
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION

Exercise 1: C++ (1), CGA Programming
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2024-04-09 OSC: Exercise 1 2

Overview
● Development Environment
● C++ crash course (Part 1)
● CGA programming

● … and next week:
● C++ crash course (Part 2)
● Keyboard programming

2024-04-09 OSC: Exercise 1 3

OSC Complex Lab
● Tasks every ~2 weeks (task description on OSC website,

template code in Git repository), in total 7 tasks
– Work on Lab tasks in groups of 2–3 students with technical support
– Hand in + discuss your solutions + demonstration on real PC

(goal: maintain a working code base that doesn’t break later in the semester)

– Development at home possible
(Linux, or Linux VM with ready-to-use VirtualBox image from OSC
website)

● Contest: Task #7 – an own (free-style) OOStuBS application

2024-04-09 OSC: Exercise 1 4

Overview
● Development Environment
● C++ crash course (Part 1)
● CGA programming

● … and next week:
● C++ crash course (Part 2)
● Keyboard programming

2024-04-09 OSC: Exercise 1 5

OSC: Introduction to C++
● Basis for lab tasks

● Prerequisite:
– Programming experience in another object-oriented programming

language (e.g., Java)

● Focus on differences between Java and C++
– … and a few of the peculiarities you need to watch out for when using

C++ for systems programming …

2024-04-09 OSC: Exercise 1 6

Literature
● There are a LOT of books and tutorials on C++ …
● Good introduction:

– Stanley B. Lippman: C++ Primer (also in German)
● Advanced material:

– Scott Meyers: Effective Modern C++ (also in German)
● “Best Practices”:

https://github.com/isocpp/CppCoreGuidelines
● and “Von Java nach C++” (Müller/Weichert, TU Dortmund)

– Basis for these slides
– Book chapter: https://doi.org/10.1007/978-3-658-16141-5_13

https://github.com/isocpp/CppCoreGuidelines
https://doi.org/10.1007/978-3-658-16141-5_13

2024-04-09 OSC: Exercise 1 7

C++
● As usual: “Hello, World” in C++

● Java version:

#include <iostream>
int main() {

std::cout << "Hello, world" << std::endl;
return 0;

}

import whatever.u.like.*;
class Test {
 public static void main(String[] argv) {
 System.out.println("Hello, world");
 }
}

2024-04-09 OSC: Exercise 1 8

A Few C++ Concepts
● Control structures and variable types in C++
● Complex data types (structs)
● Pointers and references
● Operator overloading

● Source-code organization
● Inheritance and multiple inheritance
● Virtual functions

2024-04-09 OSC: Exercise 1 9

Control Structures and Variable Types
● Conditional statements, loops, compound statements

(blocks)
– are identical in C++ and Java! (ignoring variants in recent C++ versions)

● C++ allows “global” functions, while in Java methods must be
part of a class.
– In particular, C++ allows calling “normal” C and assembler functions
– … and you can make C++ functions callable from C and assembler via

extern "C"

– One example for an important global function is main() :-)

2024-04-09 OSC: Exercise 1 10

Control Structures and Variable Types
● Array definition in C++:

● Not necessarily placed on the heap (like in Java)
– also stack / data / BSS

● No runtime checks for array boundaries! (like in Java)
– Potential security risk: “Buffer overflows”, during which values beyond

an array’s boundaries get overwritten (e.g. other variables, return
addresses on the stack).

● Variables do not have default values, must explicitly be
initialized
(compiler warnings may give a hint of the problem, if you notice them)

● Memory management must be done by the programmer
(no garbage collector like in Java)

int a[4]; // … or with initialization:
int a[] = { 1, 2, 3 };

2024-04-09 OSC: Exercise 1 11

Type Casting
● Like in Java, we can explicitly cast one type into another:

– (type)expression, e.g.:

● Another way to do it in C++:
– type(expression), e.g.:

int a = 3;
double b = (double) a / 2; // b==1.5

int a = 3;
double b = double(a) / 2; // b==1.5

2024-04-09 OSC: Exercise 1 12

Value Ranges
● C++: signed and unsigned (“un-signed”, i.e. without a sign) types

(char, short, int, long), e.g.:
– int from -231 to 231-1
– unsigned int from 0 to 232-1

● Potential security risk: No runtime check
for overflows/underflows on arithmetic
operations

● Value ranges are machine / architecture / compiler specific
– e.g., long can have 32 or 64 bits

● With typedef we can define new types
based on existing ones:

unsigned int i=0;
i = i – 1;
// i==4294967295

typedef int Index;
Index a = 3;

2024-04-09 OSC: Exercise 1 13

Complex Data Types
● enums: Enumeration types

Often used as an alternative to #define
● structs: User-defined compound data types

● Usage:

enum { caps_lock = 4, num_lock = 2, scroll_lock = 1 };

struct Rectangle {
 int xp, yp;
 int width, height;
 int color;
 ...
};

Rectangle r;
r.xp = 100; r.yp = 200; r.width = 20; r.height = 40;

2024-04-09 OSC: Exercise 1 14

Classes in C++
● A class in C++ consists of

– a declaration in a header file (e.g. keyctrl.h)

– and an implementation file (keyctrl.cc)

– (The file names and the name of the class do not have to match. It
helps keeping the chaos level lower if they do, though.)

class Keyboard_Controller {
 ...
};

#include "machine/keyctrl.h"
...

2024-04-09 OSC: Exercise 1 15

Header-File Structure
● keyctrl.h excerpt:

class Keyboard_Controller {
private:
 unsigned char code; // Attributes
 unsigned char prefix;
 ...
public:
 Keyboard_Controller (); // Constructor
 ~Keyboard_Controller (); // Destructor

 Key key_hit (); // Methods
 void reboot ();
 void set_repeat_rate (int speed, int delay);
 ...
};

2024-04-09 OSC: Exercise 1 16

Header-File Structure
● Class definition starts with the keyword class
● Classes are always “public” (unlike in Java)
● Attributes

– (Instance) variables may be initialized at declaration (since C++11)
● Constructors/destructors

– Constructors: Called on object instantiation
– Destructors: Called on object deletion

● Method declarations
● Class definition ends with a semicolon!

2024-04-09 OSC: Exercise 1 17

Implementation-File Structure
● #include the corresponding header file
● Class name plus scope operator “::” tell the compiler

which class a method (or constructor/destructor) belongs to:

#include "keyctrl.h"

Keyboard_Controller::Keyboard_Controller () {
 ...
}

Keyboard_Controller::~Keyboard_Controller () {}

void Keyboard_Controller::reboot () {
 ...
}

2024-04-09 OSC: Exercise 1 18

Pointers
● Every byte in memory assigned to an object (variable) has a

unique address
– In bare-metal / OS development, this can also be an address where a

specific hardware device’s internal memory or control registers are
mapped to – for example video memory.

● Pointer: variable whose value is the memory address of a
variable, of a data structure or of an object
– Pointers have a type, e.g. “pointer to int”
– Denoted by the * symbol, e.g.:

int a; // not a pointer
int *int_pointer; // pointer to an int variable
// Hint: Read right-to-left!

2024-04-09 OSC: Exercise 1 19

Pointers
● Pointer content:

Value stored at the memory address the pointer points to
● Content size (in bytes):

Depends on the assigned data type
– e.g. 1 byte for char, 2 bytes for short etc.
– Again: Sizes are architecture and compiler specific in C/C++ and not

portable!

2024-04-09 OSC: Exercise 1 20

Pointers
Two pointer-specific operators:

● Address operator &
– Yields the address belonging to a variable

● Dereferencing operator *
– Yields the value that is stored at the

address the pointer “points to”
(its “content”)

int_pointer = &a;

*int_pointer = 42;

2024-04-09 OSC: Exercise 1 21

Pointers: Example
Cast of a constant address to a
pointer
Cast of a constant address to a
pointer

Declaration (+definition) of a
pointer variable CGA_START
(pointer to char)

Declaration (+definition) of a
pointer variable CGA_START
(pointer to char)

Pointer arithmetic: 'pos' now
points to the memory address that
stores the character code for the
character at position (x, y)

Pointer arithmetic: 'pos' now
points to the memory address that
stores the character code for the
character at position (x, y)

Dereferencing: The character
at position (x, y) gets
overwritten by the letter ‘Q’

Dereferencing: The character
at position (x, y) gets
overwritten by the letter ‘Q’

char *CGA_START = (char *)0xb8000;
char *pos;
int x=20, y=20;
pos = CGA_START + 2*(x + y*80);
*pos = 'Q';

2024-04-09 OSC: Exercise 1 22

References as Parameters
● References: Similar to pointers, often used for function

parameters that can affect arguments at the call site

● Call by reference: We’re passing a reference to each
variable, and the function returns a reference, too.

int& max(int& a, int& b) {
 if (a>b) return a; else return b;
}

int a=5, b=7;
max(a,b)++; // increases b by 1!

2024-04-09 OSC: Exercise 1 23

Operator Overloading
● Operators behave depending on the data type they operate on

(not in Java)

● Example: Operator “+”
– int, float, double variables: the usual arithmetic “add”
– std::string objects: string concatenation
– 3D vectors: vector addition

● In OOStuBS: Operator “<<”
– int values: Stored number gets “shifted left” by n bits

(e.g. 2 << 3 == 16)

– Overloaded for output streams (cf. “Hello World”):
cout << "Hello" << endl;

(Similarly: Operator “>>” for input streams)

2024-04-09 OSC: Exercise 1 24

Operator Overloading
● Only possible for operators defined in the language

(no completely new operators)

● Supported:
– Unary operators:

– Binary operators:

+ - * & ~ ! ++ -- -> ->*

+ - * / % ^ & | << >>
+= -= *= /= %= ^= &= |= <<= >>=
< <= > >= == != && ||
, [] ()
new new[] delete delete[]

2024-04-09 OSC: Exercise 1 25

Operator Overloading: Example
● Adding integers to a date:

The += operator updates the date object, accepting an int at
the “right-hand side”. Calculating today in two weeks:

class tDate {
public:
 //
 void operator+=(int days);
};

void tDate::operator+=(int days) {
 // [… date calculation …]
}

tDate today;
today += 14;

2024-04-09 OSC: Exercise 1 26

Systems Programming in C++
● No runtime environment available

– If you need one, you have to build one …
● Consequence: No dynamic object instantiation

– No “new”, no “delete”
– … because there’s no memory management (yet)

● For experts … that’s unavailable, too:
– Exceptions, assertions, runtime type information (RTTI)

● A wrong / uninitialized / corrupted pointer can be the end …
– The machine freezes and that’s it.
– No “segmentation violation”, no core dump

2024-04-09 OSC: Exercise 1 27

Overview
● Development Environment
● C++ crash course (Part 1)
● CGA programming

● … and next week:
● C++ crash course (Part 2)
● Keyboard programming

2024-04-09 OSC: Exercise 1 28

Output Stream
● Stringbuffer: put(c), flush()

– Why buffer? Reasonable buffer size?

● O_Stream: similar to C++ std::ostream
– Formatting, number output

– uses Stringbuffer::put(c)

● CGA_Stream::flush()

IO_Port CGA_Screen

machine

O_Stream

Stringbuffer

object

CGA_Stream

device

Key

Keyboard_Controller

2024-04-09 OSC: Exercise 1 29

CGA_Screen (1)
● used by CGA_Stream during flush()
● show(x,y,c,attrib)

– Character c with attribute attrib at position x/y
– Code from the C++ crash course:

– What’s missing here?

char *CGA_START = (char *)0xb8000;
char *pos;
int x = 20, y = 20;

pos = CGA_START + 2*(x + y*80);
*pos = 'Q';

2024-04-09 OSC: Exercise 1 30

CGA_Screen (2)
physical address space

CGA video memoryCGA video memory

0x000000

0x0B8000

0x0B8FFF

Q

x=20

y=10
Q

char *CGA_START = (char *)0xb8000;
char *pos;
int x = 20, y = 20;

pos = CGA_START + 2*(x + y*80);
*pos = 'Q';

=CGA_START

2024-04-09 OSC: Exercise 1 31

CGA_Screen (3)
● Two bytes per coordinate in video memory!
● Even addresses: ASCII code
● Odd addresses: Attribute byte

● … what happens without this line?

char *CGA_START = (char *)0xb8000;
char *pos;
int x = 20, y = 20;

pos = CGA_START + 2*(x + y*80);
*pos = 'Q';
*(pos + 1) = 0x0f; // white on black

2024-04-09 OSC: Exercise 1 32

CGA_Screen (4)
● setpos/getpos

– Change internal state of CGA_Screen
● Current position needed in print()!

– Position the CGA cursor
● In general: Access to PC devices

– Two address spaces: Memory address space, I/O address space
– Memory: addressable directly via pointers (video memory)
– I/O: via CPU instructions in/out (inb/inw/inl; outb/outw/outl)

● OOStuBS: encapsulated in class IO_Port
– Some devices use both (e.g. CGA)

2024-04-09 OSC: Exercise 1 33

CGA_Screen (5)
● CGA: Memory and I/O address spaces

– Video memory mapped into memory address space
– CGA registers mapped to I/O address space

● but: More registers than I/O addresses
– Multiplexing via index/data ports

2024-04-09 OSC: Exercise 1 34

CGA_Screen (6)
● print(char *text, int length,
 unsigned char attrib)

– Uses show() and setpos()
– Arrived at screen bottom? Scrolling! (How?)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

