TECHNISCHE
UNIVERSITAT
DRESDEN

Fakultat Informatik Institut fur Systemarchitektur, Professur fur Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION Spery. Uneratat st

Exercise 6: Task #6, Idle Loop, Non-BIl. Thread Sync

https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

TECHNISCHE
UNIVERSITAT
DRESDEN

Agenda

 |Lab Task #6

* Idle-Loop, considered harmful

* Non-Blocking Thread Synchronization

2024-06-19 OSC: Exercise 6

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Agenda

 Lab Task #6

* Idle-Loop, considered harmful

* Non-Blocking Thread Synchronization

2024-06-19 OSC: Exercise 6

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Lab Task #6: The Art of Waiting

Queue Chain
List

Scheduler Entrant Z\X object

Bellringer _\l/
Organizer Customer Waitingroom Bell Keyboard

Semaphore Buzzer

thread Zf Zﬁ meeting

Guarded_Organizer Thread Guarded_Semaphore Guarded_Buzzer Guarded_Keyboard
/ \ syscall

Application

2024-06-19

OSC: Exercise 6

device

ONVERSITAT
DRESDEN
Lab Task #6

Entrant —» Customer

- Can wait for specific events

Each event is assigned to a Waitingroom

- Threads that wait for an event are queued in its Waitingroom

- Synchronization objects are Waitingrooms and can trigger events

Scheduler - Organizer

— Can block / “put to sleep” a thread (Readylist = Waitingroom)
e block(Thread &, Waitingroom &)

- and "“wake it up” again (Waitingroom — Readylist)
« wakeup(Thread &)

Events in OOStuBS

- Semaphore V() + and other thread is waiting (in P())
— Akey was added to the keyboard buffer

— A specific amount of time has passed

2024-06-19 OSC: Exercise 6

UNIVERSITAT
DRESDEN
Synchronization Object Semaphore

* Derived from Waitingroom

* p()
- |f == 0: Wait for v() (wait)
* usingthe Organizer
— Else: decrease by 1
- v()
- If a thread is waiting: Signal the event (signal)
* Wake up waiting thread
* What happens if multiple threads are waiting?

- Else:increase by 1

2024-06-19 OSC: Exercise 6

UNIVERSITAT
DRESDEN
Synchronization Object Keyboard

* Goal: Use the CPU for other purposes while waiting for 1/0

* Thread reads from the keyboard

- Keyboard driver's getkey() returns Keys
- as long as there are some in the (software) keyboard buffer

- When keyboard buffer is empty:

* Thread blocks
* Waits for event “Keyboard buffer filled again” (wait)

- Signaling of this event (signal)
* Keyboard interrupt
* Epilogue, due to access from thread level
* Implementation

- Semaphore that counts keys in the keyboard buffer

2024-06-19 OSC: Exercise 6

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Synchronization Object Buzzer

Buzzer: an alarm clock

- With sleep() threads can block and wait until this alarm clock rings
- After a period of time specified in set ()

- the ring() method wakes up waiting threads

derived from Bell

— Has a counter

- thatis counted down with tick()

- and calls ring() when run down (run_down() == true)
Bellringer

— manages Bell objects

- regularly checks whether they have run down and rings them in this case

Implementation:

— without a detour over Semaphore

- directly with Waitingroom and Organizer (why?)

UNIVERSITAT
DRESDEN
Synchronization Objects in OOStuBS

* ... are part of the kernel state
- Keyboard and Buzzer signal events in the epilogue
* Can we also wait for events in the epilogue?
- Semaphore (why?)
* ... and therefore must reside on the epilogue level

- Guarded_Semaphore
- Guarded_Buzzer
- Guarded_Keyboard

2024-06-19 OSC: Exercise 6

TECHNISCHE
UNIVERSITAT

DRESDEN
Agenda

e Lab Task #6

* Idle-Loop, considered harmful]

* Non-Blocking Thread Synchronization

2024-06-19 OSC: Exercise 6

10

TECHNISCHE
UNIVERSITAT

DRESDEN
Idling

* All threads, except one, are waiting for an event.

* Now the last thread also blocks. What now?

- Busy waiting until one thread is ready again?
* Definitely makes sure the CPU stays warm ... ﬁﬁ
- Solution: cpu.idle() ret

* Runs, like cpu.halt(), a hlt instruction, but enables interrupts before
instead of disabling them.

* When an interrupt occurs, its handler runs, and then the CPU continues
execution after the hlt.

 ...andthen?

while (!(next=readylist.dequeue()) Unfortunately, it's
cpu.idle(); not that simple.

2024-06-19 0SC: Exercise 6 11

TECHNISCHE
UNIVERSITAT

DRESDEN
Agenda

e Lab Task #6

* Idle-Loop, considered harmful

* Non-Blocking Thread Synchronization]

2024-06-19 OSC: Exercise 6

12

TECHNISCHE
UNIVERSITAT
DRESDEN
Thread Synchronization: Assumptions

* Threads can be preempted unpredictably

- atany time (also by external events)
* interrupts

- by any other thread

* of higher, same or lower priority (progress guarantee!)
* Typical assumptions for desktop computers

- probabilistic, interactive, preemptive, online CPU scheduling

- We do not consider other scheduling variants here.

Primarily, progress guarantee is causing the trouble here.

In purely priority-driven systems with sequential thread processing within one priority level, we
can simply extend the interrupt-handling control-flow level model to thread priorities, and
synchronize with comparable mechanisms (explicit level switch, algorithmic).

(— event-driven real-time systems)

UNIVERSITAT
DRESDEN
Why all the Fuss with Threads?

* Assume we don't need “progress guarantee”

* Several application levels
- Instead of threads: one control flow per level
* Do we still need coroutines?

- What can’t we do without them?
* Example: OSEK/ AUTOSAR-OS

- Instead of semaphores or mutexes: so-called “resources”

- Synchronization without blocking

2024-06-19 OSC: Exercise 6

14

ONIVERSITAT
DRESDEN
OSEK-OS: Resource Management (1)

* Synchronization when accessing shared resources, e.g. global
variables, 1/0 devices, ...

* Avoids known issues of semaphores:

gak ‘access to semaphore S1 denied Prlorlty Inversion
— Because T4 occupies the

ded i jti j .
task T1 [P0 e i s semaphore, T2 and T3 (which
task T2 |suspended| ready running suspended have nOthing tO dO W|th the

N indi

task T3 |suspended| ready running suspended S?maphO.re.? I'ndlreCtIy delay the
higher-prioritized T1 - because T4

task T4 ’”""'"g; ready g ey holds the semaphore but cannot

semaphore S1 occupied semaphore S1 released continue running yet-
i '
Semaphore E A Deadlock
~N We have a cycle in the resource-
Task — ™ C) y

allocation graph. None of the
involved tasks runs anymore.

2024-06-19 0SC: Exercise 6 15

ONIVERSITAT
DRESDEN
OSEK-OS: Resource Management (2)

* The OSEK Priority Ceiling Protocol

- OSEK statically assigns a ceiling priority to each resource:
Maximum of the priorities of all tasks that access the resource

- When a task requests a resource, its priority is raised to the ceiling
priority. Blocking becomes impossible!

- After releasing the resource, the original priority is restored.

'GetResource' never blocks.
Consequently we cannot run
into a deadlock.

task TO| suspended | ynping suspended

-

elegise resource /release resource
|

E)?II(I;I[’-I]%/ Jfjh‘wmmﬂf?s;' ready \ runnmq
I ¢
task T1 suspeJVded ready rt.)rmfng ~ ““lrunning suspended .
; o e As long as T4 occupies the
task T2 suspen)ﬁ // ready\ running suspended resource, |t cannot be
task T3 suspended) (ready\ running preempted by T2 or T3.
- N ‘ Therefore we avoid priority
task T4 [running \ ready running . .
Inversion. 1 6

\request resource \request resource

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

