
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION
Exercise 5: Tasks #4+#5, PIT, Preemption
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2024-05-29 OSC: Exercise 5 2

Agenda
● Lab Task #4: Tips & Tricks
● Lab Task #5: Overview
● PIT Programming
● Preemptive Scheduling

2024-05-29 OSC: Exercise 5 3

Agenda
● Lab Task #4: Tips & Tricks
● Lab Task #5: Overview
● PIT Programming
● Preemptive Scheduling

2024-05-29 OSC: Exercise 5 4

Dispatcher

toc

Coroutine

Application

Scheduler Entrant

Chain

Queue

...

user

machine

thread object

Lab Task #4: Overview

A cooperative
scheduler (FCFS)
A cooperative
scheduler (FCFS)

A first control-flow
abstraction
A first control-flow
abstraction

2024-05-29 OSC: Exercise 5 5

Dispatcher

toc

Coroutine

Application

Scheduler Entrant

Chain

Queue

...

user

machine

thread object

Part a) Coroutine
“Manual” coroutine switch

2024-05-29 OSC: Exercise 5 6

Cooperative Thread Switch
O

pe
ra

tin
g

Sy
st

em
Ap

pl
ic

at
io

ns <app1>

<app2>

resum
e

up
ca

ll
ap

p1

Legend Control-flow creation:
 Control-flow destruction:

explicit (re-)activation:
 implicit (re-)activation:<schedule>

<resume>

<kickoff'>

<kickoff>
re

t

re
t

up
ca

ll
ap

p2

resum
e

re
t

resum
e

re
t

2024-05-29 OSC: Exercise 5 7

toc – Coroutines for C Programs
Struct elements: void *rbx, *r12, *r13, *r14, *r15, *rbp, *rsp;

Functions
void toc_settle (struct toc* regs, void* tos,
 void (*kickoff)(void*, void*, …),
 void *coroutine);

Prepares the struct toc for the first activation.

void toc_go (struct toc* regs);

Loads the non-volatile processor registers with the contents of the struct regs.

void toc_switch (struct toc* regs_now, struct toc* regs_then);

Performs a context switch. To do this, the current register values in regs_now
must be saved and replaced by the values of regs_then.

2024-05-29 OSC: Exercise 5 8

toc – Coroutines for C Programs
Struct elements: void *rbx, *r12, *r13, *r14, *r15, *rbp, *rsp;

Functions
void toc_settle (struct toc* regs, void* tos,
 void (*kickoff)(void*, void*, …),
 void *coroutine);

Prepares the struct toc for the first activation.

void toc_go (struct toc* regs);

Loads the non-volatile processor registers with the contents of the struct regs.

void toc_switch (struct toc* regs_now, struct toc* regs_then);

Performs a context switch. To do this, the current register values in regs_now
must be saved and replaced by the values of regs_then.

Call from C++ necessitates declaration with extern "C"!Call from C++ necessitates declaration with extern "C"!

We want to initialize the stack
via tos. Is this possible with a
pointer to void?

We want to initialize the stack
via tos. Is this possible with a
pointer to void?

2024-05-29 OSC: Exercise 5 9

Coroutine
Methods
Coroutine (void* tos);

In the coroutine constructor, the register values are initialized so that the stack
pointer initially points to tos and on first activation execution begins with the
kickoff function.

void go ();

This method is used for the first activation of the first coroutine in the system.
Therefore no register values must be saved here.

void resume (Coroutine& next);

This method triggers a coroutine switch.

virtual void action () = 0;

The method action represents the actual job of the coroutine.

2024-05-29 OSC: Exercise 5 10

Dispatcher

toc

Coroutine

Application

Scheduler Entrant

Chain

Queue

...

user

machine

thread object

Part b) Dispatcher
Coroutine switch via the
dispatcher

2024-05-29 OSC: Exercise 5 11

Division of Work
● Scheduler

– Makes strategic scheduling decisions
– Considers the set of ready threads

● generally managed in a CPU waiting queue
● sorted according to scheduling strategy

– The currently running thread is always also affected by the decision
● We need to know which one that is!
● Before switching, we need to record the running thread (at the

dispatcher)
– We pass the selected, new thread to the dispatcher.

● Dispatcher
– Enforces decisions and switches between threads (with resume)

– Remembers the running thread

2024-05-29 OSC: Exercise 5 12

Dispatcher
Description

The dispatcher manages the life pointer, which indicates the currently active coroutine, and
performs process switches.

Methods

Dispatcher ()

The constructor initializes the life pointer with null to indicate that no coroutine is known
yet.

void go (Coroutine& first)

With this method the coroutine first is put in the life pointer and started.

void dispatch (Coroutine& next)

This method sets the life pointer to next and performs a coroutine switch from the old to
the new life pointer.

Coroutine* active ()

This can be used to determine which coroutine is currently in control of the processor.

2024-05-29 OSC: Exercise 5 13

Dispatcher

toc

Coroutine

Application

Scheduler Entrant

Chain

Queue

...

user

machine

thread object

Part c) Cooperative Scheduling
Coroutine switch
via the Scheduler

2024-05-29 OSC: Exercise 5 14

Entrant
Description

The class Entrant extends the class Coroutine by the possibility to be
inserted into singly linked lists, in particular also into the ready list of the
Scheduler. The linking ability is achieved by deriving from Chain.

Public Methods

Entrant (void* tos);
 The Entrant constructor passes only the tos parameter to the

Coroutine constructor.

Careful, multiple inheritance! Coroutine and Chain have
no inheritance relationship. Explicit type cast from one
to the other will result in problems!

Careful, multiple inheritance! Coroutine and Chain have
no inheritance relationship. Explicit type cast from one
to the other will result in problems!

2024-05-29 OSC: Exercise 5 15

Scheduler
Description

The scheduler manages the ready list (a private Queue member of this class), which is the list of
processes of type Entrant that are ready to run. The list is processed from front to back. New
processes, and those that yield the processor, are appended to the end of the list.

Public Methods
void ready (Entrant& that)

This method registers the process that with the scheduler. It is appended to the end of the ready list.
void schedule ()

This method starts up scheduling by removing the first process from the ready list and activating it.
void exit ()

With this method a process can terminate itself. The scheduler does not append it again to the end
of the ready list. Instead, it removes the first process from the ready list and activates it.

void kill (Entrant& that)
With this method a process can terminate another one (that). The process that is simply removed
from the ready list and is thereby never scheduled again.

void resume ()
This method allows to trigger a context switch without the calling Entrant having to know which other
Entrant objects exist in the system, and which of these should be activated. This decision is made by
the scheduler using the entries in its ready list. In this system, it shall append the currently running
process to the end of the ready list and activate the first one.

2024-05-29 OSC: Exercise 5 16

Agenda
● Lab Task #4: Tips & Tricks
● Lab Task #5: Overview
● PIT Programming
● Preemptive Scheduling

2024-05-29 OSC: Exercise 5 17

Lab Task #5: Time-Slice Scheduler
● Goal: Protect critical operating-system sections using the

prologue/epilogue model
– Synchronize activities within the OOStuBS kernel:

Globally switch to prologue/epilogue model
– Use a coarse-grained locking strategy:

Definition of a system-call interface

● Scheduler: Timer interrupts trigger thread preemption

2024-05-29 OSC: Exercise 5 18

Lab Task #5: Time-Slice Scheduler
● Implement classes

Guarded_Scheduler, Thread, PIT and Watch
● Calling guard-protected methods of the scheduler:

– global scheduler variable no longer of type Scheduler,
– but instance of class Guarded_Scheduler

2024-05-29 OSC: Exercise 5 19

Lab Task #5: Time-Slice Scheduler

Queue

Chain

Keyboard WatchScheduler Entrant

thread

Guarded_Scheduler Thread

Application

PIT

guard

device

object

Guard

Locker

syscall

application

machine

Gate

2024-05-29 OSC: Exercise 5 20

Preemptive Thread Switch
● Forced CPU yield via timer interrupt

– the interrupt is “just” an implicit call
– handler routine can call resume

Careful: In general it does not work this way, because resume
makes a scheduling decision. We need to apply interrupt
synchronization for the involved data structures!

Careful: In general it does not work this way, because resume
makes a scheduling decision. We need to apply interrupt
synchronization for the involved data structures!

<app1>

<app2>
r e

su
m

e

<handler>

<resume>

re
t

resum
e

ret

sti()

ire
t

O
pe

ra
tin

g
Sy

st
em

Ap
pl

ic
at

io
ns

2024-05-29 OSC: Exercise 5 21

Thread Switch in the Epilogue
● Implementation

– Scheduler data (list of ready threads) reside on the epilogue level
– All system functions that manipulate these data

must acquire the epilogue lock before (enter/leave)
● Create thread, terminate thread, voluntary thread switch, …

● Basic rule for thread switches:
– the yielding thread requests the lock

(e.g. implicitly in interrupt handling)

– the activated thread must release the lock
● Tips:

– Never call enter from the epilogue (double request)
– Basic rule (see above) also holds for the first thread activation(!)

2024-05-29 OSC: Exercise 5 22

Task #5: Class Guarded_Scheduler
● Implements the system-call interface for the Scheduler
● Methods directly map to those of the base class

– but their execution is protected using a Secure object
– Handles Thread instead of Entrant objects

● Public methods:
– void ready (Thread& that)

● This method registers the process that with the scheduler.
– void exit ()

● With this method a process can terminate itself.
– void kill (Thread& that)

● With this method a process can terminate another one (that).
– void resume ()

● This method allows to trigger a context switch.

2024-05-29 OSC: Exercise 5 23

Task #5: Class Guarded_Scheduler
● C++ detail:

– Because methods of Guarded_Scheduler have the same names as
those of the base class Scheduler, they hide them

– Access hidden methods: explicitly provide base-class scope when
calling a method

– Example:

Guarded_Scheduler scheduler;
Application appl1, appl2;

scheduler.ready (appl1); // Guarded_Scheduler method
scheduler.Scheduler::ready (appl2); // Scheduler method

2024-05-29 OSC: Exercise 5 24

Task #5: Class Thread
● Implements user interface of a thread
● Currently, Thread is only a new name for class Entrant …

– … this will change in Task #6.
● Public methods:

– Thread (void* tos)
● The constructor forwards the tos parameter to the constructor of base

class Entrant.

2024-05-29 OSC: Exercise 5 25

Task #5: Class PIT
● Controls the Programmable Interval Timer (PIT) of the PC
● Public methods:

– PIT (int us)

● Constructor: Timer initialization, infinite series of interrupts with a delay
of about us microseconds

● Maximum resolution: ca. 838 ns
 No fully exact microsecond value possible→

– int interval ()

● Returns which interrupt interval was configured.
– void interval (int us)

● Resets the interrupt interval.

2024-05-29 OSC: Exercise 5 26

Task #5: Class Watch
● Takes care of handling timer interrupts
● Manages time slices

and triggers process switches when necessary
● Public methods:

– Watch (int us)
● Timer initialization, see PIT

– void windup ()
● “Wind up” the clock

 → Register the Watch object with the Plugbox plugbox

 → Allow timer interrupts using the global PIC object pic

– void prologue ()
● Interrupt-handler prologue

– void epilogue ()
● Triggers the process switch.

2024-05-29 OSC: Exercise 5 27

Agenda
● Lab Task #4: Tips & Tricks
● Lab Task #5: Overview
● PIT Programming
● Preemptive Scheduling

2024-05-29 OSC: Exercise 5 28

Intel 8254 Programmable Interval Timer
● PCs have two Intel 8253 or 8254 timer chips

(nowadays integrated in the chipset)
● Clock frequency: 1.19318 MHz

– Independent of CPU frequency
– Why this weird frequency?

● 1.19318 MHz * 4 = 4.77 MHz – the original PC’s CPU frequency!
● … originally not really independent of the CPU frequency.

– Why this weird 4.77 MHz frequency for the original PC?
● 4.77 MHz * 3 = 14.31816 MHz
● … NTSC base frequency ready-to-use, cheap crystal oscillators→

2024-05-29 OSC: Exercise 5 29

8254 Structure

(from Intel’s 8254 datasheet)

2024-05-29 OSC: Exercise 5 30

8254 in the PC
● Three independent counter units

– Different uses in the PC:

● Each counter has an own output line (OUTx)

PIT Counter Usage

1 0 Periodic interrupts

1 1 Memory refresh (DRAM)

1 2 Sound generation

2 0 Fail-Safe Timer (NMI)

2 1 unused

2 2 unused

2024-05-29 OSC: Exercise 5 31

8254 in the PC
● Different uses of the channels result from output-line

wiring on the PC mainboard:
– OUT0 Int 0 of the (1→ st) PIC 8259
– OUT1 Channel 0 of the DMA Controller 8237→

– OUT2 (via a switchable gate) amplifier + speaker→

– OUT0 of the 2nd PIT NMI input line of the CPU→
● via NMI Mask Bit
● which makes “Non maskable” interrupts maskable on the PC …

2024-05-29 OSC: Exercise 5 32

Structure of an 8254 Counter

(from Intel’s 8254 datasheet)

2024-05-29 OSC: Exercise 5 33

Programming the 8254
● Each PIT can be accessed through 4 ports:

● Each port is 8 bits wide
– To write 16-bit counter values into the PIT, we – again – must use a

special procedure.

Port (PIT 1) Port (PIT 2) Register Access

0x40 0x48 Counter 0 R/W

0x41 0x49 Counter 1 R/W

0x42 0x4a Counter 2 R/W

0x43 0x4b Control
Register

W only

2024-05-29 OSC: Exercise 5 34

Programming the 8254
● Step 1: Tell the 8254 via a control word what to do next.

2024-05-29 OSC: Exercise 5 35

Programming the 8254
● Mode: determines counter operation mode, and whether it

triggers external events via its OUTx line
● Mode 0: Count down from a start value to 0

– Every 838 ns
– When the counter is 0, the OUTx line goes to “1”

● Mode 2: Suitable for generating periodic pulses
– When the counter reaches 0:

Short impulse on OUTx, automatic reinitialization with start value

● Set a 16-bit counter value: three out instructions
– Write the control word
– Write low-order byte, then high-order byte of the counter value

2024-05-29 OSC: Exercise 5 36

8254 Output Frequencies
● Counter “tick” interval: depends on base frequency

– Counter acts as a frequency divider
– e.g. initial counter value of 1: generates f = 1.19318 MHz
– e.g. initial counter value of 2: generates f = 0.59659 MHz and so on

● Default value for timer 0 on the IBM PC: 0
– PIT decreases and then compares to 0 underflow, 2→ 16 x decreases

 → f = 1.19318 MHz / 216 ≈ 18.2 Hz
– Standard interrupt frequency on the PC.

● We cannot generate arbitrary frequencies, but quite some.
– Resolution decreases with increasing frequencies

2024-05-29 OSC: Exercise 5 37

Agenda
● Lab Task #4: Tips & Tricks
● Lab Task #5: Overview
● PIT Programming
● Preemptive Scheduling

2024-05-29 OSC: Exercise 5 38

Preemptive Scheduling
● … to prevent a thread to monopolize the CPU. In OOStuBS

this is only partially true (we assume a 20 ms timer-int. frequency):
– Thread A uses the CPU for 18 ms and then voluntarily calls resume()
– Thread B continuously uses the CPU and never voluntarily yields

– If you’d like, feel free to equip your OOStuBS with real Round-Robin or
Virtual Round Robin!

20 ms period

resume() resume() resume()
Unfair! Effectively, B only gets
10% of the CPU time.
Unfair! Effectively, B only gets
10% of the CPU time.

	Slide 1
	Slide 2
	Slide 3
	OOStubs Aufgabe 4
	Aufgabenteil a: Coroutine
	Slide 6
	toc
	Slide 8
	Coroutine
	Aufgabenteil b: Dispatcher
	Slide 11
	Dispatcher
	Aufgabenteil c: Kooperatives Scheduling
	Entrant
	Scheduler
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

