
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION

Interrupts – Synchronization
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2024-05-07 OSC: L05 Interrupts – Synchronization 2

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Interrupt
handling

Inter-process
communication

Control-flow
abstraction

Interrupt
synchronization

Process management

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

2024-05-07 OSC: L05 Interrupts – Synchronization 3

Interrupt
handling

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Inter-process
communication

Control-flow
abstraction

Process management

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

Topic of today’s lectureTopic of today’s lecture

Interrupt
synchronization

2024-05-07 OSC: L05 Interrupts – Synchronization 4

Agenda
● Recapitulation
● Control-Flow Level Model
● Hard Synchronization
● Nonblocking Synchronization
● Synchronization with the Prologue/Epilogue Model
● Summary

2024-05-07 OSC: L05 Interrupts – Synchronization 5

Agenda
● Recapitulation
● Control-Flow Level Model
● Hard Synchronization
● Nonblocking Synchronization
● Synchronization with the Prologue/Epilogue Model
● Summary

2024-05-07 OSC: L05 Interrupts – Synchronization 6

Motivation: Consistency Issues
Examples from the previous lectureExamples from the previous lecture

2024-05-07 OSC: L05 Interrupts – Synchronization 7

First Approach

OS kernel
consume()

main()

handler()

produce()

buf[...]

Application control flow (A)

Interrupt handler (IH)

● One-sided synchronization
– Suppress interrupts on the consumer side
– Operations disable_interrupts() / enable_interrupts()

(in the following without loss of generality in “Intel” speak: cli() / sti())

char consume() {
 cli();
 ...
 char result = buf[nextout++];
 ...
 sti();
 return result;
}

void produce(char data) {
 // nothing to do here
 ...
 buf[nextin++] = data;
 ...
 // nothing to do here
}

It works with one-sided
synchronization …

(why?)

It works with one-sided
synchronization …

(why?)

2024-05-07 OSC: L05 Interrupts – Synchronization 8

First Conclusions
● Ensuring consistency between an application control flow (A)

and an interrupt handler (IH) works differently than between
processes.

● Relationship between A and IH is asymmetric
– “Different kinds” of control flows
– IH interrupts A

● implicitly, at an arbitrary point
● always higher priority, runs to completion

– A can suppress IH (better: delay)
● explicitly, with cli / sti (assumption #5 from previous lecture)

● Synchronization / maintenance of consistency is one-sided

We must take these facts into account!
(This also means: We can exploit them.)
We must take these facts into account!
(This also means: We can exploit them.)

2024-05-07 OSC: L05 Interrupts – Synchronization 9

Agenda
● Recapitulation
● Control-Flow Level Model
● Hard Synchronization
● Nonblocking Synchronization
● Synchronization with the Prologue/Epilogue Model
● Summary

2024-05-07 OSC: L05 Interrupts – Synchronization 10

● Be L0 the application control-flow level (A)
– Control flows on this level are

interruptible at any time (by L1 control flows, implicitly)
● Be L1 the interrupt handling level (IH)

– Control flows on this level are
not interruptible (by other L0/1 control flows)

– L1 control flows have priority over L0 control flows

L1
(not interruptible)

L0
(interruptible)

Control-Flow Level Model

in
te

rr
up

ts
 (i

m
pl

ic
itl

y)

in
te

rr
up

ts

in
te

rr
up

ts

2024-05-07 OSC: L05 Interrupts – Synchronization 11

Control-Flow Level Model
● Control flows of the same level are sequentialized

– If multiple control flows on one level are ready, they are
executed sequentially (run-to-completion)

● Consequence: max. 1 control flow active on each level
– Arbitrary sequentialization strategy

● FIFO, LIFO, with priorities, random, …
● For L1 control flows on the PC, the PIC implements this strategy.

L1
(not interruptible)

L0
(interruptible)

in
te

rr
up

ts
 (i

m
pl

ic
itl

y)

in
te

rr
up

ts

2024-05-07 OSC: L05 Interrupts – Synchronization 12

● Control flows can switch levels
– With cli an L0 control flow explicitly switches to L1

● from then on no longer interruptible
● other L1 control flows are delayed (sequentialization)→

– With sti an L1 control flow explicitly switches to L0
● from then on interruptible (again)
● delayed/pending L1 control flows get their turn now (sequentialization)→

Control-Flow Level Model

L1
(not interruptible)

L0
(interruptible)

in
te

rr
up

ts
 (i

m
pl

ic
itl

y)

in
te

rr
up

ts

in
te

rr
up

ts

cli sti

de
la

ys

ca
n

de
la

y
(e

xp
lic

itl
y)

2024-05-07 OSC: L05 Interrupts – Synchronization 13

● Generalization to multiple interrupt levels:
– Control flows on Lf are

● interrupted anytime by control flows on Lg (for f < g)
● never interrupted by control flows on Le (for e ≤ f)
● sequentialized with other control flows on Lf

– Control flows can switch levels
● by special operations (here: modifying the status register)

Control-Flow Level Model

L2
(not interruptible)

L1
(interruptible by L2)

L0
(interruptible by L1 and L2)

in
te

rr
up

ts
 (i

m
pl

ic
itl

y)

in
te

rr
.

in
te

rr
up

ts

SR.irql=1 SR.irql=0

ka
nn

 v
er

zö
ge

rn
 (e

xp
liz

it)
ca

n
de

la
y

(e
xp

lic
itl

y)

2024-05-07 OSC: L05 Interrupts – Synchronization 14

Control-flow Levels: Maintaining Consistency
● Each state variable is (logically) assigned

to exactly one level Lf

– Accesses from Lf implicitly consistent (sequentialization)→
– For accesses from higher/lower levels, we must

explicitly maintain consistency
● Measures for maintaining consistency:

– “from above” (from Le with e < f) with hard synchronization
● explicitly switch to Lf for the access (delay)
● Thereby, the access comes from the same level. (sequentialization)→

– “from below” (from Lg with f < g) with nonblocking synchronization
● make sure algorithmically that interrupts do not endanger consistency
● necessitates interrupt-transparent algorithms

2024-05-07 OSC: L05 Interrupts – Synchronization 15

Agenda
● Recapitulation
● Control-Flow Level Model
● Hard Synchronization
● Nonblocking Synchronization
● Synchronization with the Prologue/Epilogue Model
● Summary

2024-05-07 OSC: L05 Interrupts – Synchronization 16

Bounded Buffer – Hard Synchronization
char consume() {
 cli();
 ...
 char result = buf[nextout++];
 ...
 sti();
 return result;
}

void produce(char data) {
 // nothing to do here
 ...
 buf[nextin++] = data;
 ...
 // nothing to do here
}

Access “from a higher layer”
is synchronized hard.
(For the execution of consume(), the
control flow switches to L1.)

Access “from a higher layer”
is synchronized hard.
(For the execution of consume(), the
control flow switches to L1.)

State (logically)
resides on L1.
State (logically)
resides on L1.L1

L0

in
te

rr
up

ts
cli sti

de
la

ys
consume()

produce()

buf[...]

2024-05-07 OSC: L05 Interrupts – Synchronization 17

Hard Synchronization: Assessment
● Advantages:

– Maintains consistency
● also for complex data structures and access patterns
● We’re (largely) independent from what our compiler does.

– Simple to use (for the developer), always works
● In doubt, put all state in the highest-priority level.

● Disadvantages:
– Broadband effect

● Across-the-board all interrupt handlers (control flows) on and below the state level are
delayed.

– Priority violation
● We delay control flows with a higher priority.

– Pessimism
● We put up with disadvantages although the probability of a relevant interrupt is tiny.

2024-05-07 OSC: L05 Interrupts – Synchronization 18

Hard Synchronization: Assessment
● Whether disadvantages become significant depends on the

delays’
– frequency,
– mean duration, and
– maximum duration.

● Maximum duration is the most critical one:
– directly influences the (to be expected) latency
– Latency too high data can get lost→

● Interrupts aren’t noticed
● Data is picked up too slowly from I/O devices

Conclusion: Hard synchronization is rather unsuitable
for maintaining consistency of complex data structures.
Conclusion: Hard synchronization is rather unsuitable
for maintaining consistency of complex data structures.

2024-05-07 OSC: L05 Interrupts – Synchronization 19

Agenda
● Recapitulation
● Control-Flow Level Model
● Hard Synchronization
● Nonblocking Synchronization
● Synchronization with the Prologue/Epilogue Model
● Summary

2024-05-07 OSC: L05 Interrupts – Synchronization 20

Bounded Buffer – Nonblocking Sync.
void produce(char data) {

}

char consume() {

}

Access “from a lower layer” is
synchronized in a nonblocking
manner.
(consume() yields a correct result even
if during its execution produce() was
executed.)

Access “from a lower layer” is
synchronized in a nonblocking
manner.
(consume() yields a correct result even
if during its execution produce() was
executed.)

State (logically)
resides on L0.
State (logically)
resides on L0. ?

?

L1

L0

in
te

rr
up

ts

produce()

consume()

buf[...]

2024-05-07 OSC: L05 Interrupts – Synchronization 21

Bounded Buffer – Nonblocking Sync.
● Consistency condition:

– The result of an interrupted execution must be equivalent to an
arbitrary sequential execution of the operations

● either consume() before produce() or consume() after produce()

● Assumptions:
– produce() interrupts consume()

● all other combinations
do not occur

– produce() always runs
to completion

L1

L0

in
te

rr
up

ts

produce()

consume()

buf[...]

2024-05-07 OSC: L05 Interrupts – Synchronization 22

Bounded Buffer – Code from previous lecture
● Shared state is critical

// Bounded ring buffer in C++
class BoundedBuffer {
 char buf[SIZE]; int occupied; int nextin, nextout;
public:
 BoundedBuffer(): occupied(0), nextin(0), nextout(0) {}
 void produce(char data) { // Interrupt handler:
 int elements = occupied; // Local copy of element counter
 if (elements == SIZE) return; // Full? Drop this element.
 buf[nextin] = data; // Write element
 nextin++; nextin %= SIZE; // Advance write index
 occupied = elements + 1; // Increase element counter
 }
 char consume() { // Regular control flow:
 int elements = occupied; // Local copy of element counter
 if (elements == 0) return 0; // Buffer empty, no result
 char result = buf[nextout]; // Read element
 nextout++; nextout %= SIZE; // Advance read index
 occupied = elements – 1; // Decrease element counter
 return result; // Return result
} };

2024-05-07 OSC: L05 Interrupts – Synchronization 23

Bounded Buffer – Code from previous lecture
● Shared state is critical

// Bounded ring buffer in C++
class BoundedBuffer {
 char buf[SIZE]; int occupied; int nextin, nextout;
public:
 BoundedBuffer(): occupied(0), nextin(0), nextout(0) {}
 void produce(char data) { // Interrupt handler:
 int elements = occupied; // Local copy of element counter
 if (elements == SIZE) return; // Full? Drop this element.
 buf[nextin] = data; // Write element
 nextin++; nextin %= SIZE; // Advance write index
 occupied = elements + 1; // Increase element counter
 }
 char consume() { // Regular control flow:
 int elements = occupied; // Local copy of element counter
 if (elements == 0) return 0; // Buffer empty, no result
 char result = buf[nextout]; // Read element
 nextout++; nextout %= SIZE; // Advance read index
 occupied = elements – 1; // Decrease element counter
 return result; // Return result
} };

Especially state that
both sides write.
Especially state that
both sides write.

2024-05-07 OSC: L05 Interrupts – Synchronization 24

// Bounded ring buffer in C++ (alternative)
class BoundedBuffer {
 char buf[SIZE]; int nextin, nextout;
public:
 BoundedBuffer(): nextin(0), nextout(0) {}
 void produce(char data) {

 if ((nextin + 1) % SIZE == nextout) return;
 buf[nextin] = data;
 nextin = (nextin + 1) % SIZE;

 }
 char consume() {

 if (nextout == nextin) return 0;
 char result = buf[nextout];
 nextout = (nextout + 1) % SIZE;

 return result;
} };

Bounded Buffer – New Code
This implementation
alternative goes
without shared
state written by
both sides.

This implementation
alternative goes
without shared
state written by
both sides.

2024-05-07 OSC: L05 Interrupts – Synchronization 25

// Bounded ring buffer in C++ (alternative)
class BoundedBuffer {
 char buf[SIZE]; int nextin, nextout;
public:
 BoundedBuffer(): nextin(0), nextout(0) {}
 void produce(char data) {

 if ((nextin + 1) % SIZE == nextout) return;
 buf[nextin] = data;
 nextin = (nextin + 1) % SIZE;

 }
 char consume() {

 if (nextout == nextin) return 0;
 char result = buf[nextout];
 nextout = (nextout + 1) % SIZE;

 return result;
} };

Bounded Buffer – New Code
However, now we
have state that is read
by one side and
written by the other.

However, now we
have state that is read
by one side and
written by the other.

This is where we must check
whether the consistency
condition holds.

This is where we must check
whether the consistency
condition holds.

2024-05-07 OSC: L05 Interrupts – Synchronization 26

Bounded Buffer – Code Analysis
● Assuming the interrupt in consume() occurs …

– as seen from consume()
● before reading nextin
● after reading nextin

– as seen from produce()
● before writing nextout
● after writing nextout

char consume() {
 if (nextout == nextin) return 0;
 char result = buf[nextout];
 nextout = (nextout + 1) % SIZE;
 return result;
} void produce(char data) {

 if ((nextin + 1) % SIZE == nextout) return;
 buf[nextin] = data;
 nextin = (nextin + 1) % SIZE;
}

✔
✔

✔
✔

In all four cases, the
consistency condition holds.
In all four cases, the
consistency condition holds.

 produce() before consume()

 produce() before consume()

 consume() before produce()

 consume() before produce()

2024-05-07 OSC: L05 Interrupts – Synchronization 27

System Time – Code from last lecture

g++ (16-bit architecture)

Problem: Data are
not read atomically
Problem: Data are
not read atomically

/* Read current time */
time_t time () {
 return global_time;
}

/* global var. with current time */
extern volatile time_t global_time;

/* Interrupt handler */
void timerHandler () {
 global_time++;
}

time:
 mov global_time, %r0; lo
 mov global_time+2, %r1; hi
 ret

2024-05-07 OSC: L05 Interrupts – Synchronization 28

● Consistency condition:
– The result of an interrupted execution must be equivalent to an arbitrary

sequential execution of the operations
● either time() before timerHandler() or vice versa

● Assumptions:
– timerHandler() interrupts time()

● all other combinations do not occur
– timerHandler() always runs to completion

● Approach: Implement time() optimistically
1. Read data assuming we are not interrupted

2. Check whether assumption was correct (were we interrupted?)

3. If interrupted, restart at step 1

System Time – Nonblocking Sync.

2024-05-07 OSC: L05 Interrupts – Synchronization 29

/* global var. with current time */
extern volatile time_t global_time;
extern volatile bool interrupted;

/* Interrupt handler */
void timerHandler () {
 interrupted = true;
 global_time++;
}

System Time – New Implementation

/* Read current time */
time_t time () {
 time_t res;
 do {
 interrupted = false;
 res = global_time;
 } while (interrupted);
 return res;
} Consistency condition

now holds in any case.
Consistency condition
now holds in any case.

2024-05-07 OSC: L05 Interrupts – Synchronization 30

Nonblocking Sync.: Assessment
● Advantages:

– Maintains consistency (by interrupt transparency)

– No priority violations (interrupts stay enabled!)

– No cost, or only in the (rare) conflict situation
● no cost bounded-buffer example→

● in the conflict situation optimistic approaches, system-time example→
(additional cost by restarting)

● Disadvantages:
– Complexity

● If we find an algorithm at all, it’s usually hard to understand and even harder to verify.

– Constraints
● Tiny code changes can ruin the consistency guarantee.
● Compiler’s code generation must be taken into account.

– Predictability
● Costs for restart unpredictable for large amounts of data.

2024-05-07 OSC: L05 Interrupts – Synchronization 31

Nonblocking Sync.: Assessment
● Advantages:

– Maintains consistency (by interrupt transparency)

– No priority violations (interrupts stay enabled!)

– No cost, or only in the (rare) conflict situation
● no cost bounded-buffer example→

● in the conflict situation optimistic approaches, system-time example→
(additional cost by restarting)

● Disadvantages:
– Complexity

● If we find an algorithm at all, it’s usually hard to understand and even harder to verify.

– Constraints
● Tiny code changes can ruin the consistency guarantee.
● Compiler’s code generation must be taken into account.

– Predictability
● Costs for restart unpredictable for large amounts of data.

Conclusion:

Nonblocking synchronization is neat. However, the involved
algorithms are special solutions for special cases.

It is not suitable as a generally applicable measure for
maintaining consistency of complex data structures.

2024-05-07 OSC: L05 Interrupts – Synchronization 32

Agenda
● Recapitulation
● Control-Flow Level Model
● Hard Synchronization
● Nonblocking Synchronization
● Synchronization with the Prologue/Epilogue Model
● Summary

2024-05-07 OSC: L05 Interrupts – Synchronization 33

Prologue/Epilogue Model – Motivation
● Again: Hard synchronization

– Simple, correct, “always works”
– Main problem: Latency

● long delay when accessing state from higher levels
● long delay when modifying state in the IH itself

– … in the end caused by the fact that the state (logically) resides on
the/a hardware interrupt level (L1...n)

Application level

(Hardware)
Interrupt level

✔
✘

L1

L0

in
te

rr
up

ts

cli sti

de
la

ys

consume()

produce()

buf[...]

in
te

rr
up

ts
 (i

m
pl

ic
itl

y)

ca
n

de
la

y
(e

xp
lic

itl
y)

handler()

2024-05-07 OSC: L05 Interrupts – Synchronization 34

Prologue/Epilogue Model – Approach
● Idea: We insert another level L½ between application level L0

and the interrupt-handling levels L1...n

– IH is divided into prologue and epilogue
● Prologue runs on interrupt level L1...n
● Epilogue runs on (software) level L½ (epilogue level)

– State resides (as far as possible) on epilogue level
● actual interrupt handling is only disabled briefly

Application level

(Hardware)
Interrupt level

New: Epilogue level

L1

L½

L0

buf[...] produce

epilogue

prologue

handler

in
te

rr
up

ts
 (i

m
pl

ic
itl

y)

ka
nn

 v
er

zö
ge

rn
 (e

xp
liz

it)
ca

n
de

la
y

(e
xp

lic
itl

y)

2024-05-07 OSC: L05 Interrupts – Synchronization 35

Prologue/Epilogue Model – Approach
● Interrupt-handler routines are divided into two halves

– start in their prologue (always)

– are continued in their epilogue (on demand)

● Prologue
– runs on hardware-interrupt level

● Prioritized over application level and epilogue level
– is short, touches little or no state

● Hardware interrupts are only disabled briefly
– can request an epilogue on demand

● Epilogue
– runs on epilogue level (additional control-flow level)

● Execution delayed in respect to prologue
– does the actual work
– has access to most of the state

● State is synchronized on the epilogue level

2024-05-07 OSC: L05 Interrupts – Synchronization 36

Pro/Epilogue Model – Epilogue Level
● Epilogue level is implemented (completely, or partially) in

software
– nevertheless a regular control-flow level within the level model
– the same rules apply

● As before: Control flows on epilogue level L½ are
1. interrupted anytime by control flows on levels L1...n

 → Prologues (interrupts) have priority over epilogues
2. never interrupted by control flows of L0

 → Epilogues have priority over application control flows
3. sequentialized with other control flows on L½

 → Pending epilogues are executed sequentially.
 → When returning to application level, all epilogues have been
completed.

2024-05-07 OSC: L05 Interrupts – Synchronization 37

Pro/Epilogue Model – Implementation
● We need operations to

1. explicitly enter the epilogue level: enter()
● corresponds to cli in hard synchronization

2. explicitly leave the epilogue level: leave()
● corresponds to sti in hard synchronization

3. request an epilogue: relay()
● corresponds to pulling an IRQ line to “high” at the PIC

2024-05-07 OSC: L05 Interrupts – Synchronization 38

Pro/Epilogue Model – Sequence Example

1 Application control flow enters epilogue level L½ (enter).

2 Interrupt is signaled on level L1, execute prologue.

3 Prologue requests epilogue for delayed execution (relay).
4 Prologue terminates, interrupted L½ control flow (application) continues.

5 Application control flow leaves epilogue level L½ (leave),

process meanwhile accumulated epilogues.
6 Epilogue terminates, application control flow continues on L0.

t1 t2 t3 t4 t6t5

Interrupt-handler
activation latency is
minimal.

Interrupt-handler
activation latency is
minimal.

L1 interrupts are
never disabled.
L1 interrupts are
never disabled.

L1

L½

L0

buf[...]

produce

epilogue

prologue

handler

enter

relay

leave

consume

2024-05-07 OSC: L05 Interrupts – Synchronization 39

Pro/Epilogue Model – Implementation
● We need operations to

1. explicitly enter the epilogue level: enter()
● corresponds to cli in hard synchronization

2. explicitly leave the epilogue level: leave()
● corresponds to sti in hard synchronization

3. request an epilogue: relay()
● corresponds to pulling an IRQ line to “high” at the PIC

● Additionally, mechanisms to
4. remember pending epilogues, e.g. a queue

● corresponds to PIC’s IRR (interrupt request register)

5. ensure that pending epilogues are processed
● corresponds to the protocol between CPU and PIC in hard sync.

We’ll have to have
a closer look at this
part.

We’ll have to have
a closer look at this
part.

2024-05-07 OSC: L05 Interrupts – Synchronization 40

Pro/Epilogue Model – Implementation
● When do we have to process pending epilogues?

Just before the CPU returns to L0!
1. when explicitly leaving the epilogue level with leave()

● While the application control flow ran on epilogue level, more epilogues
may have accumulated (sequentialization)→

2. after processing the last epilogue
● While processing epilogues, more epilogues may have accumulated.

3. after the last interrupt handler terminates
● While the CPU executed control flows on levels L1...n, epilogues may have

accumulated. (prioritization)→

● Two implementation variants:
– with hardware support via an AST (now, in the lecture)
– completely software-based (in the exercises)

2024-05-07 OSC: L05 Interrupts – Synchronization 41

Pro/Epilogue Model – Implementation
● An AST (asynchronous system trap) is an interrupt that can (only) be

requested by software
– e.g. by setting a bit in a specific register
– otherwise technically comparable to a hardware interrupt

● Main difference to traps / exceptions / software interrupts:
AST is executed asynchronously
– runs on own interrupt level between app. and hardware IHs (our L½)
– Level model’s rules apply (AST execution is delayable, automatically activated, …)

● AST simplifies ensuring epilogues are processed
– Processing in AST (automatically, before returning to L0)

– We just need to manage pending epilogues

2024-05-07 OSC: L05 Interrupts – Synchronization 42

Pro/Epilogue Model – Implementation
● Example TriCore: Implementation with AST

– AST implemented as an L1 interrupt here (⇔ our E
½
)

– Hardware interrupts on L2...n

void enter() {
 CPU::setIRQL(1); // enter L

1
, delay AST

}
void leave() {
 CPU::setIRQL(0); // allow AST (pending
} // AST would now be processed)
void relay(<Epilogue>) {
 <enqueue epilogue in queue>
 CPU_SRC1::trigger(); // activate level-1 IRQ (AST)
}
void __attribute__((interrupt_handler)) irq1Handler() {
 while (<Epilogue in queue>) {
 <dequeue epilogue from queue>
 <process epilogue>
} }

2024-05-07 OSC: L05 Interrupts – Synchronization 43

Pro/Epilogue Model – Implementation
● Example TriCore: Implementation with AST

– AST implemented as an L1 interrupt here (⇔ our E
½
)

– Hardware interrupts on L2...n

void enter() {
 CPU::setIRQL(1); // enter L

1
, delay AST

}
void leave() {
 CPU::setIRQL(0); // allow AST (pending
} // AST would now be processed)
void relay(<Epilogue>) {
 <enqueue epilogue in queue>
 CPU_SRC1::trigger(); // activate level-1 IRQ (AST)
}
void __attribute__((interrupt_handler)) irq1Handler() {
 while (<Epilogue in queue>) {
 <dequeue epilogue from queue>
 <process epilogue>
} }

If the hardware does not offer an
AST concept (like x86-64), we can
imitate it in software.

We’ll do that in the exercises.

2024-05-07 OSC: L05 Interrupts – Synchronization 44

Pro/Epilogue Model: Goal Achieved?
● Kernel state can now be maintained and synchronized on

epilogue level
– No need to disable hardware interrupts anymore

● One issue remains: The epilogue queue
– Access from prologues and epilogue level

● either hard synchronization (shown here)
● or special solution with nonblocking synchronization

L½

L1

L0

queue relay

leave

enqueue

dequeue

Hard synchronization seems
acceptable here, since the time
frame with interrupts disabled
(runtime of dequeue()) is short and
deterministic.

A solution with nonblocking synchronization
would be nice anyways!

2024-05-07 OSC: L05 Interrupts – Synchronization 45

Pro/Epilogue Model – Related Concepts
● Windows: ISRs / deferred procedure calls (DPCs)

– Interrupt Service Routines (ISRs) can enqueue DPCs in a waiting queue.
This queue is processed delayed before the CPU returns to the thread
level.

● Linux: ISRs / bottom halves (BHs)
– Linux has a bit in a bit mask for each interrupt service routine (ISR)

through which it can request a delayed bottom half. These BHs are
executed before leaving the kernel.

– Beyond this, Linux uses a concept comparable to DPCs: waiting
queues of tasklets.

● eCos: ISRs / deferred service routines (DSRs)
● ...

Almost all operating systems with interrupt
handling provide an “epilogue level”.
Almost all operating systems with interrupt
handling provide an “epilogue level”.

2024-05-07 OSC: L05 Interrupts – Synchronization 46

Pro/Epilogue Model – Assessment
● Advantages:

– Maintains consistency (synchronization on epilogue level)
– Programming model corresponds to the (easily understandable) model

behind hard synchronization
– Also complex state can be synchronized

● without losing IRQs
● allowing to protect the whole OS kernel on epilogue level

● Disadvantages:
– Additional level leads to additional overhead

● Epilogue activation could take longer than direct handling
● Higher complexity for the OS developer

– We don’t completely get rid of disabling interrupts
● Shared state between prologue and epilogue must still be synchronized

hard or nonblockingly

2024-05-07 OSC: L05 Interrupts – Synchronization 47

Pro/Epilogue Model – Assessment
● Advantages:

– Maintains consistency (synchronization on epilogue level)
– Programming model corresponds to the (easily understandable) model

behind hard synchronization
– Also complex state can be synchronized

● without losing IRQs
● allowing to protect the whole OS kernel on epilogue level

● Disadvantages:
– Additional level leads to additional overhead

● Epilogue activation could take longer than direct handling
● Higher complexity for the OS developer

– We don’t completely get rid of disabling interrupts
● Shared state between prologue and epilogue must still be synchronized

hard or nonblockingly

Conclusion:

The prologue/epiloge model is a good compromise for
synchronizing accesses to kernel state.

It is also suitable for maintaining consistency of complex
data structures.

2024-05-07 OSC: L05 Interrupts – Synchronization 48

Agenda
● Recapitulation
● Control-Flow Level Model
● Hard Synchronization
● Nonblocking Synchronization
● Synchronization with the Prologue/Epilogue Model
● Summary

2024-05-07 OSC: L05 Interrupts – Synchronization 49

Summary: Interrupt Synchronization
● Maintaining consistency in the OS kernel

– Must be done differently than between processes one-sided→

– Control flows run on different levels
● Measures for maintaining state consistency

– hard synchronization (by disabling interrupts)

● simple, but negative effect on latency
● interrupts can get lost

– nonblocking synchronization (by interrupt transparency)

● nice and efficient, but only possible in specific scenarios
● implementation may become quite complex

– Prologue/epilogue based synchronization
(by splitting the interrupt handler into two halves)

● good compromise, synchronization without affecting latency

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

