
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION

Device Drivers
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2023-07-04 OSC: L12 Device Drivers 2

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Interrupt
handling

Inter-process
communication

Control-flow
abstraction

Interrupt
synchronization

Process management

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

2023-07-04 OSC: L12 Device Drivers 3

Interrupt
handling

Overview: Lectures

Hardware

Application(s)

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

Interrupt
synchronization

Control-flow
abstraction

Process management

Inter-process
communication

Topic of today’s lecture

Device access
(drivers)

2023-07-04 OSC: L12 Device Drivers 4

Agenda
● Importance of Device Drivers
● Requirements

– Name Space, I/O Operations, Device-specific Configuration
– Solutions in Windows and Linux

● I/O-System Structure
– Driver Encapsulation and Driver Infrastructure, Driver Model

● Device Drivers and Environment
– Requirements
– Solutions in Windows and Linux

● Summary

2023-07-04 OSC: L12 Device Drivers 5

Agenda
● Importance of Device Drivers
● Requirements

– Name Space, I/O Operations, Device-specific Configuration
– Solutions in Windows and Linux

● I/O-System Structure
– Driver Encapsulation and Driver Infrastructure, Driver Model

● Device Drivers and Environment
– Requirements
– Solutions in Windows and Linux

● Summary

2023-07-04 OSC: L12 Device Drivers 6

Importance of Device Drivers (1)
● Amount of device-driver code in 2012 Linux kernel:

> du -k --max-depth=1 /usr/src/linux-3.1.10-1.16 | sort -n
36 /usr/src/linux-3.1.10-1.16/usr
152 /usr/src/linux-3.1.10-1.16/init
156 /usr/src/linux-3.1.10-1.16/samples
176 /usr/src/linux-3.1.10-1.16/virt
232 /usr/src/linux-3.1.10-1.16/ipc
624 /usr/src/linux-3.1.10-1.16/block
1696 /usr/src/linux-3.1.10-1.16/lib
1744 /usr/src/linux-3.1.10-1.16/crypto
1952 /usr/src/linux-3.1.10-1.16/security
2368 /usr/src/linux-3.1.10-1.16/mm
2368 /usr/src/linux-3.1.10-1.16/scripts
3260 /usr/src/linux-3.1.10-1.16/tools
5132 /usr/src/linux-3.1.10-1.16/kernel
6240 /usr/src/linux-3.1.10-1.16/firmware
19080 /usr/src/linux-3.1.10-1.16/Documentation
20684 /usr/src/linux-3.1.10-1.16/net
22360 /usr/src/linux-3.1.10-1.16/include
23528 /usr/src/linux-3.1.10-1.16/sound
32464 /usr/src/linux-3.1.10-1.16/fs
118420 /usr/src/linux-3.1.10-1.16/arch
250100 /usr/src/linux-3.1.10-1.16/drivers

2023-07-04 OSC: L12 Device Drivers 7

Importance of Device Drivers (1)
● Amount of device-driver code in 2012 Linux kernel:

> du -k --max-depth=1 /usr/src/linux-3.1.10-1.16 | sort -n
36 /usr/src/linux-3.1.10-1.16/usr
152 /usr/src/linux-3.1.10-1.16/init
156 /usr/src/linux-3.1.10-1.16/samples
176 /usr/src/linux-3.1.10-1.16/virt
232 /usr/src/linux-3.1.10-1.16/ipc
624 /usr/src/linux-3.1.10-1.16/block
1696 /usr/src/linux-3.1.10-1.16/lib
1744 /usr/src/linux-3.1.10-1.16/crypto
1952 /usr/src/linux-3.1.10-1.16/security
2368 /usr/src/linux-3.1.10-1.16/mm
2368 /usr/src/linux-3.1.10-1.16/scripts
3260 /usr/src/linux-3.1.10-1.16/tools
5132 /usr/src/linux-3.1.10-1.16/kernel
6240 /usr/src/linux-3.1.10-1.16/firmware
19080 /usr/src/linux-3.1.10-1.16/Documentation
20684 /usr/src/linux-3.1.10-1.16/net
22360 /usr/src/linux-3.1.10-1.16/include
23528 /usr/src/linux-3.1.10-1.16/sound
32464 /usr/src/linux-3.1.10-1.16/fs
118420 /usr/src/linux-3.1.10-1.16/arch
250100 /usr/src/linux-3.1.10-1.16/drivers

0%1%1%1%1%1%1%4%4%
4%4%

4%4%

5%5%

6%6%

23%23%

49%49%

usr init
samples virt
ipc block
lib crypto
security mm
scripts tools
kernel firmware
Documentation net
include sound
fs arch
drivers

2023-07-04 OSC: L12 Device Drivers 8

Importance of Device Drivers (2)
● In Linux (3.1.10), driver code is 50 times larger than “kernel”

code
– Windows supports much more devices …

● Driver support is a critical factor for an OS’s acceptance!
– Why else is Linux more popular than other free UNIXes?

● Significant amount of manpower is in device drivers

➔ I/O subsystem design requires much expertise
– As much reusable functionality as possible in driver infrastructure
– Well-defined driver structure, behavior and interfaces, i.e. a driver

model

2023-07-04 OSC: L12 Device Drivers 9

Agenda
● Importance of Device Drivers
● Requirements

– Name Space, I/O Operations, Device-specific Configuration
– Solutions in Windows and Linux

● I/O-System Structure
– Driver Encapsulation and Driver Infrastructure, Driver Model

● Device Drivers and Environment
– Requirements
– Solutions in Windows and Linux

● Summary

2023-07-04 OSC: L12 Device Drivers 10

Requirements
● Resource-preserving device usage

– Work fast
– Save energy
– Save memory, ports, interrupt vectors

● Uniform access mechanism
– Minimal set of operations for different device types
– Powerful operations for diverse application types

● Also device-specific access functions
● Activation and deactivation at runtime
● Generic power-management interface

2023-07-04 OSC: L12 Device Drivers 11

Linux – Uniform Access (1)

● Devices are accessible via names in the file system
● Advantages:

– System calls for file access (open, read, write, close) can be used for
other I/O

– Access permissions can be controlled via file-system mechanisms
– Applications see no difference between files and “device files”

● Problems:
– Block-oriented devices must be adapted to byte stream
– Some devices hardly fit this schema

● Example: 3D graphics adapter

echo "Hello world" > /dev/ttyS0

2023-07-04 OSC: L12 Device Drivers 12

Linux – Uniform Access (2)
● Blocking input/output (normal case)

– read: Process blocks until requested data is available
– write: Process blocks until writing is possible

● Non-blocking input/output
– open/read/write with additional flag O_NONBLOCK
– Instead of blocking, read and write return -EAGAIN
– Caller may/must repeat the operation later

● Asynchronous input/output
– aio_(read|write|...) (POSIX 1003.1-2003) and io_uring (2019)
– Indirectly via child process (fork/join)
– System calls select, poll

2023-07-04 OSC: L12 Device Drivers 13Executive

Windows – Uniform Access (1)
● Devices are Executive kernel objects

NT kernel objects
/

??GLOBALDevice
COM1
COM2
C

Serial0
Serial1
Harddisk1

Win32 Subsystem

DOS compatible
device names

COM1:
COM2:
C: D:

Native
Application

Win32
Application

Win32 PCB
DosDevices:
 /??GLOBAL

CreateFile
ReadFile
WriteFile

NtCreateFile
NtReadFile
NtWriteFile

/??GLOBAL

/??GLOBAL/COM1

COM1:

/Device/Serial0

NtCreateFile
NtReadFile
NtWriteFile

2023-07-04 OSC: L12 Device Drivers 14

Windows – Uniform Access (2)
● Synchronous or asynchronous input/output

● More features:
– I/O with timeout
– WaitForMultipleObjects – wait for one or more kernel objects

● File handles, semaphores, mutex, thread handle, …
– I/O Completion Ports

● Activation of a waiting thread after I/O operation

BOOL GetOverlappedResult(
 HANDLE hFile,
 LPOVERLAPPED lpOverlapped,
 LPDWORD lpNumberOfBytesTransferred,
 BOOL bWait
);

BOOL ReadFile(
 HANDLE hFile,
 LPVOID lpBuffer,
 DWORD nNumberOfBytesToRead,
 LPDWORD lpNumberOfBytesRead,
 LPOVERLAPPED lpOverlapped
);

NULL: synchronous read
true: wait for completion
false: request status

2023-07-04 OSC: L12 Device Drivers 15

Linux – Device-specific Functions (1)
● Special device properties are (classically) controlled via ioctl:

● Generic interface, device-specific semantics:

IOCTL(2) Linux Programmer's Manual IOCTL(2)

NAME
 ioctl - control device

SYNOPSIS
 #include <sys/ioctl.h>

 int ioctl(int d, int request, ...);

CONFORMING TO
 No single standard. Arguments, returns, and semantics of
 ioctl(2) vary according to the device driver in question
 (the call is used as a catch-all for operations that
 don't cleanly fit the Unix stream I/O model). The ioctl
 function call appeared in Version 7 AT&T Unix.

2023-07-04 OSC: L12 Device Drivers 16

Linux – Device-specific Functions (2)
Linux 2.6 – the device model in

the sys file system

Virtual files
represent device
respectively driver
attributes.

Devices are virtual
directories

Symbolic links
allow different
sorting criteria

Source:
http://www.linux-magazin.de/
Artikel/ausgabe/2004/01/094_kerntechnik6/kerntechnik6.html

http://www.linux-magazin.de/

2023-07-04 OSC: L12 Device Drivers 17

Linux – Device-specific Functions (2)
Linux 2.6 – the device model in

the sys file system

Virtual files
represent device
respectively driver
attributes.

Devices are virtual
directories

Symbolic links
allow different
sorting criteria

Source:
http://www.linux-magazin.de/
Artikel/ausgabe/2004/01/094_kerntechnik6/kerntechnik6.html

The device model allows kernel and applications to explore the
available hardware. For example, power management can stop

and restart dependent devices in the correct order.

http://www.linux-magazin.de/

2023-07-04 OSC: L12 Device Drivers 18

Windows – Device-specific Functions
● DeviceIoControl corresponds to UNIX ioctl:

● What else?
– All devices and drivers are represented by kernel objects

● Special system calls allow to explore this name space
– Static configuration via Registry
– Dynamic configuration e.g. via WMI

● Windows Management Instrumentation

BOOL DeviceIoControl(
 HANDLE hDevice,
 DWORD dwIoControlCode,
 LPVOID lpInBuffer,
 DWORD nInBufferSize,
 LPVOID lpOutBuffer,
 DWORD nOutBufferSize,
 LPDWORD lpBytesReturned,
 LPOVERLAPPED lpOverlapped
);

Communication directly
with the driver via type-
less buffer.

Can be used
asynchronously, too

2023-07-04 OSC: L12 Device Drivers 19

Agenda
● Importance of Device Drivers
● Requirements

– Name Space, I/O Operations, Device-specific Configuration
– Solutions in Windows and Linux

● I/O-System Structure
– Driver Encapsulation and Driver Infrastructure, Driver Model

● Device Drivers and Environment
– Requirements
– Solutions in Windows and Linux

● Summary

2023-07-04 OSC: L12 Device Drivers 20

I/O-System Structure (1)
● Drivers with different interfaces …

– allow to fully utilize all device properties
– necessitate extending the I/O system for each driver

● Large variety of devices high efforts→
● Unrealistic: The OS is there first, then the drivers.

Hardware-access functions

Device-independent I/O functions
I/O requests

I/O completion

Interrupt
Drivers

Hard disk Printer Keyboard

I/
O

 S
ys

te
m

Access to hardware
resources

2023-07-04 OSC: L12 Device Drivers 21

I/O-System Structure (2)
● Drivers with a uniform interface …

– enable a (dynamically) extensible I/O system

– allow flexibly “stacking” device drivers
● Virtual devices
● Filters

Hardware-access functions

Device-independent I/O functions
I/O requests

I/O completion

Interrupt
Drivers

Hard disk Printer Keyboard

I/
O

 S
ys

te
m

Access to hardware
resources

2023-07-04 OSC: L12 Device Drivers 22

The driver model comprises …

● A list of expected driver functions
● Definition of optional and mandatory functions
● Functions the driver may use
● Interaction protocols
● Synchronization schema and functions

● Definition of driver classes if multiple interface types are
inevitable

“a detailed specification for driver development”

2023-07-04 OSC: L12 Device Drivers 23

Agenda
● Importance of Device Drivers
● Requirements

– Name Space, I/O Operations, Device-specific Configuration
– Solutions in Windows and Linux

● I/O-System Structure
– Driver Encapsulation and Driver Infrastructure, Driver Model

● Device Drivers and Environment
– Requirements
– Solutions in Windows and Linux

● Summary

2023-07-04 OSC: L12 Device Drivers 24

Device-driver Requirements
● Allow assigning device files
● Management of multiple device instances
● Operations:

– Hardware detection
– Initialization and termination
– Reading and writing of data

● possibly scatter/gather
– Control operations and device status

● e.g. via ioctl or virtual file system
– Power management

● Internal tasks:
– Synchronization
– Buffering
– Requesting needed system resources

2023-07-04 OSC: L12 Device Drivers 25

Linux – Driver Template: Operations
static char hello_world[]="Hello World\n";

static int dummy_open(struct inode *device_file,
 struct file *instance) {
 printk("driver_open called\n"); return 0;
}

static int dummy_close(struct inode *device_file,
 struct file *instance) {
 printk("driver_close called\n"); return 0;
}

static ssize_t dummy_read(struct file *instance,
 char *user, size_t count, loff_t *offset) {
 int not_copied, to_copy;
 to_copy = strlen(hello_world)+1;
 if(to_copy > count) to_copy = count;
 not_copied=copy_to_user(user,hello_world,to_copy);
 return to_copy-not_copied;
}

static struct file_operations fops = {
 .owner =THIS_MODULE,
 .open =dummy_open,
 .release=dummy_close,
 .read =dummy_read,
};

Driver operations
correspond to regular file
operations.

In this example, open and
close only create debug
output.

With copy_to_user and
copy_from_user we can
copy data between kernel
and user address space.

There exist a lot more
operations, however most of
them are optional.

2023-07-04 OSC: L12 Device Drivers 26

Linux – Driver Template: Registration
MODULE_AUTHOR("OSC Student");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Dummy driver.");
MODULE_SUPPORTED_DEVICE("none");

static struct file_operations fops;
// ... initialization of fops (function pointers)

static int __init mod_init(void){
 if(register_chrdev(240,"DummyDriver",&fops)==0)
 return 0; // driver registered successfully
 return -EIO; // registration failed
}

static void __exit mod_exit(void){
 unregister_chrdev(240,"DummyDriver");
}

module_init(mod_init);
module_exit(mod_exit);

Meta information
– can be retrieved
with modinfo

Registration for
character device
with major
number 240

mod_init and
mod_exit are
called upon
loading resp.
unloading.

2023-07-04 OSC: L12 Device Drivers 27

Linux – Driver Template: Operations
// Structure for integrating the driver in to the virtual file system (before 2.6.13)
struct file_operations {
 struct module *owner;
 loff_t (*llseek) (struct file *, loff_t, int);
 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
 ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
 ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
 int (*readdir) (struct file *, void *, filldir_t);
 unsigned int (*poll) (struct file *, struct poll_table_struct *);
 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
 int (*mmap) (struct file *, struct vm_area_struct *);
 int (*open) (struct inode *, struct file *);
 int (*flush) (struct file *);
 int (*release) (struct inode *, struct file *);
 int (*fsync) (struct file *, struct dentry *, int datasync);
 int (*aio_fsync) (struct kiocb *, int datasync);
 int (*fasync) (int, struct file *, int);
 int (*lock) (struct file *, int, struct file_lock *);
 ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
 ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
 ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void __user *);
 ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
 unsigned long (*get_unmapped_area)(struct file *, unsigned long,
 unsigned long, unsigned long, unsigned long);
};

2023-07-04 OSC: L12 Device Drivers 28

Linux – Driver Infrastructure
● Allocate resources

– Memory, ports, IRQ vectors, DMA channels
● Hardware access

– Read and write ports and memory blocks
● Dynamically allocate memory
● Blocking and waking processes

– Wait queues
● Registering interrupt handlers

– Low-level
– Tasklets for longer activities

● Special APIs for different driver classes
– Character devices, block devices, USB devices, network interface cards

● Integration in proc or sys file system

2023-07-04 OSC: L12 Device Drivers 29

Setup-
Komponenten

Windows – I/O System

 NT Executive

HAL

pci.sys intelide.sys ...Drivers

I/O
System

WDM WMI
Routines

PnP
Manager

Power
Mgmt.

I/O
Manager

User Mode .inf
files
.cat
files

Registry

User Mode
PnP Manager

WMI
Service

Setup-
Komponenten

Setup
Components

Applications Win32
Services

WMI (≥Win 2000)
provides event and
performance
monitoring

The PnP Manager
detects new devices
and, if necessary,
asks for a driver via
the user-mode part.

.inf and .cat
files accompany
the driver

The I/O Manager
controls input and
output using the
drivers.

HAL =
Hardware
Abstraction
Layer

2023-07-04 OSC: L12 Device Drivers 30

Windows – Driver Structure
The I/O system controls the driver using the …

● Initialization/unload routine
– called after/before loading/unloading the driver

● Routine for adding devices
– PnP manager found a new devices for the driver

● Dispatch routines
– Open, close, read, write, and device-specific operations

● Interrupt Service Routine
– called from the central interrupt dispatch routine

● DPC routine (deferred procedure call)
– Interrupt-handling “epilogue”

● I/O completion and cancel routines
– Information on the status of forwarded I/O jobs

…

2023-07-04 OSC: L12 Device Drivers 31

Windows – Typical I/O Procedure

Disk
driver

Disk
driver

File-system
driver

System services

I/O
Manager

1

2

4

NtWriteFile(file_handle, char_buffer)

Find file system and driver
using the file object
Write data to specific byte
offset in file
Calculate position on disk
Forward I/O request
Write data to specific byte
offset on the disk
Translate position to disk
number and offset
Forward I/O request
Write data to specific byte
offset on disk 2
Calculate physical block and
initiate operation

3

1

2

3

4

5

6

7

8

9

5

7

6

8

9

10

Return to application process (!)

2023-07-04 OSC: L12 Device Drivers 32

Windows – Typical I/O Procedure

Disk
driver

Disk
driver

File-system
driver

System services

I/O
Manager

1

2

4

Disk controller signals
completion via an interrupt
Call ISR resp. DPC
Call completion routine
Call completion routine
Issue another (sub) request to
the disk driver

3

1

2

3

4

5
5

...

Where does the system
keep an I/O operation’s
state?

… continued (after the disk has completed the operation)

2023-07-04 OSC: L12 Device Drivers 33

Windows – I/O Request Packets
System services

I/O Manager

Header

WRITE
Parameters

...

IRP
(I/O Request Packet)

The I/O Manager creates and initializes
an IRP for each I/O operation.

IRP stack File
object

Device
object

Driver
object

NtWriteFile(file_handle, char_buffer)

Dispatch
routine(s)

Start I/O ISR DPC
routine Device driver

The WRITE parameters help
finding the dispatch routine.

Each driver level
uses a new level in
the IRP stack.

2023-07-04 OSC: L12 Device Drivers 34

Agenda
● Importance of Device Drivers
● Requirements

– Name Space, I/O Operations, Device-specific Configuration
– Solutions in Windows and Linux

● I/O-System Structure
– Driver Encapsulation and Driver Infrastructure, Driver Model

● Device Drivers and Environment
– Requirements
– Solutions in Windows and Linux

● Summary

2023-07-04 OSC: L12 Device Drivers 35

Summary
● A good I/O subsystem design is essential

– I/O interface
– Driver model
– Driver infrastructure
– Interfaces should remain stable for a long time.

● Goal: Effort minimization for drivers
● Windows has a mature I/O system

– “Everything is a kernel object”
– Asynchronous I/O operations are central

● Linux has been catching up in the last few years
– “Everything is a file”
– sysfs and asynchronous I/O (io_uring!) were added later

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

