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Instruction 
cannot be 
executed

Instruction 
triggers 

voluntary 
mode switch

Device
requires attention

Terminology
● Term(s) are understood differently …

– For disambiguation, we take a technical perspective.

● System call
● Breakpoint instruction

● System call
● Breakpoint instruction

● Timer alarm
● Key pressed
● “NMI”

● Timer alarm
● Key pressed
● “NMI”

● Page fault
● Protection fault
● Division by 0

● Page fault
● Protection fault
● Division by 0

In general, we can 
distinguish three cases
In general, we can 
distinguish three cases
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Terminology: Intel IA-32
● Term(s) are understood differently …

– For disambiguation, we take a technical perspective.

Intel IA-32 architecture (x86):
exceptions and interrupts
Intel IA-32 architecture (x86):
exceptions and interrupts

software(-generated) 
interrupts
software(-generated) 
interrupts

external (hardware-
generated) interrupts
external (hardware-
generated) interrupts

(software-
generated) 
exceptions
● fault, trap, 

or abort

(software-
generated) 
exceptions
● fault, trap, 

or abort



2024-04-30 OSC: L04 Interrupts – Software 8

Instruction 
cannot be 
executed

Instruction 
triggers 

voluntary 
mode switch

Device
requires attention

Terminology: Motorola/Freescale CPU32
● Term(s) are understood differently …

– For disambiguation, we take a technical perspective.

Motorola/Freescale
CPU32 architecture (68k):
Everything is an exception

Motorola/Freescale
CPU32 architecture (68k):
Everything is an exception

instruction trap exceptioninstruction trap exception

external exception
(= interrupt)
external exception
(= interrupt)

internal 
exception
internal 
exception
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Terminology: Infineon TC1
● Term(s) are understood differently …

– For disambiguation, we take a technical perspective.

Infineon TC1 architecture (TriCore):
traps and interrupts
Infineon TC1 architecture (TriCore):
traps and interrupts

(synchronous) 
software trap
(synchronous) 
software trap

interruptinterrupt

(synchronous) 
hardware trap
(synchronous) 
hardware trap

(asynchronous) 
hardware trap
● “NMI”
●  DMA error

(asynchronous) 
hardware trap
● “NMI”
●  DMA error



2024-04-30 OSC: L04 Interrupts – Software 10

Instruction 
cannot be 
executed

Instruction 
triggers 

voluntary 
mode switch

Device
requires attention

Terminology: Literature (Stallings)
● Term(s) are understood differently …

– For disambiguation, we take a technical perspective.

William Stallings: “Operating 
Systems: Internals and Design 
Principles”

William Stallings: “Operating 
Systems: Internals and Design 
Principles”

Supervisor Call
Call to an operating system 
function

Supervisor Call
Call to an operating system 
function

Interrupt
Reaction to an asynchronous 
external event

Interrupt
Reaction to an asynchronous 
external event

Trap
Handling of 
an error or 
an exception 
condition

Trap
Handling of 
an error or 
an exception 
condition
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Terminology: Literature (Silberschatz)
● Term(s) are understood differently …

– For disambiguation, we take a technical perspective.

Silberschatz / Galvin / Gagne 
“Operating System Concepts”
Silberschatz / Galvin / Gagne 
“Operating System Concepts”

Software interrupt / trap
Call to an operating system 
function

Software interrupt / trap
Call to an operating system 
function

Interrupt
Reaction to an asynchronous 
external event

Interrupt
Reaction to an asynchronous 
external event

Exception
Handling of 
an error or 
an exception 
condition

Exception
Handling of 
an error or 
an exception 
condition
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voluntary 
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Terminology: Literature (Tanenbaum)
● Term(s) are understood differently …

– For disambiguation, we take a technical perspective.

“Interrupts are an unpleasant fact of life”“Interrupts are an unpleasant fact of life”

Andrew S. Tanenbaum: “Operating Systems 
Design and Implementation” (3rd ed., 2006)
Andrew S. Tanenbaum: “Operating Systems 
Design and Implementation” (3rd ed., 2006)
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Terminology: Understanding in OSC
● “Trap”

– Triggered by an instruction
● … including the trap or int instruction for system calls
● Undefined result (e.g. division by 0)
● Hardware problem (e.g. bus error)
● OS must do something (e.g. page fault)
● Invalid instruction (e.g. programming error)

– Properties:
● often predictable, often reproducible
● Restart or abort the triggering activity

● “Interrupt”
– Triggered by hardware

● Hardware requires attention by software
(Timer, Keyboard controller, Hard-disk controller, …)

– Properties
● not predictable, not reproducible
● Usually resume the interrupted activity

Instruction 
cannot be 
executed

Instruction 
triggers 

voluntary 
mode switch

Device
requires attention
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Basic Assumptions
In the discussion on interrupt handling, we assume the 
following:

1. The CPU automatically starts the handler routine.
2. Interrupt handling takes place in supervisor mode.
3. The interrupted program can be resumed.
4. Machine instructions are atomic.
5. Interrupt handling can be disabled/suppressed.
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Assumption: Handler Routine
1. The CPU automatically starts the handler routine.

● Necessitates dispatch to a handler
● Determine which device triggered the interrupt

Handler Interrupt 1

Handler Interrupt 2

Handler Interrupt 3

Vector table

M
ai

n 
M

em
or

y

Variants:
● Register contains vector-table 

start address
● Table entries contain code
● Programmable “event controller” 

handles interrupt in hardware
● Table contains descriptors
● Handler routine has own process 

context

Variants:
● Register contains vector-table 

start address
● Table entries contain code
● Programmable “event controller” 

handles interrupt in hardware
● Table contains descriptors
● Handler routine has own process 

context
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Assumption: Supervisor mode
2. Interrupt handling takes place in supervisor mode.

● Interrupts are the only mechanism to preempt non-
cooperative applications.

● Only the OS may access devices without restrictions.
– Before interrupt handling, the CPU switches to the privileged 

supervisor mode.

Variants:
● For 16-bit CPUs, a subdivision into user and supervisor 

mode is rather the exception.
● For 8-bit CPUs (or smaller) this subdivision does not exist.

Variants:
● For 16-bit CPUs, a subdivision into user and supervisor 

mode is rather the exception.
● For 8-bit CPUs (or smaller) this subdivision does not exist.
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Assumption: State Save
3. The interrupted program can be resumed.

● necessary state is automatically saved
● possibly nested, requires a stack

Variants:
● More information 

on cause/trigger 
on the stack

● No priorities
● Special “interrupt 

stack”
● State save in 

registers

Variants:
● More information 

on cause/trigger 
on the stack

● No priorities
● Special “interrupt 

stack”
● State save in 

registers

St ack grow
th

Level 2

Level 1

PC0

SR0

Level 5

PC2

SR2

RTE RTE

PC0

SR0

PC0

SR0

Level 1delayed

PC0

SR0

RTE



2024-04-30 OSC: L04 Interrupts – Software 18

Assumption: Atomic Behavior
4. Machine instructions are atomic.

● Defined CPU state when handler routine starts
● State restorable

● Trivial for CPUs with classic von Neumann (fetch-decode-execute) 
cycle

● Nontrivial for modern CPUs:
– Pipelining: Instructions must be flushed (thrown away)

– Superscalar CPUs: Must leave pipeline in well-defined state
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Assumption: Atomic Behavior
4. Machine instructions are atomic.

Instruction execution in superscalar CPUs:
(strongly simplified!)

fetch decode dispatch execute

execute

execute

commit

Ideally, all stages are always in use, i.e. multiple instructions are 
executed in parallel. When should we check whether an IRQ has 
been issued?

Ideally, all stages are always in use, i.e. multiple instructions are 
executed in parallel. When should we check whether an IRQ has 
been issued?
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Assumption: Atomic Behavior
4. Machine instructions are atomic.

● Although nontrivial, most CPUs implement precise interrupts:
– „All instructions preceding the instruction indicated by the saved program counter 

have been executed and have modified the process state correctly.“
– „All instructions following the instruction indicated by the saved program counter 

are unexecuted and have not modified the process state.“
– „If the interrupt is caused by an exception condition raised by an instruction in 

the program, the saved program counter points to the interrupted instruction. 
The interrupted instruction may or may not have been executed, depending on the 
definition of the architecture and the cause of the interrupt. Whichever is the case, 
the interrupted instruction has either completed, or has not started execution.“

J. E. Smith and A. R. Pleszkun,
„Implementing Precise Interrupts in Pipelined Processors“,

IEEE Transactions on Computers, Vol. 37, No. 5, 1988
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Assumption: Interrupt Suppression
5. Interrupt handling can be disabled/suppressed.

● Examples:
– Motorola 680x0: according to priority
– Intel x86: globally with sti, cli
– Interrupt Controller: each source individually

● Additionally: Automatic suppression by the CPU before 
starting the handler routine
– Interrupts not predictable (theoretically arbitrarily frequent!)

– Without this automatism, a stack overflow would be possible
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Assumption: Interrupt Suppression
5. Interrupt handling can be disabled/suppressed.

● The hardware suppresses …
– across the board all interrupts (very restrictive)

– interrupts with lower or same priority (less restrictive)

● preference for particular devices

● Further alternatives based on software, e.g. in Linux:
– Suppress interrupts that are currently being handled

● low reaction latency without preference for individual devices
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Overview
● Terminology and Assumptions
● Saving State
● Modifying State
● Synchronization Techniques
● Summary
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Saving State
● A computer’s state is large:

– All CPU registers
● Instruction pointer, stack pointer, general-purpose registers, status register, …

– Main-memory contents, caches
– I/O registers / ports, hard-disk contents, …

● Any state the interrupted program
does not expect to asynchronously change …
– must not be modified in an interrupt handler

or
– must be saved, and restored afterwards.

● Depending on its architecture/type, the CPU automatically saves …
– a minimum number of bytes (e.g., only instruction pointer and status register)

or
– all registers
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State-Saving Concepts
● Total save

– Handler routine saves all registers that were not automatically saved
– probably saves too much
+ saved state easily accessible (one coherent data structure)

● Partial save
– Handler only saves registers that 1) are modified in the interrupt 

handler* 
and 2) are not saved/restored by other parts of the handler*

(*) or the functions it calls directly or indirectly
– Feasible if actual handler is implemented in a high-level language, e.g. 

C/C++
+ only state that actually gets modified is saved/restored
+ possibly less instructions for save/restore necessary
– saved state is “scattered” (not in one place, hard to access)
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Transition to High-Level Language
● Minimize non-portable machine code
● Do actual interrupt handling in high-level language function

Interrupted
program

State save
(partial/total)

State restore

Call

Return

Wrapper
function

automatic save

arbitrary High-level language

actual
handler

(saves used
“non-volatile”

registers)

js
r

rts

Interrupt
handler
routine

restorerte

Programming
language: Assembly!
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Transition to High-Level Language
● Minimize non-portable machine code
● Do actual interrupt handling in high-level language function

Interrupted
program

State save
(partial/total)

State restore

Call

Return

Wrapper
function

automatic save

arbitrary High-level language

actual
handler

(saves used
“non-volatile”

registers)

js
r

rts

Interrupt
handler
routine

restorerte

Programming
language: Assembly!

Example: MC680x0

Total save:
moveml d0-d7/a0-a6,sp@-
...
moveml sp@+,d0-d7/a0-a6

Partial save:
moveml d0-d1/a0-a1,sp@-
...
moveml sp@+,d0-d1/a0-a1
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Excursus: Volatile and Non-Volatile Registers
● Partitioning of CPU registers relevant for the (C/C++) compiler in the 

context of function calls
– non-volatile (aka callee-saved) registers

● Compiler guarantees that the stored value is conserved across function calls
● Callee (=called function) is responsible: If it uses the register, it saves/restores 

value.
– volatile (aka caller-saved or scratch) registers

● If the caller (=calling function) still needs the value after a function call, it must 
save/restore the register itself.

● Usually used for intermediate results
● Usually defined in a standard all compilers adhere to (why?)

– e.g. x86-64 (“System V AMD64 ABI”):
● non-volatile: rbx, rbp, r12-r15
● all others are volatile: rax, rcx, rdx, rdi, rsi, r8-r11, eflags, FPU/SSE registers, 

…
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Restoring State
● As its last duty, wrapper must restore saved register contents

– … and must not again modify them afterwards!
● A special instruction, e.g. rte (68k) or iret (x86-64) completes 

the restore procedure:
– Reads automatically saved state from supervisor stack
– Sets the saved CPU mode (user/supervisor), jumps to saved address

The OS can modify saved state before rte/iret. 
This is useful for running OS code in user mode.
The OS can modify saved state before rte/iret. 
This is useful for running OS code in user mode.
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Overview
● Terminology and Assumptions
● Saving State
● Modifying State
● Synchronization Techniques
● Summary
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State Modifications …
● are the main purpose of interrupt handling, e.g.

– Inform device driver about completed I/O operation
– Notify scheduler that time slice has run out

● must be performed with care:
– Interrupts can occur at any time
– critical: Data/data structures shared between regular control flow 

and interrupt handling
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Example 1: System Time
● Timer interrupt is used to increment global system time

– e.g. once per second
● An application can read the system time using the OS 

function time()

/* Read current time */
time_t time () {
  return global_time;
}

/* global var. with current time */
extern volatile time_t global_time;

/* Interrupt handler */
void timerHandler () {
  global_time++;
}
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Example 1: System Time
● Here, a possible bug is hiding in plain sight …

– Reading global_time is not necessarily an atomic operation!

● Critical: Interrupt between the two read instructions for the 
16-bit CPU

; time() on a 32-bit CPU
mov global_time, %eax

; 16-bit CPU (little endian)
mov global_time, %r0   ; lo
mov global_time+2, %r1 ; hi

global_time
hi / lo

Result
r1 / r0Instruction

002A?

mov global_time, %r0

FFFF ? ?

002A FFFF ? FFFF

   /* Increment */ 002B 0000 ? FFFF

mov global_time+2, %r1 002B 0000 002B FFFF
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Example 1: System Time
● Here, a possible bug is hiding in plain sight …

– Reading global_time is not necessarily an atomic operation!

● Critical: Interrupt between the two read instructions for the 
16-bit CPU

; time() on a 32-bit CPU
mov global_time, %eax

; 16-bit CPU (little endian)
mov global_time, %r0   ; lo
mov global_time+2, %r1 ; hi

global_time
hi / lo

Result
r1 / r0Instruction

002A?

mov global_time, %r0

FFFF ? ?

002A FFFF ? FFFF

   /* Increment */ 002B 0000 ? FFFF

mov global_time+2, %r1 002B 0000 002B FFFF

Problem

Every 18.2 hours, the system time can 
appear to be 18.2 hours ahead (for a short 
moment). Unfortunately, this is not reliably 
reproducible.
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Example 2: Ring Buffer
● Interrupts were introduced to avoid busy waiting for input

– While an application is doing meaningful work, the interrupt handler 
can store input in a buffer.

Do meaningful
work

Handle
input

time for a break
[buffer not empty]

Read input
from device

Store input
in buffer

[buffer not full]
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Example 2: Ring Buffer
● Interrupts were introduced to avoid busy waiting for input

– While an application is doing meaningful work, the interrupt handler 
can store input in a buffer.

Do meaningful
work

Handle
input

time for a break
[buffer not empty]

Read input
from device

Store input
in buffer

[buffer not full]

Problem #1:

If input is not handled/consumed fast 
enough, the buffer can fill up. The interrupt 
handler routine cannot store further input 
there. This input is lost.
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Example 2: Ring Buffer
Problem #2: The buffer implementation itself is critical …
// Bounded ring buffer in C++
class BoundedBuffer {
  char buf[SIZE]; int occupied; int nextin, nextout;
public:
  BoundedBuffer(): occupied(0), nextin(0), nextout(0) {}
  void produce(char data) {       // Interrupt handler:
    int elements = occupied;      // Local copy of element counter
    if (elements == SIZE) return; // Full? Drop this element.
    buf[nextin] = data;           // Write element
    nextin++; nextin %= SIZE;     // Advance write index
    occupied = elements + 1;      // Increase element counter
  }
  char consume() {                // Regular control flow:
    int elements = occupied;      // Local copy of element counter
    if (elements == 0) return 0;  // Buffer empty, no result
    char result = buf[nextout];   // Read element
    nextout++; nextout %= SIZE;   // Advance read index
    occupied = elements – 1;      // Decrease element counter
    return result;                // Return result
} };
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StateExecution

  char consume() {
    int elements = occupied; // 1
    if (elements == 0) return 0;
    char result = buf[nextout]; // 'a' 
    nextout++; nextout %= SIZE;

  void produce(char data) { // 'b'
    int elements = occupied; // 1!
    if (elements == SIZE) return;
    buf[nextin] = data;
    nextin++; nextin %= SIZE;
    occupied = elements + 1; // 2
  }

    occupied = elements – 1; // 0
    return result; // 'a'
  }

'a' ? ?
buf

1 01

[0] [1] [2] nextin nextoutocc.

'a' ? ?
buf

1 11

[0] [1] [2] nextin nextoutocc.

'a' 'b' ?
buf

2 12
[0] [1] [2] nextin nextoutocc.

'a' 'b' ? 2 10

Example 2: Ring Buffer

buf [0] [1] [2] nextin nextoutocc.
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StateExecution

  char consume() {
    int elements = occupied; // 1
    if (elements == 0) return 0;
    char result = buf[nextout]; // 'a' 
    nextout++; nextout %= SIZE;

  void produce(char data) { // 'b'
    int elements = occupied; // 1!
    if (elements == SIZE) return;
    buf[nextin] = data;
    nextin++; nextin %= SIZE;
    occupied = elements + 1; // 2
  }

    occupied = elements – 1; // 0
    return result; // 'a'
  }

'a' ? ?
buf

1 01

[0] [1] [2] nextin nextoutocc.

'a' ? ?
buf

1 11

[0] [1] [2] nextin nextoutocc.

'a' 'b' ?
buf

2 12
[0] [1] [2] nextin nextoutocc.

'a' 'b' ? 2 10

Example 2: Ring Buffer

buf [0] [1] [2] nextin nextoutocc.

Problem #2: Result

In the next call to consume(), occupied has 
a value of 0. The function does not return a 
result. The data structure is in an 
inconsistent state.
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State Modification: Analysis
● Even single variable assignments are not necessarily atomic.

– Depends on CPU type, compiler, code optimizations
● Buffer memory is finite

– Handler routine cannot wait! (Why?)

– Data might get lost
● Buffer data structure can “break”, caused by …

– inconsistent intermediate states during modifications 
by regular control flow

– state modifications while reading (inconsistent copy!)

– modifications based on a copy that does not correspond to original anymore
● The problem is not symmetric:

– Regular control flow does not “interrupt” the interrupt handler
– We can exploit this fact!
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Overview
● Terminology and Assumptions
● Saving State
● Modifying State
● Synchronization Techniques
● Summary
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“Hard” Synchronization
● By suppressing interrupts, we can avoid race conditions.

– Operations on shared data are made atomic this way.

● Problems:
– Hazard of losing interrupt requests
– High and difficult to predict “interrupt latency”

  char consume() {                // Regular control flow:
    disable_interrupts();         // Inhibit interrupts
    int elements = occupied;      // Local copy of element ctr
    if (elements == 0) return 0;  // Buffer empty, no results
    char result = buf[nextout];   // Read element
    nextout++; nextout %= SIZE;   // Advance read index
    occupied = elements – 1;      // Decrease element counter
    enable_interrupts();          // Allow interrupts
    return result;                // Return result
}
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More Techniques in the next Lecture
● “Smart” (optimistic) solutions

– Clever data-structure choice
● as few as possible shared elements
● work with weak consistency conditions

– Optimistic approach
● Usually we aren’t interrupted in the critical section
● However, if we are, examine the damage and repair
● Potentially repeat/restart the operation

● Prologue/epilogue model
– Partition the interrupt handler in two phases

● Delay the critical part by a software mechanism
● Low-latency reaction still possible
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Overview
● Terminology and Assumptions
● Saving State
● Modifying State
● Synchronization Techniques
● Summary



2024-04-30 OSC: L04 Interrupts – Software 45

Summary
● Correct interrupt handling is one of the hardest tasks in 

operating-system construction
– Source of non-determinism

● … both a blessing and a curse!

– State save on register level
● Assembly programming!
● Dependence on compiler (e.g. volatile/non-volatile registers)

– Different models (priorities etc.)
● State modifications in an interrupt handler must be well-

considered
– Protect critical sections
– Hard to debug (not reliably reproducible!)
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