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Overview
● Development Environment
● C++ crash course (Part 1)
● CGA programming

● … and next week:
● C++ crash course (Part 2)
● Keyboard programming
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OSC Complex Lab
● Tasks every ~2 weeks (task description on OSC website, 

template code in Git repository), in total 7 tasks
– Work on Lab tasks in groups of 2–3 students with technical support
– Hand in + discuss your solutions + demonstration on real PC

(goal: maintain a working code base that doesn’t break later in the semester)

– Development at home possible
(Linux, or Linux VM with ready-to-use VirtualBox image from OSC 
website)

● Contest: Task #7 – an own (free-style) OOStuBS application
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Overview
● Development Environment
● C++ crash course (Part 1)
● CGA programming

● … and next week:
● C++ crash course (Part 2)
● Keyboard programming
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OSC: Introduction to C++
● Basis for lab tasks

● Prerequisite:
– Programming experience in another object-oriented programming 

language (e.g., Java)

● Focus on differences between Java and C++
– … and a few of the peculiarities you need to watch out for when using 

C++ for systems programming …
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Literature
● There are a LOT of books and tutorials on C++ …
● Good introduction:

– Stanley B. Lippman: C++ Primer (also in German)
● Advanced material:

– Scott Meyers: Effective Modern C++ (also in German)
● “Best Practices”: 

https://github.com/isocpp/CppCoreGuidelines
● and “Von Java nach C++” (Müller/Weichert, TU Dortmund)

– Basis for these slides
– Book chapter: https://doi.org/10.1007/978-3-658-16141-5_13

https://github.com/isocpp/CppCoreGuidelines
https://doi.org/10.1007/978-3-658-16141-5_13
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C++
● As usual: “Hello, World” in C++

● Java version:

#include <iostream>
int main() {

std::cout << "Hello, world" << std::endl;
return 0;

}

import whatever.u.like.*;
class Test {
  public static void main(String[] argv) {
    System.out.println("Hello, world");
  }
}
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A Few C++ Concepts
● Control structures and variable types in C++
● Complex data types (structs)
● Pointers and references
● Operator overloading

● Source-code organization
● Inheritance and multiple inheritance
● Virtual functions
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Control Structures and Variable Types
● Conditional statements, loops, compound statements 

(blocks)
– are identical in C++ and Java! (ignoring variants in recent C++ versions)

● C++ allows “global” functions, while in Java methods must be 
part of a class.
– In particular, C++ allows calling “normal” C and assembler functions
– … and you can make C++ functions callable from C and assembler via 

extern "C"

– One example for an important global function is main() :-)
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Control Structures and Variable Types
● Array definition in C++:

● Not necessarily placed on the heap (like in Java)
– also stack / data / BSS

● No runtime checks for array boundaries! (like in Java)
– Potential security risk: “Buffer overflows”, during which values beyond 

an array’s boundaries get overwritten (e.g. other variables, return 
addresses on the stack).

● Variables do not have default values, must explicitly be 
initialized
(compiler warnings may give a hint of the problem, if you notice them)

● Memory management must be done by the programmer
(no garbage collector like in Java)

int a[4]; // … or with initialization:
int a[] = { 1, 2, 3 };
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Type Casting
● Like in Java, we can explicitly cast one type into another:

– (type)expression, e.g.:

● Another way to do it in C++:
– type(expression), e.g.:

int a = 3;
double b = (double) a / 2; // b==1.5

int a = 3;
double b = double(a) / 2; // b==1.5
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Value Ranges
● C++: signed and unsigned (“un-signed”, i.e. without a sign) types 

(char, short, int, long), e.g.:
– int from -231 to 231-1
– unsigned int from 0 to 232-1

● Potential security risk: No runtime check
for overflows/underflows on arithmetic
operations

● Value ranges are machine / architecture / compiler specific
– e.g., long can have 32 or 64 bits

● With typedef we can define new types
based on existing ones:

unsigned int i=0;
i = i – 1;
// i==4294967295

typedef int Index;
Index a = 3;
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Complex Data Types
● enums: Enumeration types

Often used as an alternative to #define
● structs: User-defined compound data types

● Usage: 

enum { caps_lock = 4, num_lock = 2, scroll_lock = 1 };

struct Rectangle {
  int xp, yp;
  int width, height;
  int color;
  ...
};

Rectangle r;
r.xp = 100; r.yp = 200; r.width = 20; r.height = 40;
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Classes in C++
● A class in C++ consists of

– a declaration in a header file (e.g. keyctrl.h)

– and an implementation file (keyctrl.cc)

– (The file names and the name of the class do not have to match. It 
helps keeping the chaos level lower if they do, though.)

class Keyboard_Controller {
  ... 
};

#include "machine/keyctrl.h"
...
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Header-File Structure
● keyctrl.h excerpt:

class Keyboard_Controller {
private:
  unsigned char code; // Attributes
  unsigned char prefix;
  ... 
public:
  Keyboard_Controller (); // Constructor
  ~Keyboard_Controller (); // Destructor

  Key key_hit (); // Methods
  void reboot ();
  void set_repeat_rate (int speed, int delay);
  ...
};
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Header-File Structure
● Class definition starts with the keyword class
● Classes are always “public” (unlike in Java)
● Attributes

– (Instance) variables may be initialized at declaration (since C++11)
● Constructors/destructors

– Constructors: Called on object instantiation
– Destructors: Called on object deletion

● Method declarations
● Class definition ends with a semicolon!
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Implementation-File Structure
● #include the corresponding header file
● Class name plus scope operator “::” tell the compiler 

which class a method (or constructor/destructor) belongs to:

#include "keyctrl.h"

Keyboard_Controller::Keyboard_Controller () {
   ...
}

Keyboard_Controller::~Keyboard_Controller () {}

void Keyboard_Controller::reboot () {
   ...
}
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Pointers
● Every byte in memory assigned to an object (variable) has a 

unique address
– In bare-metal / OS development, this can also be an address where a 

specific hardware device’s internal memory or control registers are 
mapped to – for example video memory.

● Pointer: variable whose value is the memory address of a 
variable, of a data structure or of an object
– Pointers have a type, e.g. “pointer to int”
– Denoted by the * symbol, e.g.:

int a; // not a pointer
int *int_pointer; // pointer to an int variable
// Hint: Read right-to-left!
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Pointers
● Pointer content:

Value stored at the memory address the pointer points to
● Content size (in bytes): 

Depends on the assigned data type
– e.g. 1 byte for char, 2 bytes for short etc.
– Again: Sizes are architecture and compiler specific in C/C++ and not 

portable!
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Pointers
Two pointer-specific operators:

● Address operator &
– Yields the address belonging to a variable

● Dereferencing operator *
– Yields the value that is stored at the 

address the pointer “points to”
(its “content”)

int_pointer = &a;

*int_pointer = 42;
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Pointers: Example
Cast of a constant address to a 
pointer
Cast of a constant address to a 
pointer

Declaration (+definition) of a 
pointer variable CGA_START 
(pointer to char)

Declaration (+definition) of a 
pointer variable CGA_START 
(pointer to char)

Pointer arithmetic: 'pos' now 
points to the memory address that 
stores the character code for the 
character at position (x, y)

Pointer arithmetic: 'pos' now 
points to the memory address that 
stores the character code for the 
character at position (x, y)

Dereferencing: The character 
at position (x, y) gets 
overwritten by the letter ‘Q’

Dereferencing: The character 
at position (x, y) gets 
overwritten by the letter ‘Q’

char *CGA_START = (char *)0xb8000;
char *pos;
int x=20, y=20;
pos = CGA_START + 2*(x + y*80);
*pos = 'Q';
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References as Parameters
● References: Similar to pointers, often used for function 

parameters that can affect arguments at the call site

● Call by reference: We’re passing a reference to each 
variable, and the function returns a reference, too.

int& max(int& a, int& b) {
  if (a>b) return a; else return b;
}

int a=5, b=7;
max(a,b)++; // increases b by 1!
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Operator Overloading
● Operators behave depending on the data type they operate on 

(not in Java)

● Example: Operator “+”
– int, float, double variables: the usual arithmetic “add”
– std::string objects: string concatenation
– 3D vectors: vector addition

● In OOStuBS: Operator “<<”
– int values: Stored number gets “shifted left” by n bits

(e.g. 2 << 3 == 16)

– Overloaded for output streams (cf. “Hello World”):
cout << "Hello" << endl;

(Similarly: Operator “>>” for input streams)
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Operator Overloading
● Only possible for operators defined in the language

(no completely new operators)

● Supported:
– Unary operators:

– Binary operators:

+  -  *  &  ~  !  ++  --  ->  ->*

+  -  *  /  %  ^  &  |  <<  >> 
+= -= *= /= %= ^= &= |= <<= >>= 
<  <=  >  >=  ==  !=  &&  || 
,  []  () 
new  new[]  delete  delete[]
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Operator Overloading: Example
● Adding integers to a date:

The += operator updates the date object, accepting an int at 
the “right-hand side”. Calculating today in two weeks:

class tDate {
public:
        // ....
        void operator+=(int days);
};

void tDate::operator+=(int days) {
        // [… date calculation …]
}

tDate today;
today += 14;
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Systems Programming in C++
● No runtime environment available

– If you need one, you have to build one …
● Consequence: No dynamic object instantiation

– No “new”, no “delete”
– … because there’s no memory management (yet)

● For experts … that’s unavailable, too:
– Exceptions, assertions, runtime type information (RTTI)

● A wrong / uninitialized / corrupted pointer can be the end …
– The machine freezes and that’s it.
– No “segmentation violation”, no core dump
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Overview
● Development Environment
● C++ crash course (Part 1)
● CGA programming

● … and next week:
● C++ crash course (Part 2)
● Keyboard programming
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Output Stream
● Stringbuffer: put(c), flush()

– Why buffer? Reasonable buffer size?

● O_Stream: similar to C++ std::ostream
– Formatting, number output

– uses Stringbuffer::put(c)

● CGA_Stream::flush()

IO_Port CGA_Screen

machine

O_Stream

Stringbuffer

object

CGA_Stream

device

Key

Keyboard_Controller



2024-04-09 OSC: Exercise 1 29

CGA_Screen (1)
● used by CGA_Stream during flush()
● show(x,y,c,attrib)

– Character c with attribute attrib at position x/y
– Code from the C++ crash course:

– What’s missing here?

char *CGA_START = (char *)0xb8000;
char *pos;
int x = 20, y = 20;

pos = CGA_START + 2*(x + y*80);
*pos = 'Q';
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CGA_Screen (2)
physical address space

CGA video memoryCGA video memory

0x000000

0x0B8000

0x0B8FFF

Q

x=20

y=10
Q

char *CGA_START = (char *)0xb8000;
char *pos;
int x = 20, y = 20;

pos = CGA_START + 2*(x + y*80);
*pos = 'Q';

=CGA_START
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CGA_Screen (3)
● Two bytes per coordinate in video memory!
● Even addresses: ASCII code
● Odd addresses: Attribute byte

● … what happens without this line?

char *CGA_START = (char *)0xb8000;
char *pos;
int x = 20, y = 20;

pos = CGA_START + 2*(x + y*80);
*pos = 'Q';
*(pos + 1) = 0x0f; // white on black
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CGA_Screen (4)
● setpos/getpos

– Change internal state of CGA_Screen
● Current position needed in print()!

– Position the CGA cursor
● In general: Access to PC devices

– Two address spaces: Memory address space, I/O address space
– Memory: addressable directly via pointers (video memory)
– I/O: via CPU instructions in/out (inb/inw/inl; outb/outw/outl)

● OOStuBS: encapsulated in class IO_Port
– Some devices use both (e.g. CGA)
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CGA_Screen (5)
● CGA: Memory and I/O address spaces

– Video memory mapped into memory address space
– CGA registers mapped to I/O address space

● but: More registers than I/O addresses
– Multiplexing via index/data ports
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CGA_Screen (6)
● print(char *text, int length, 
      unsigned char attrib)

– Uses show() and setpos()
– Arrived at screen bottom? Scrolling! (How?)
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