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Agenda
● Importance of Device Drivers
● Requirements

– Name Space, I/O Operations, Device-specific Configuration
– Solutions in Windows and Linux

● I/O-System Structure
– Driver Encapsulation and Driver Infrastructure, Driver Model

● Device Drivers and Environment
– Requirements
– Solutions in Windows and Linux

● Summary
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Importance of Device Drivers (1)
● Amount of device-driver code in 2012 Linux kernel:

> du -k --max-depth=1 /usr/src/linux-3.1.10-1.16 | sort -n
36      /usr/src/linux-3.1.10-1.16/usr
152     /usr/src/linux-3.1.10-1.16/init
156     /usr/src/linux-3.1.10-1.16/samples
176     /usr/src/linux-3.1.10-1.16/virt
232     /usr/src/linux-3.1.10-1.16/ipc
624     /usr/src/linux-3.1.10-1.16/block
1696    /usr/src/linux-3.1.10-1.16/lib
1744    /usr/src/linux-3.1.10-1.16/crypto
1952    /usr/src/linux-3.1.10-1.16/security
2368    /usr/src/linux-3.1.10-1.16/mm
2368    /usr/src/linux-3.1.10-1.16/scripts
3260    /usr/src/linux-3.1.10-1.16/tools
5132    /usr/src/linux-3.1.10-1.16/kernel
6240    /usr/src/linux-3.1.10-1.16/firmware
19080   /usr/src/linux-3.1.10-1.16/Documentation
20684   /usr/src/linux-3.1.10-1.16/net
22360   /usr/src/linux-3.1.10-1.16/include
23528   /usr/src/linux-3.1.10-1.16/sound
32464   /usr/src/linux-3.1.10-1.16/fs
118420  /usr/src/linux-3.1.10-1.16/arch
250100  /usr/src/linux-3.1.10-1.16/drivers
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Importance of Device Drivers (2)
● In Linux (3.1.10), driver code is 50 times larger than “kernel” 

code
– Windows supports much more devices …

● Driver support is a critical factor for an OS’s acceptance!
– Why else is Linux more popular than other free UNIXes?

● Significant amount of manpower is in device drivers

➔ I/O subsystem design requires much expertise
– As much reusable functionality as possible in driver infrastructure
– Well-defined driver structure, behavior and interfaces, i.e. a driver 

model
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Requirements
● Resource-preserving device usage

– Work fast
– Save energy
– Save memory, ports, interrupt vectors

● Uniform access mechanism
– Minimal set of operations for different device types
– Powerful operations for diverse application types

● Also device-specific access functions
● Activation and deactivation at runtime
● Generic power-management interface
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Linux – Uniform Access (1)

● Devices are accessible via names in the file system
● Advantages:

– System calls for file access (open, read, write, close) can be used for 
other I/O

– Access permissions can be controlled via file-system mechanisms
– Applications see no difference between files and “device files”

● Problems:
– Block-oriented devices must be adapted to byte stream
– Some devices hardly fit this schema

● Example: 3D graphics adapter

echo "Hello world" > /dev/ttyS0
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Linux – Uniform Access (2)
● Blocking input/output (normal case)

– read: Process blocks until requested data is available
– write: Process blocks until writing is possible

● Non-blocking input/output
– open/read/write with additional flag O_NONBLOCK
– Instead of blocking, read and write return -EAGAIN
– Caller may/must repeat the operation later

● Asynchronous input/output
– aio_(read|write|...) (POSIX 1003.1-2003) and io_uring (2019)
– Indirectly via child process (fork/join)
– System calls select, poll 
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Windows – Uniform Access (1)
● Devices are Executive kernel objects

NT kernel objects
/

??GLOBALDevice
COM1
COM2
C

Serial0
Serial1
Harddisk1

Win32 Subsystem

DOS compatible
device names

COM1:
COM2:
C: D:

Native
Application

Win32
Application

Win32 PCB
DosDevices: 
   /??GLOBAL

CreateFile
ReadFile
WriteFile

NtCreateFile
NtReadFile
NtWriteFile

/??GLOBAL

/??GLOBAL/COM1

COM1:

/Device/Serial0

NtCreateFile
NtReadFile
NtWriteFile
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Windows – Uniform Access (2)
● Synchronous or asynchronous input/output

● More features:
– I/O with timeout
– WaitForMultipleObjects – wait for one or more kernel objects

● File handles, semaphores, mutex, thread handle, …
– I/O Completion Ports

● Activation of a waiting thread after I/O operation

BOOL GetOverlappedResult(
  HANDLE hFile,
  LPOVERLAPPED lpOverlapped,
  LPDWORD lpNumberOfBytesTransferred,
  BOOL bWait
);

BOOL ReadFile(
  HANDLE hFile,
  LPVOID lpBuffer,
  DWORD nNumberOfBytesToRead,
  LPDWORD lpNumberOfBytesRead,
  LPOVERLAPPED lpOverlapped
);

NULL: synchronous read
true: wait for completion
false: request status
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Linux – Device-specific Functions (1)
● Special device properties are (classically) controlled via ioctl:

● Generic interface, device-specific semantics:

IOCTL(2)          Linux Programmer's Manual           IOCTL(2)

NAME
       ioctl - control device

SYNOPSIS
       #include <sys/ioctl.h>

       int ioctl(int d, int request, ...);

CONFORMING TO
       No single standard. Arguments, returns, and semantics of
       ioctl(2) vary according to the device driver in question
       (the call is used as a catch-all for operations that
       don't cleanly fit the Unix stream I/O model). The ioctl
       function call appeared in Version 7 AT&T Unix.
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Linux – Device-specific Functions (2)
Linux 2.6 – the device model in

the sys file system

Virtual files 
represent device 
respectively driver 
attributes.

Devices are virtual 
directories

Symbolic links 
allow different 
sorting criteria

Source: 
http://www.linux-magazin.de/
Artikel/ausgabe/2004/01/094_kerntechnik6/kerntechnik6.html

http://www.linux-magazin.de/
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Linux – Device-specific Functions (2)
Linux 2.6 – the device model in

the sys file system

Virtual files 
represent device 
respectively driver 
attributes.

Devices are virtual 
directories

Symbolic links 
allow different 
sorting criteria

Source: 
http://www.linux-magazin.de/
Artikel/ausgabe/2004/01/094_kerntechnik6/kerntechnik6.html

The device model allows kernel and applications to explore the 
available hardware. For example, power management can stop 

and restart dependent devices in the correct order.

http://www.linux-magazin.de/
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Windows – Device-specific Functions
● DeviceIoControl corresponds to UNIX ioctl:

● What else?
– All devices and drivers are represented by kernel objects

● Special system calls allow to explore this name space
– Static configuration via Registry
– Dynamic configuration e.g. via WMI

● Windows Management Instrumentation

BOOL DeviceIoControl(
  HANDLE hDevice,
  DWORD dwIoControlCode,
  LPVOID lpInBuffer,
  DWORD nInBufferSize,
  LPVOID lpOutBuffer,
  DWORD nOutBufferSize,
  LPDWORD lpBytesReturned,
  LPOVERLAPPED lpOverlapped
);

Communication directly 
with the driver via type-
less buffer.

Can be used 
asynchronously, too
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Agenda
● Importance of Device Drivers
● Requirements
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– Solutions in Windows and Linux

● I/O-System Structure
– Driver Encapsulation and Driver Infrastructure, Driver Model

● Device Drivers and Environment
– Requirements
– Solutions in Windows and Linux

● Summary
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I/O-System Structure (1)
● Drivers with different interfaces …

– allow to fully utilize all device properties
– necessitate extending the I/O system for each driver

● Large variety of devices  high efforts→
● Unrealistic: The OS is there first, then the drivers.

Hardware-access functions

Device-independent I/O functions
I/O requests

I/O completion

Interrupt
Drivers

Hard disk Printer Keyboard

I/
O
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te
m

Access to hardware 
resources
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I/O-System Structure (2)
● Drivers with a uniform interface …

– enable a (dynamically) extensible I/O system

– allow flexibly “stacking” device drivers
● Virtual devices
● Filters

Hardware-access functions

Device-independent I/O functions
I/O requests

I/O completion

Interrupt
Drivers

Hard disk Printer Keyboard

I/
O

 S
ys

te
m

Access to hardware 
resources
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The driver model comprises …

● A list of expected driver functions
● Definition of optional and mandatory functions
● Functions the driver may use
● Interaction protocols
● Synchronization schema and functions

● Definition of driver classes if multiple interface types are 
inevitable

“a detailed specification for driver development”
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Device-driver Requirements
● Allow assigning device files
● Management of multiple device instances
● Operations:

– Hardware detection
– Initialization and termination
– Reading and writing of data

● possibly scatter/gather
– Control operations and device status

● e.g. via ioctl or virtual file system
– Power management

● Internal tasks:
– Synchronization
– Buffering
– Requesting needed system resources
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Linux – Driver Template: Operations
static char hello_world[]="Hello World\n";

static int dummy_open(struct inode *device_file,
  struct file *instance) {
    printk("driver_open called\n"); return 0;
}

static int dummy_close(struct inode *device_file,
  struct file *instance) {
    printk("driver_close called\n"); return 0;
}

static ssize_t dummy_read(struct file *instance,
  char *user, size_t count, loff_t *offset ) {
    int not_copied, to_copy;
    to_copy = strlen(hello_world)+1;
    if( to_copy > count ) to_copy = count;
    not_copied=copy_to_user(user,hello_world,to_copy);
    return to_copy-not_copied;
}

static struct file_operations fops = {
  .owner  =THIS_MODULE,
  .open   =dummy_open,
  .release=dummy_close,
  .read   =dummy_read,
};

Driver operations 
correspond to regular file 
operations.

In this example, open and 
close only create debug 
output.

With copy_to_user and
copy_from_user we can 
copy data between kernel 
and user address space.

There exist a lot more 
operations, however most of 
them are optional.
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Linux – Driver Template: Registration
MODULE_AUTHOR("OSC Student");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Dummy driver.");
MODULE_SUPPORTED_DEVICE("none");

static struct file_operations fops;
// ... initialization of fops (function pointers)

static int __init mod_init(void){
  if(register_chrdev(240,"DummyDriver",&fops)==0)
    return 0; // driver registered successfully
  return -EIO; // registration failed
}

static void __exit mod_exit(void){
  unregister_chrdev(240,"DummyDriver");
}

module_init( mod_init );     
module_exit( mod_exit );

Meta information 
– can be retrieved 
with modinfo

Registration for 
character device 
with major 
number 240

mod_init and
mod_exit are 
called upon 
loading resp. 
unloading.
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Linux – Driver Template: Operations
// Structure for integrating the driver in to the virtual file system (before 2.6.13)
struct file_operations {
  struct module *owner;
  loff_t (*llseek) (struct file *, loff_t, int);
  ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
  ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
  ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
  ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
  int (*readdir) (struct file *, void *, filldir_t);
  unsigned int (*poll) (struct file *, struct poll_table_struct *);
  int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
  int (*mmap) (struct file *, struct vm_area_struct *);
  int (*open) (struct inode *, struct file *);
  int (*flush) (struct file *);
  int (*release) (struct inode *, struct file *);
  int (*fsync) (struct file *, struct dentry *, int datasync);
  int (*aio_fsync) (struct kiocb *, int datasync);
  int (*fasync) (int, struct file *, int);
  int (*lock) (struct file *, int, struct file_lock *);
  ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
  ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
  ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void __user *);
  ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
  unsigned long (*get_unmapped_area)(struct file *, unsigned long,
      unsigned long, unsigned long, unsigned long);
};
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Linux – Driver Infrastructure
● Allocate resources

– Memory, ports, IRQ vectors, DMA channels
● Hardware access

– Read and write ports and memory blocks
● Dynamically allocate memory
● Blocking and waking processes

– Wait queues
● Registering interrupt handlers

– Low-level
– Tasklets for longer activities

● Special APIs for different driver classes
– Character devices, block devices, USB devices, network interface cards

● Integration in proc or sys file system
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Setup-
Komponenten

Windows – I/O System

 NT Executive

HAL

pci.sys intelide.sys ...Drivers

I/O
System

WDM WMI
Routines

PnP
Manager

Power 
Mgmt.

I/O
Manager

User Mode .inf
files
.cat
files

Registry

User Mode
PnP Manager

WMI
Service

Setup-
Komponenten

Setup
Components

Applications Win32
Services

WMI (≥Win 2000) 
provides event and 
performance 
monitoring

The PnP Manager 
detects new devices 
and, if necessary, 
asks for a driver via 
the user-mode part.

.inf and .cat 
files accompany 
the driver

The I/O Manager 
controls input and 
output using the 
drivers.

HAL = 
Hardware 
Abstraction 
Layer
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Windows – Driver Structure
The I/O system controls the driver using the …

● Initialization/unload routine
– called after/before loading/unloading the driver

● Routine for adding devices
– PnP manager found a new devices for the driver

● Dispatch routines
– Open, close, read, write, and device-specific operations

● Interrupt Service Routine
– called from the central interrupt dispatch routine

● DPC routine (deferred procedure call)
– Interrupt-handling “epilogue”

● I/O completion and cancel routines
– Information on the status of forwarded I/O jobs

…
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Windows – Typical I/O Procedure

Disk
driver

Disk
driver

File-system 
driver

System services

I/O 
Manager

1

2

4

NtWriteFile(file_handle, char_buffer)

Find file system and driver 
using the file object 
Write data to specific byte 
offset in file
Calculate position on disk
Forward I/O request
Write data to specific byte 
offset on the disk
Translate position to disk 
number and offset
Forward I/O request
Write data to specific byte 
offset on disk 2
Calculate physical block and 
initiate operation

3

1

2

3

4

5

6

7

8

9

5

7

6

8

9

10

Return to application process (!)
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Windows – Typical I/O Procedure

Disk
driver

Disk
driver

File-system
driver

System services

I/O
Manager

1

2

4

Disk controller signals 
completion via an interrupt
Call ISR resp. DPC
Call completion routine
Call completion routine
Issue another (sub) request to 
the disk driver

3

1

2

3

4

5
5

...

Where does the system 
keep an I/O operation’s 
state?

… continued (after the disk has completed the operation)
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Windows – I/O Request Packets
System services

I/O Manager

Header

WRITE
Parameters

...

IRP
(I/O Request Packet)

The I/O Manager creates and initializes 
an IRP for each I/O operation.

IRP stack File
object

Device
object

Driver
object

NtWriteFile(file_handle, char_buffer)

Dispatch
routine(s)

Start I/O ISR DPC
routine Device driver

The WRITE parameters help 
finding the dispatch routine.

Each driver level 
uses a new level in 
the IRP stack.
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Summary
● A good I/O subsystem design is essential

– I/O interface
– Driver model
– Driver infrastructure
– Interfaces should remain stable for a long time.

● Goal: Effort minimization for drivers
● Windows has a mature I/O system

– “Everything is a kernel object”
– Asynchronous I/O operations are central

● Linux has been catching up in the last few years
– “Everything is a file”
– sysfs and asynchronous I/O (io_uring!) were added later
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