts should not be disabled longer than necessary by the CPU.
– A device driver must handle the situation that an interrupt signals

more than one completed I/O operation.

2023-04-18 OSC: L03 Interrupts – Hardware 10

Interrupt Dispatch
● Problem:

– Determine with little effort which device triggered the interrupt
● Sequential querying:

Time-consuming, modifies state of I/O buses and uninvolved devices

● Solution: Interrupt vector
– Assign a number to each interrupt index into vector→

● Vector number not necessarily related to priority
● In practice, devices may have to share a vector number

(interrupt chaining)

– CPU-specific vector-table structure
● Usually contains pointers to functions, rarely machine instructions

2023-04-18 OSC: L03 Interrupts – Hardware 11

Saving State
● Problem:

– After running the handler routine, we want to return to normal
context

– Transparency: Interrupt handling supposed to happen unnoticed
● Solution: State save

– by hardware
● Only essential state: e.g. return address and status register
● State restore by special instruction, e.g. IRET, RTE, …

– by software
● Interrupts may occur at any time handler routine also must save and →

restore state

2023-04-18 OSC: L03 Interrupts – Hardware 12

Nested Interrupt Handling
● Problem:

– To react promptly to important events, interrupt handlers should be
interruptible.

– … but we should avoid unlimited nesting. (Why?)

● Solution:
– CPU only allows interrupts with higher priority
– Current priority in status register
– Previous priority on a stack

2023-04-18 OSC: L03 Interrupts – Hardware 13

Multiprocessor Systems
● Problem:

– Each interrupt can only be handled by one CPU. But which one?
– Additional interrupt category: Inter-processor interrupts (IPIs)

● Solution: More complex interrupt-handling hardware for
multiprocessors; design variants:
– static destination
– random destination
– programmable destination
– destination depending on current CPU load

… and combinations thereof.

2023-04-18 OSC: L03 Interrupts – Hardware 14

Overview
● Interrupts

– Purpose
● General Discussion

– Prioritization, Lost Interrupts, Dispatch, Saving State, Nested
Interrupts, Interrupts in Multiprocessor Systems

● Hazards
– “Spurious Interrupts”, “Interrupt Storms”

● Hardware-Architecture Examples
– Motorola 68K, Pentium APIC

2023-04-18 OSC: L03 Interrupts – Hardware 15

Hazard: Spurious Interrupts
● Problem: Interrupt-handling mechanism can be presented

with spurious* interrupts, caused e.g. by …
– Hardware errors
– Incorrectly programmed devices

● Solution:
– Avoid hardware and software errors
– Program OS “defensively”

● expect spurious interrupts

* “spurious” ≈ „falsch“, „unecht”

2023-04-18 OSC: L03 Interrupts – Hardware 16

Hazard: Interrupt Storms
● Problem:

– High interrupt frequency can overload or “freeze” a computer
– Cause: Spurious interrupts, or too high I/O load
– Can be mistaken for thrashing (similar symptoms).

● Solution: in the OS
– Detect interrupt storms
– Deactivate culprit device

2023-04-18 OSC: L03 Interrupts – Hardware 17

Overview
● Interrupts

– Purpose
● General Discussion

– Prioritization, Lost Interrupts, Dispatch, Saving State, Nested
Interrupts, Interrupts in Multiprocessor Systems

● Hazards
– “Spurious Interrupts”, “Interrupt Storms”

● Hardware-Architecture Examples
– Motorola 68K, Pentium APIC

2023-04-18 OSC: L03 Interrupts – Hardware 18

Interrupts in the MC68000

2023-04-18 OSC: L03 Interrupts – Hardware 19

Interrupts in the MC68000

Priority
encoder

IACK

... N interrupt sources

Acknowledge: CPU
starts handler

&

IPL2 IPL1 IPL0 Priority
0 0 0 --
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7 (NMI)

FC2 FC1 FC0 Address Space Type
0 0 0 reserved
0 0 1 User Data
0 1 0 User Program
0 1 1 reserved
1 0 0 reserved
1 0 1 Supervisor Data
1 1 0 Supervisor Program
1 1 1 Interrupt Acknowledge

MC68000

FC0
FC1
FC2

IPL0
IPL1
IPL2

2023-04-18 OSC: L03 Interrupts – Hardware 20

MC68000 Status Register (SR)
● Contains current interrupt mask (among other things)

– Interrupt CPU tests whether IPL→ 0-2 > I0-2i
No? Interrupt is inhibited → (for now).

– However, interrupt with IPL0-2 = 7 is always handled (NMI)

T S I2 I1 I0 X N Z V C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Trace := 0

Supervisor state := 1

Interrupt mask := IPL0-2

Condition codes

Assignments in case the
interrupt gets handled

2023-04-18 OSC: L03 Interrupts – Hardware 21

MC68000 Interrupt Vectors
Index Address Assignment

0 0x000 Reset: Initial Supervisor Stack Pointer
1 0x004 Reset: Initial PC
2 0x008 Bus Error
3 0x00c Address Error
4 0x010 Illegal Instruction
5 0x014 Zero Divide
...
24 0x060 Spurious Interrupt
25 0x064 Level 1 Interrupt Autovector
26 0x068 Level 2 Interrupt Autovector
...
30 0x078 Level 6 Interrupt Autovector
31 0x07c Level 7 Interrupt Autovector (NMI)

32-47 0x080 TRAP Instruction Vectors
48-63 0x0c0 reserved

64-255 0x100 User Interrupt Vectors

2023-04-18 OSC: L03 Interrupts – Hardware 22

Autovectored Interrupts

Priority
encoder

IACK

... N interrupt sources

Acknowledge: CPU
starts handler

&

Problem: Only 6 vectors available. With
more devices, sharing is unavoidable.

External circuitry signals via VPA that the
CPU should calculate the vector number
automatically:

Index = 24 + IPL0-2

MC68000
AS

FC0
FC1
FC2
VPA

IPL0
IPL1
IPL2

2023-04-18 OSC: L03 Interrupts – Hardware 23

Non-Autovectored Interrupts

MC68000
AS

FC0
FC1
FC2

DTACK

IPL0
IPL1
IPL2

IACK&

External circuitry signals via DTACK that the
CPU should read the vector number from
the data bus.

Index = 64 + D0-7

Data bus

Priority
encoder

and

Vector
generator

 Int. + 64

...

Interrupt 0

Interrupt 191

2023-04-18 OSC: L03 Interrupts – Hardware 24

MC68000 State Save
● Previous SR value and PC are saved on supervisor stack
● RTE instruction restores state

Stack gro w
th

Level 2

Level 1

PC0

SR0

Level 5

PC2

SR2

RTE RTE

PC0

SR0

PC0

SR0

Level 1delayed

PC0

SR0

RTE

2023-04-18 OSC: L03 Interrupts – Hardware 25

MC68000 – Summary
● 6 priority levels for hardware interrupts + NMI

– Interrupt level 1–6, NMI level 7
– Masking possible via status register I0-2

● Only interrupts with higher priority and NMI can interrupt running
interrupt handler
– Status register is adapted automatically

● Automatic state save on supervisor stack,
nested handling possible

● Vector number generation …
– either autovectored: Index = Priority + 24
– or non-autovectored (by external hardware): Index = 64 … 255

● No multiprocessor support

2023-04-18 OSC: L03 Interrupts – Hardware 26

Interrupts in x86 CPUs

2023-04-18 OSC: L03 Interrupts – Hardware 27

Interrupts in x86 CPUs
● Up and including i486, x86 CPUs had only 1 IRQ and 1 NMI line
● External hardware: prioritization, vector number generation

– by a chip named PIC 8259A
● 8 interrupt lines
● 15 lines when cascading 2 PICs
● no multiprocessor support

● Today’s x86 processors contain the much more capable
”Advanced Programmable Interrupt Controller” (APIC)
– necessary for multiprocessor systems
– completely superseded classic PIC 8259A

● Compatibility: PIC interface still available in chipsets

2023-04-18 OSC: L03 Interrupts – Hardware 28

APIC Architecture
● APIC interrupt system: Local APIC on each CPU, I/O APIC

Pentium
(primary)

local
APIC

I/O APIC

8259A

Interrupt Requests

Pentium
(secondary)

local
APIC

APIC Bus

Dual-processor
Pentium system
with distributed
APIC interrupt
system

LINT0

LINT1

LINT0

LINT1

local interrupts

local
interrupts

2023-04-18 OSC: L03 Interrupts – Hardware 29

I/O APIC
● Typically integrated in PC chipset’s Southbridge
● Usually 24 interrupt lines

– cyclic sensing (round-robin prioritization)
● Interrupt Redirection Table:

64-bit entry for each interrupt line
– Describes interrupt signal
– Used for generating APIC bus message

2023-04-18 OSC: L03 Interrupts – Hardware 30

I/O APIC
Structure (bits) of an Interrupt Redirection Table entry

63:56 Destination Field – R/W. 8-bit destination address
depending on bit 11: APIC ID of a CPU (physical mode) or CPU group (logical mode)

55:17 reserved
16 Interrupt Mask – R/W. 1 = Do not forward this interrupt to a CPU.
15 Trigger Mode – R/W. 0 = Edge sensitive, 1 = Level sensitive
14 Remote IRR – RO. Type of received acknowledgment
13 Interrupt Pin Polarity – R/W. Signal polarity (high/low is active)
12 Delivery Status – RO. Interrupt message in flight?
11 Destination Mode – R/W. 0 = Physical mode, 1 = Logical mode
10:8 Delivery Mode – R/W. Affects destination APIC

000 – Fixed Deliver to all destination CPUs
001 – Lowest Priority Deliver to CPU with currently lowest priority
010 – SMI System Management Interrupt
100 – NMI Non-Maskable Interrupt
101 – INIT Initialize destination CPUs (reset)
111 – ExtINT Answer to PIC 8259A

7:0 Interrupt Vector – R/W. 8-bit Vector number between 16 and 254

2023-04-18 OSC: L03 Interrupts – Hardware 31

Local APICs
● Receive IRQs through APIC bus
● Also select/prioritize
● Can directly handle two local interrupts (lint0/lint1)
● Contain further functionality

– Built-in timer, performance counters, thermal sensor
– Command register:

● Send own APIC messages
● especially Inter-Processor Interrupt (IPI)

● Programmable via 32-bit registers (starting at 0xfee00000)
– memory mapped (no external bus cycles)

– Each CPU programs its own Local APIC

2023-04-18 OSC: L03 Interrupts – Hardware 32

LINT0/1

Local APICs – Registers

Current Count Reg.
Initial Count Reg.
Divide Config. Reg.

Version Register

Timer
Local Interrupt 0, 1
Performance Mon.
Error

Int. Command Reg.

Dest. Format Reg.

Logical Dest. Reg.

APIC ID Register

Timer

Local Vector Table

D
at

a/
A

dd
re

ss
 B

us

APIC Bus
Send/Receive Logic

EOI Register

Prioritizer

Processor
Priority

Acceptance
Logic

Arb. ID Reg. Vector Decode

APIC Bus

TMR
IRR
ISR

Task Priority
Register

INTA EXTINT INTR

INIT
NMI
SMI

2023-04-18 OSC: L03 Interrupts – Hardware 33

APIC Architecture – Summary
● Flexible IRQ distribution to CPUs in x86 MP system

– fixed, groups, lowest task priority
– multiple IRQs at once: prioritization with vector number

● Vector numbers 16–254 can be freely assigned
– should be enough to avoid sharing

● Local APIC expects explicit EOI
– Software must take care of this!

● With APIC, x86 in principle also supports priority levels
– System software must act accordingly

(re-enable interrupts, possibly use task priority register)

2023-04-18 OSC: L03 Interrupts – Hardware 34

IRQ Sharing
● In practice, 24 IRQ lines proved to be insufficient
● … especially 4/8 lines for PCI devices:

● Message-Signalled Interrupts (MSIs) finally resolved this.

PIRQ Line #A #B #C #D #E #F #G #H
AGP slot shared
PCI 1 shared
PCI 2 used
PCI 3 used
PCI 4 shared
PCI 5 shared
PCI 6 shared
1. USB 1.1 shared
2. USB 1.1 used
3. USB 1.1 shared
USB 2.0 shared
AC-97 Sound shared

2023-04-18 OSC: L03 Interrupts – Hardware 35

Summary
● Interrupt-handling hardware implements …

– Prioritization
– Dispatch/execution of a handler routine
– State save and nested execution

● Modern interrupt-handling hardware can …
– freely assign interrupt vectors,
– avoid sharing vectors,
– flexibly dispatch interrupts in multiprocessor systems.

● The operating system must …
– expect problems (spurious interrupts, interrupt storms)
– pass on the signaled event to higher levels and finally to the application

process.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

