
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION
Exercise 6: Task #6, Idle Loop, Non-Bl. Thread Sync
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2024-06-19 OSC: Exercise 6 2

Agenda
● Lab Task #6

● Idle-Loop, considered harmful

● Non-Blocking Thread Synchronization

2024-06-19 OSC: Exercise 6 3

Agenda
● Lab Task #6

● Idle-Loop, considered harmful

● Non-Blocking Thread Synchronization

2024-06-19 OSC: Exercise 6 4

Lab Task #6: The Art of Waiting

Organizer Customer

Thread

Application

Guarded_Organizer

Semaphore

Waitingroom

Guarded_Keyboard

Keyboard

Buzzer

Bell

Queue Chain

List

Bellringer

Guarded_Semaphore

...

thread

Scheduler Entrant

device

syscall

user

meeting

object

Guarded_Buzzer

2024-06-19 OSC: Exercise 6 5

Lab Task #6
● Entrant → Customer

– Can wait for specific events

● Each event is assigned to a Waitingroom
– Threads that wait for an event are queued in its Waitingroom
– Synchronization objects are Waitingrooms and can trigger events

● Scheduler → Organizer

– Can block / “put to sleep” a thread (Readylist → Waitingroom)
● block(Thread &, Waitingroom &)

– and “wake it up” again (Waitingroom → Readylist)
● wakeup(Thread &)

● Events in OOStuBS
– Semaphore V() + and other thread is waiting (in P())
– A key was added to the keyboard buffer
– A specific amount of time has passed

2024-06-19 OSC: Exercise 6 6

Synchronization Object Semaphore
● Derived from Waitingroom
● p()

– If == 0: Wait for v() (wait)
● using the Organizer

– Else: decrease by 1
● v()

– If a thread is waiting: Signal the event (signal)
● Wake up waiting thread
● What happens if multiple threads are waiting?

– Else: increase by 1

2024-06-19 OSC: Exercise 6 7

Synchronization Object Keyboard
● Goal: Use the CPU for other purposes while waiting for I/O
● Thread reads from the keyboard

– Keyboard driver’s getkey() returns Keys
– as long as there are some in the (software) keyboard buffer
– When keyboard buffer is empty:

● Thread blocks
● Waits for event “Keyboard buffer filled again” (wait)

– Signaling of this event (signal)
● Keyboard interrupt
● Epilogue, due to access from thread level

● Implementation
– Semaphore that counts keys in the keyboard buffer

2024-06-19 OSC: Exercise 6 8

Synchronization Object Buzzer
● Buzzer: an alarm clock

– With sleep() threads can block and wait until this alarm clock rings
– After a period of time specified in set()
– the ring() method wakes up waiting threads

● derived from Bell
– Has a counter
– that is counted down with tick()
– and calls ring() when run down (run_down() == true)

● Bellringer

– manages Bell objects
– regularly checks whether they have run down and rings them in this case

● Implementation:
– without a detour over Semaphore
– directly with Waitingroom and Organizer (why?)

2024-06-19 OSC: Exercise 6 9

Synchronization Objects in OOStuBS
● … are part of the kernel state

– Keyboard and Buzzer signal events in the epilogue
● Can we also wait for events in the epilogue?

– Semaphore (why?)
● … and therefore must reside on the epilogue level

– Guarded_Semaphore
– Guarded_Buzzer
– Guarded_Keyboard

2024-06-19 OSC: Exercise 6 10

Agenda
● Lab Task #6

● Idle-Loop, considered harmful

● Non-Blocking Thread Synchronization

2024-06-19 OSC: Exercise 6 11

Idling
● All threads, except one, are waiting for an event.
● Now the last thread also blocks. What now?

– Busy waiting until one thread is ready again?
● Definitely makes sure the CPU stays warm …

– Solution: cpu.idle()
● Runs, like cpu.halt(), a hlt instruction, but enables interrupts before

instead of disabling them.
● When an interrupt occurs, its handler runs, and then the CPU continues

execution after the hlt.
● … and then?

while (!(next=readylist.dequeue())
 cpu.idle();

Unfortunately, it’s
not that simple.
Unfortunately, it’s
not that simple.

cpu_idle:
 sti
 hlt
 ret

2024-06-19 OSC: Exercise 6 12

Agenda
● Lab Task #6

● Idle-Loop, considered harmful

● Non-Blocking Thread Synchronization

2024-06-19 OSC: Exercise 6 13

Thread Synchronization: Assumptions
● Threads can be preempted unpredictably

– at any time (also by external events)
● interrupts

– by any other thread
● of higher, same or lower priority (progress guarantee!)

● Typical assumptions for desktop computers
– probabilistic, interactive, preemptive, online CPU scheduling
– We do not consider other scheduling variants here.

Primarily, progress guarantee is causing the trouble here.

In purely priority-driven systems with sequential thread processing within one priority level, we
can simply extend the interrupt-handling control-flow level model to thread priorities, and
synchronize with comparable mechanisms (explicit level switch, algorithmic).
(event-driven real-time systems)→

Primarily, progress guarantee is causing the trouble here.

In purely priority-driven systems with sequential thread processing within one priority level, we
can simply extend the interrupt-handling control-flow level model to thread priorities, and
synchronize with comparable mechanisms (explicit level switch, algorithmic).
(event-driven real-time systems)→

2024-06-19 OSC: Exercise 6 14

Why all the Fuss with Threads?
● Assume we don’t need “progress guarantee”
● Several application levels

– Instead of threads: one control flow per level
● Do we still need coroutines?

– What can’t we do without them?
● Example: OSEK / AUTOSAR-OS

– Instead of semaphores or mutexes: so-called “resources”
– Synchronization without blocking

2024-06-19 OSC: Exercise 6 15

OSEK-OS: Resource Management (1)
● Synchronization when accessing shared resources, e.g. global

variables, I/O devices, …
● Avoids known issues of semaphores:

Priority Inversion
Because T4 occupies the
semaphore, T2 and T3 (which
have nothing to do with the
semaphore!) indirectly delay the
higher-prioritized T1 – because T4
holds the semaphore but cannot
continue running yet.

Priority Inversion
Because T4 occupies the
semaphore, T2 and T3 (which
have nothing to do with the
semaphore!) indirectly delay the
higher-prioritized T1 – because T4
holds the semaphore but cannot
continue running yet.

Deadlock
We have a cycle in the resource-
allocation graph. None of the
involved tasks runs anymore.

Deadlock
We have a cycle in the resource-
allocation graph. None of the
involved tasks runs anymore.

CC SS DD TT EE

RR AA BB

FF UU VV

WW GG

TaskTask

SemaphoreSemaphore

2024-06-19 OSC: Exercise 6 16

OSEK-OS: Resource Management (2)
● The OSEK Priority Ceiling Protocol

– OSEK statically assigns a ceiling priority to each resource:
Maximum of the priorities of all tasks that access the resource

– When a task requests a resource, its priority is raised to the ceiling
priority. Blocking becomes impossible!

– After releasing the resource, the original priority is restored.

'GetResource' never blocks.
Consequently we cannot run
into a deadlock.

'GetResource' never blocks.
Consequently we cannot run
into a deadlock.

As long as T4 occupies the
resource, it cannot be
preempted by T2 or T3.
Therefore we avoid priority
inversion.

As long as T4 occupies the
resource, it cannot be
preempted by T2 or T3.
Therefore we avoid priority
inversion.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

