
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION

Exercise 2: C++ (2), Keyboard, Interrupts
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2024-04-17 OSC: Exercise 2 2

Overview
● C++ Crash Course (Part 2)

● Lab Task #1: Keyboard

● Interrupts on x86: PIC

● Lab Task #2: Interrupt Handling

2024-04-17 OSC: Exercise 2 3

More C++ Concepts (Crash Course Part 2)
● Compiling and Linking
● Preprocessor
● Inheritance and Multiple Inheritance
● Virtual Functions

2024-04-17 OSC: Exercise 2 4

C/C++ Build Process
● Preprocessing, compilation, assembly and linkage in one

step: gcc hello1.c
– Generates file a.out

(name can be changed with parameter -o)

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("Hello World\n");
 return 0;
}

hello1.c

cpp cc1 as ld a.out
gcc

hello1.i hello1.s hello1.o

C without
macros
(gcc -E)

Assembler
code

(gcc -S)

Machine code:
Object file

(gcc -c)

2024-04-17 OSC: Exercise 2 5

Source Code – Preprocessor
● Two file extensions:

– .cc — C++ source code
– .h — „Header Files“ with definitions of data types, constants,

preprocessor macros etc.
● File extensions are only convention, variants:

– .C, .cpp, .cxx, .hpp, .hh
● The preprocessor textually “integrates” header files in .cc files

– #include directive:
● #include <iostream> for system headers
● #include "device.h" for own header files

– Modern alternative: C++20 modules

2024-04-17 OSC: Exercise 2 6

Source Code – Preprocessor
● More preprocessor functionality:

– Macros, e.g. for constants (without semicolon!)

– Conditional compilation:

● The preprocessor expands macros, integrates header-file contents,
and generates a new text file (.i) as compiler input.

#define pi 3.1415926
#define VGA_BASE 0xb8000

#ifdef DEBUG
…
#endif

#ifndef VGA_BASE
#define VGA_BASE 0xb8000
#endif

2024-04-17 OSC: Exercise 2 7

Source Code – Preprocessor
● Important use-case for #define and #ifndef:

– Header files may include other headers infinite recursion possible!→

– Preventing repeated inclusion of header files (“include guard”):

– Non-standard alternative: put #pragma once in the header file

#ifndef __cgastr_include__
#define __cgastr_include__

#include "object/o_stream.h"
#include "machine/cgascr.h"

class CGA_Stream
/* Add your code here */
{
/* Add your code here */
};
#endif

2024-04-17 OSC: Exercise 2 8

Source Code – Compiler
● Generates an object file (.o) from preprocessed source code

– Generally not directly executable: unresolved references to
functions or variables from other object files

● Checks code for syntactic and semantic correctness, may
– … abort compilation and print an error message (errors)
– … emit warnings that could be a sign of a problem
– Warnings do not abort compilation, but do not ignore them!

2024-04-17 OSC: Exercise 2 9

Source Code – Linker
● Links a set of object files (.o) and possibly libraries (.a, .so) to

an executable binary:
– Resolve references
– Sort/group object-file parts/sections in memory map of executable

● Two linking modes:
– dynamic: Libraries are loaded when starting the program, reference

resolution at start- or even at runtime (“lazy linkage”)
– static: Libraries are linked at link/build time, yielding a completely

linked “static” binary containing all external dependencies.

2024-04-17 OSC: Exercise 2 10

Single Inheritance
● Class keyboard_interrupt inherits from class interrupt
● Inheritance operator “:” (like “extends” in Java)

class interrupt {
 …
};

#include "interrupt.h"

class keyboard_interrupt : public interrupt {
public:
 keyboard_interrupt();
 ~keyboard_interrupt();
};

interrupt.h: keyboard_interrupt.h:

interrupt

keyboard_interrupt

2024-04-17 OSC: Exercise 2 11

Multiple Inheritance
● Class keyboard_interrupt inherits from

classes interrupt and keys:

interrupt

keyboard_interrupt

keys

#include "interrupt.h"

class keyboard_interrupt : public interrupt, public keys {
public:
 keyboard_interrupt();
 ~keyboard_interrupt();
};

keyboard_interrupt.h:

2024-04-17 OSC: Exercise 2 12

Virtual Functions
● Specially “marked” function of a base class (keyword: virtual)

● Derived class may override it, thereby providing a
specialized implementation for its instances
(however, this also works with non-virtual functions)

● For classes with ≥1 virtual functions, each object “knows”
from which class in the hierarchy it was instantiated

 correct function gets called in polymorphic scenarios→

● Not every function is virtual by default (unlike in Java)

2024-04-17 OSC: Exercise 2 13

Virtual Functions

● Output:

”Derived”

● without virtual in front of
void base::display():

”Base”

#include <iostream>

class base {
public:
 virtual void display() {
 cout << "Base";
 }
};

class derived : public base {
public:
 void display() {
 cout << "Derived";
 }
};

void main() {
 base *ptr = new derived;
 ptr->display();
}

2024-04-17 OSC: Exercise 2 14

Virtual Destructors
● Rule of thumb: A class with a virtual function should also

have a virtual destructor
– A non-virtual destructor does not guarantee correct destruction of

derived classes.
(If one exists anyways, this can even be interpreted such that its author didn’t intend
(and doesn’t recommend) deriving from this class.)

2024-04-17 OSC: Exercise 2 15

Overview
● C++ Crash Course (Part 2)

● Lab Task #1: Keyboard

● Interrupts on x86: PIC

● Lab Task #2: Interrupt Handling

2024-04-17 OSC: Exercise 2 16

PC Keyboard
● classic:

● modern PC: USB keyboard
– USB Legacy Support: Programming still also works via keyboard controller

(backwards compatibility)

2024-04-17 OSC: Exercise 2 17

● Each key has unique code (“Scan code”)
– 7-bit number (max. 128 keys)

● Keyboard sends additional information
– Make Code when pressing / while holding a key
– Break Code when releasing a key

Key Encoding

Representation in
applications (and in CGA
video memory!):
Character codes (ASCII)

Representation in
applications (and in CGA
video memory!):
Character codes (ASCII)

Representation
in keyboard
hardware:
Key codes

Representation
in keyboard
hardware:
Key codes

2024-04-17 OSC: Exercise 2 18

Make and Break Codes
● General system:

– Make code (key pressed) = Scan code
– Break code (key released) = Scan code + 128 (Bit 7)

● Some keys send more than one code
– e.g. function keys (F1–F12)
– … for historic reasons (XT keyboard)
– up to 3 make/break codes per key

● Built-in repeat functionality
– Hardware sends additional make codes while holding a key

➔ Decoding is cumbersome
– already implemented in OOStuBS template: bool key_decoded()

2024-04-17 OSC: Exercise 2 19

Communication with Keyboard
● Keyboard controller: two I/O ports

– Input/output register (data_port) 0x60
– Control register (ctrl_port) 0x64

data_port

ctrl_port

Keyboard_Controller set_led: LED on/off
set_speed: Repeat rate

cpu_reset: Reboot(!)
...

Make code
Break code

Keyboard controller
status

WriteRead

2024-04-17 OSC: Exercise 2 20

Keyboard-Controller Status
● Status register:

2024-04-17 OSC: Exercise 2 21

Keyboard-Controller Status – Usage

● Active keyboard polling (without interrupts):
– Wait until outb in ctrl_port is set (1)
– Read Make/Break code from data_port (clears ctrl_port.outb)

● Program keyboard (set_led, set_speed)
– Write command byte to data_port
– Keyboard replies with ACK (0xfa), need to wait for this reply (see above)

– Write data byte to data_port (LED codes, repeat rate)

– Keyboard replies with ACK, need to wait for this reply

2024-04-17 OSC: Exercise 2 22

Keyboard Programming
● set_led 0xed, <led_mask> in data_port
● set_speed 0xf3, <config_byte> in data_port

Parameter for set_led command: (led_mask)Parameter for set_led command: (led_mask)

Parameter for set_speed
command: (config_byte)
Parameter for set_speed
command: (config_byte)

2024-04-17 OSC: Exercise 2 23

Overview
● C++ Crash Course (Part 2)

● Lab Task #1: Keyboard

● Interrupts on x86: PIC

● Lab Task #2: Interrupt Handling

2024-04-17 OSC: Exercise 2 24

Hardware IRQs on x86 CPUs
● x86 CPUs up to and including i486:

only one interrupt line (INT) + one NMI line
– INT can be masked with IE bit in EFLAGS register

● cli instruction (clear interrupt enable flag) – disable interrupt handling
● sti instruction (set interrupt enable flag) – enable interrupt handling

– NMI cannot be masked in the CPU (“non-maskable interrupt”)
● … PC still allows this via CPU-external hardware …

● External controller puts IRQ number on memory bus
– PC: Programmable Interrupt Controller (PIC) 8259A
– Communication protocol between CPU and PIC 8259A

2024-04-17 OSC: Exercise 2 25

Hardware IRQ Sequence (with PIC)
PIC 8259A IDT Handler <n>CPU (i386)

<n> (8 Bit, Datenbus)

INTA-Pin

Applikation

INT-Pin

<interruption>

INTA-Pin

EOI-Befehl (konfigurationsabhängig)

IRET Befehl

<continue>

Softw
are

H
ar

dw
ar

e

2024-04-17 OSC: Exercise 2 26

PIC Cascading in the PC (15 Interrupts)

2024-04-17 OSC: Exercise 2 27

x86-64 Interrupt Descriptor Table

IDTRIDTR

● max. 256 entries
– Base address and size in IDTR

● 16 bytes per entry (“gate”)
– Task gate (Hardware tasks)
– Trap gate (Exception handler)
– Interrupt gate (Exception handler + cli)

2024-04-17 OSC: Exercise 2 28

x86 IDT: Structure
Traps Hardware/software IRQs

0 31 255

IDT

Number Description
0 Divide-by-zero
1 Debug exception
2 Non-Maskable Interrupt (NMI)
3 Breakpoint (INT 3)
4 Overflow
5 Bound exception
6 Invalid Opcode
7 FPU not available
8 Double Fault
9 Coprocessor Segment Overrun
10 Invalid TSS
11 Segment not present
12 Stack exception
13 General Protection
14 Page fault
15 Reserved
16 Floating-point error
17 Alignment Check
18 Machine Check
19-31 Reserved By Intel

– Entries 0–31 for traps (fixed)

– Trap = Exception that occurs
synchronously to control flow

● Division by 0
● Page fault
● Breakpoint
● …

– Entries 32–255 for IRQs
(configurable)

● Software (INT <number>)

● Hardware (CPU’s INT pin to HIGH,
#number on data bus)

2024-04-17 OSC: Exercise 2 29

State Saving
● When an interrupt occurs, the CPU automatically saves a

part of its state on the stack
– Active stack segment (ss)
– Stack pointer (rsp)
– Condition codes (rflags)
– Active code segment (cs)
– Return address (rip)
– For some exceptions (= “traps”): additionally an error code (8 bytes)

● Automatically saved state is restored by iretq instruction
– If handler uses other registers, it must save/restore them by itself!

rflags
cs
rip

rsp

rsp + 8

rsp + 0

rsp + 16

rsp rsp + 24

ss
rsp

rsp + 32

2024-04-17 OSC: Exercise 2 30

PIC 8259A – Internal Structure

highest

lowest

2024-04-17 OSC: Exercise 2 31

Accessing PICs via I/O Ports

Port 0x20

Port 0x21

Master

Port 0xa0

Port 0xa1

Slave

ICW1 (Commence initialization)
OCW2 (EOI, …)
OCW3 (read IRR, read ISR, …)

ICW2-4 (Initialization data)
OCW1 (= IMR)

IRR
ISR
Offset

IMR

● Each PIC has 2 ports that can be read/written
● Data that can be written: ICW1–4, OCW1–3

– ICW = Initialization Control Word – PIC initialization
– OCW = Operation Control Word – Commands during operation

● Read data depends on command
WriteRead

<like Master><like Master>

2024-04-17 OSC: Exercise 2 32

PIC Initialization – Part 1
OOStuBS setting:

00010001

Master

00010001

Slave

OOStuBS setting:

00100000

Master

00101000

Slave

=32 =40

2024-04-17 OSC: Exercise 2 33

Mapping of HW IRQs (OOStuBS)
0

255

IDT

48

32

Standard AT
IRQ mapping
Standard AT
IRQ mapping

IRQ Description

0 Programmable Interrupt Timer (PIT)

1 Keyboard

2 (PIC Cascade)

3 COM2

4 COM1

5 LPT2

6 Floppy-Disk Drive

7 LPT1 / spurious interrupt

8 CMOS Real-Time Clock

9

10

11

12 PS/2 Mouse

13 FPU / Coprocessor / Inter-Processor

14 Primary ATA HDD

15 Secondary ATA HDD

Traps

HW

un-
used

2024-04-17 OSC: Exercise 2 34

PIC Initialization – Part 2
OOStuBS setting:

00000100

Master

0000010

Slave

OOStuBS setting:

00000011

Master

00000011

Slave

IRQ 2 Slave→ ID 2

2024-04-17 OSC: Exercise 2 35

PIC Programming
Interrupt mask (IMR)

● read and write via
Port 0x21 / 0xa1

Interrupt mask (IMR)
● read and write via

Port 0x21 / 0xa1

2024-04-17 OSC: Exercise 2 36

Overview
● C++ Crash Course (Part 2)

● Lab Task #1: Keyboard

● Interrupts on x86: PIC

● Lab Task #2: Interrupt Handling

2024-04-17 OSC: Exercise 2 37

Interrupt Handler in OOStuBS
● Interrupt handling starts in guardian() function

– Parameter slot: IRQ number

– During interrupt handling, interrupts are disabled
● Can be manually re-enabled via sti (wrapped in CPU::enable_int())
● Automatically re-enabled when guardian() returns (why?)

● Actual (IRQ-specific) IRQ handlers
– are instances of class Gate
– are registered/unregistered in class Plugbox

void guardian(unsigned int slot) {
 ... // call IRQ handler (Gate object)
}

2024-04-17 OSC: Exercise 2 38

Interrupt Handler in OOStuBS

Keyboard

Keyboard_Controller

Key

CPU

PIC Plugbox

guard

Gate

Panic

device

machine

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

