
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION
The Programming Model of the
x86-64 Architecture
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 2

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Interrupt
handling

Inter-process
communication

Control-flow
abstraction

Interrupt
synchronization

Process management

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 3

Interrupt
handling

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Inter-process
communication

Process management

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

Interrupt
synchronization

Control-flow
abstraction

Topic of today’s lectureTopic of today’s lecture

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 4

Agenda
● History
● Basic Programming Model
● Memory Management and Addressing
● Protection
● “Tasks”
● Summary

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 5

Agenda
● History
● Basic Programming Model
● Memory Management and Addressing
● Protection
● “Tasks”
● Summary

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 6

History of Intel x86 Processors (1)
● 8086 (1978) – the PC processor’s prime father
● 80286 (1982) – introduction of Protected Mode

– Segment-based memory protection
● 80386 (1985) – first IA-32 processor

– Page-based virtual memory
● 80486 (1989) – integrated FPU, first RISC rudiments
● Pentium (1993) – superscalar, 64-bit data bus

– SMM, MMX, APIC, dual-processor capable
● Pentium Pro (1995) – Server, high-end
● Pentium II (1997) – Pentium Pro + MMX

– RISC-like micro instructions
● Pentium III (1999) – SSE
● Pentium 4 (2000) – Netburst architecture

– SSE2, Hyperthreading, Vanderpool, Intel 64/EM64T

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 7

History of Intel x86 Processors (2)
● Core (2005) – Dual-core, low-power

– Pentium III derivate, SSE3
● Core 2 (2006) – Dual/quad core, 64 bit (amd64/x86-64)
● Core i3/i5/i7 (2008) – SSE4, QPI, SMT, L3 cache

– On-die L3 cache, integrated memory controller and partially also GPU
● Atom (2008) – even less power
● Sandy Bridge (2011) – AVX, AES-NI
● Has-/Broadwell (2013) – AVX2, TSX, FMA3
● Sky-/Kabylake (2015) – AVX-512, MPX, SGX, ADX

– integrated southbridge, USB 3.1, GPU for 3D and 4k video
● Cannon/Coffee/Whiskey/Cascade Lake (2017) – up to 8 cores
● Ice/Comet Lake (2019) – up to 10 cores, 5-level paging, TSX
● Rocket/Tiger Lake (2021) – DL-Boost, memory encryption, CET, SGX
● Alder/Raptor Lake (2021, 2022) – subdivision into P- and E-cores (max. 8+8 / 8+16)

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 8

Agenda
● History
● Basic Programming Model
● Memory Management and Addressing
● Protection
● “Tasks”
● Summary

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 9

8086: Programming Model
● 16-bit architecture, little-endian (LE)
● 20-bit address bus (max. 1 MiB memory addressable)
● Few registers

– (at least from today’s perspective)
● 123 instructions

– non-orthogonal instruction set
● Opcode lengths of 1 to 4 bytes
● Segmented memory
● Still relevant

– Although from 1978: still supported by every x86-64 CPU
● Real Mode, Virtual 8086 Mode

Intel attaches great importance
to backwards compatibility.
Intel attaches great importance
to backwards compatibility.

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 10

8086: Register File

IP
SP

015
Instruction and Stack Pointer

AH AL
015

General-purpose registers

BH BL
CH CL
DH DL
SI
DI
BP

FLAGS
015

Flags register

CS
015

Segment registers

SS
DS
ES

Code
Stack
Data
Extra

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 11

8086: Register File

IP
SP

015
Instruction and Stack Pointer

AH AL
015

General-purpose registers

BH BL
CH CL
DH DL
SI
DI
BP

FLAGS
015

Flags register

CS
015

Segment registers

SS
DS
ES

Code
Stack
Data
Extra

AX: Accumulator Register
● arithmetic + logical operations
● I/O
● shortest machine code

BP: Base Pointer

CX: Count Register
● for LOOP instruction
● for string operations with REP
● for bit-shift and rotate

DX: Data Register
● DX:AX have 32 bits for MUL/DIV
● port number for IN and OUT

SI, DI: Index Register
● for array accesses (displacement)

BX: Base Address Register

Each “general-purpose” register
fulfills a specific purpose.
Each “general-purpose” register
fulfills a specific purpose.

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 12

8086: Segmented Memory
● Logical addresses on 8086 consist of

– segment selector (usually the value of a segment register)

– offset (usually from a general-purpose register or the instruction)

● Calculation of physical addresses:

Segment selector
015

+ Offset
015

Physical address
019

0 0 0 0

16-bit competitors could usually address only 64 kiB.16-bit competitors could usually address only 64 kiB.

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 13

8086: Segmented Memory
● Logical addresses on 8086 consist of

– segment selector (usually the value of a segment register)

– offset (usually from a general-purpose register or the instruction)

● Calculation of physical addresses:

Segment selector
015

+ Offset
015

Physical address
019

0 0 0 0

wrongly ascribed to Bill Gates, 1981wrongly ascribed to Bill Gates, 1981

“640K ought to be enough for anybody”

16-bit competitors could usually address only 64 kiB.16-bit competitors could usually address only 64 kiB.

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 14

Interlude: The A20 Gate
● … is a relic from the 80286 era (IBM AT)

– On the IBM XT (8086), address calculation could overflow, at max.:

– MS-DOS (and other systems) relies on this overflow “trick”.
– For compatibility reasons, in the IBM AT the A20 line was masked via

the “A20 gate” (a register in the keyboard controller).
● A20 must explicitly be enabled to address memory > 1 MiB.

– 80486: A20 gate integrated in the CPU
– Intel Haswell (2013): A20 gate removed

 0xffff0
+ 0x0ffff
 1 1 1 1

 0x10ffef

Segment * 16
Offset

only 20 bits!
0x0ffef Physical address

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 15

8086: Memory Models

Data-pointer size
near far

Code-
pointer size

near Small Compact
far Medium Large

Addressing can be done differently by programs. This resulted in
different memory models:

● Tiny: Code, data and stack segments are identical: 64 kiB in total
● Small: Code separated from data & stack: 64 kiB + 64 kiB
● Medium: 32- (or in essence 20-) bit “far” pointers for code,

16 bit “near” pointers for data & stack (fixed 64 kiB segment)
● Compact: 16-bit “near” pointers for code (fixed 64-kiB segment),

32- (20-) bit “far” pointers for data & stack
● Large: “far” pointers for everything – 1 MiB completely usable
● Huge: like “large”, but with normalized pointers
unsigned char * far videomem =

(unsigned char * far) 0xb8000;

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 16

8086: Conclusion
● The PC processor’s prime father

– The first PC’s CPU

– Today, x86 and x86-64 processors are still compatible.

● Advantages through segment registers
– 1 MiB of memory in spite of 16-bit architecture

– Segments separate logical modules in memory

● Difficult program and compiler development
– Different memory models

– Non-orthogonal instruction set

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 17

IA-32 – Intel’s 32-bit Architecture
● First IA-32 CPU: Intel 80386

(the term “IA-32” was coined much later, however)

● 32-bit technology: Registers, data and address bus
– starting with Pentium Pro: 64-bit data and 36-bit address bus

● Additional registers
● Complex support for protection and multitasking

– Protected Mode
– originally introduced with the 80286 (16 bit)

● Compatibility
– with older operating systems through Real Mode
– with older applications through Virtual 8086 Mode

● Segment-based programming model
● Page-based MMU

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 18

amd64 / x86-64 – 64-Bit AMD/Intel Arch.
● IA-32 was limited to max. 4 GiB virtual memory
● Solution: 64-bit architecture

– Currently 48-bit virtual address space (up to 256 TiB)
(Ice Lake Xeons, 2019: 57-bit, up to 128 PiB)

● More (and 64 bits wide) registers
● Page-based programming model with memory protection

– No Execute bit for individual pages
– (Almost) no segmentation

● Still backwards compatible
– Long Mode for putting the new features to use
– 32-bit Legacy Mode for systems or individual applications

● Developed by AMD, adopted by Intel (as “Intel 64”)

– Usually called “x86-64” or “x64” nowadays
– The completely different Intel IA-64 (“Itanium”) did not succeed.

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 19

x86-64: Register File (Extensions)
● Extended registers prefixed with R… for compatibility

063
Instruction and stack pointerGeneral-purpose registers

Status register

CS
015

Segment registers

SS
DS
ES

Code
Stack
Data
Extra

1516

AX
BX

CX
DX

063 1516
RIP
RSP

RAX
RBX
RCX
RDX
RSI
RDI
RBP

FS
GS

063 1516

IP
SP

SI

DI
BP

 FLAGSRFLAGS

Extended in
cmp. to 8086
Extended in

cmp. to 8086

Extra
Extra

 ⋮

R8

R15
 ⋮
R8

015

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 20

CR8

x86-64: Register File (Additions)

Control registers
063 3132

Model-specific registers (MSRs)

Debug registers
063 3132

CR4
CR3
CR2
CR0

TSS sel.
LDT sel.

TSS Base Address
LDT Base Address
IDT Base Address
GDT Base Address

TSS Limit
LDT Limit
IDT Limit
GDT Limit

063015 031
Memory-management registers

TR
LDTR
IDTR
GDTR

Details follow …Details follow …

DR0
DR1
DR2
DR3
DR6
DR7

15 0

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 21

Agenda
● History
● Basic Programming Model
● Memory Management and Addressing
● Protection
● “Tasks”
● Summary

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 22

x86-64: Addressing Modes
● The CPU calculates effective addresses (EA) along a simple

formula
– all general-purpose registers can be used equally (!)

● Example: MOV RAX, array[RSI * 4]
– Read from array with 4-byte elements, using RSI as index

● New with x86-64: IP-relative addressing

EA := Base-Reg. + (Index-Reg. * Scale) + Displacement

1/2/4/81/2/4/8 ---
1/2/4 bytes

1/2/4 bytes

EA

EA := RIP + Displacement

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 23

IA-32: Protected Mode – Segments
● A (running) program consists of multiple memory segments

– Traditionally at least CODE, DATA and STACK
– Segment selectors (indirectly) describe address and size

● “Linear address” is segment start address + EA
– Corresponds to physical address if paging unit is disabled
– Segments may overlap, e.g. start addresses == 0
– In practice, such a “flat address space” is often used.

● No segment-based protection in Long Mode
– Only FS/GS start address and CS attributes are respected

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 24

IA-32 / x86-64: Segments

Selector

Segment Register

SS
GS
FS
ES
DS
CS

Base register

Index register

Scale
1, 2, 4 or 8

Displacement
(in the instruction)

Flags
Limit
Start address

Table

Segment descriptors

selected
segment
selected
segment

Operand

Effective
address

Segment start
address

Linear
address

0

Linear
adress space

Segment
boundary

CS
DS

ES
FS

GS
SS

0

Limit

x

+

+

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 25

Protected-Mode Enable:
1=enabled
Protected-Mode Enable:
1=enabled

x86-64: Page-based MMU
● Demand paging (for virtual memory)
● 80386: Paging Unit (PU) can be enabled optionally

– x86-64: PU obligatory
● Configured via control registers CR0/2/3:

Base address of page map

Virtual address of the page fault
PG miscellaneous PE

063

CR3

CR2

CR0

Paging: 1=enabledPaging: 1=enabled

reserved

reservedreserved

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 26

x86-64: Page Table

Entry 511

...

Entry 2

Entry 1

Entry 0

Page frame
4 KiB

(Code, data)

Page frame
4 KiB

(Code, data)

Page frame
4 KiB

(Code, data)

Page frame
4 KiB

(Code, data)...

Entry 511

...

Entry 2

Entry 1

Entry 0

PDP Index PD Index Offset

01112202129
Linear
address

Page frames
(physical
addresses)

PML4 Base
1251 CR3

N/A Page IndexPML4 Index

303839474863

Entry 511

...

Entry 2

Entry 1

Entry 0

Entry 511

...

Entry 2

Entry 1

Entry 0

Page Map
Level 4

Page
Directory
Pointers

Page
Directory Page Table

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 27

x86-64: TLB
● Problem: Indirection via PML4, PDP, Page Directory and Page

Table slows down memory accesses
● Solution: the Translation Lookaside Buffer (TLB):

– an associative cache
● Tag: PML4/PDP/PD/PT
● Data: Page-frame address
● Size and associativity depend on CPU

– For regular applications, the TLB achieves a hit rate of ~98%.
– Writing CR3 invalidates the TLB

● Not anymore since Intel Westmere (2010) and AMD Zen 3 (2020):
TLB tags include 12-bit process-context ID (PCID)

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 28

Agenda
● History
● Basic Programming Model
● Memory Management and Addressing
● Protection
● “Tasks”
● Summary

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 29

Protection on IA-32
● Protection concept is a central property of Protected Mode
● Goal: Isolate buggy or untrusted code

– Protect from system crashes
– Protect from unauthorized data accesses
– Prevent unauthorized operations, e.g. I/O port accesses

● Preconditions: Code and data …
– are categorized depending on their trustworthiness
– have an owner (cf. “multitasking”)

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 30

Protection Rings and Gates

Code

Code Code

Code

Code

CodeCode

Data

Data
Data

Data

Data

Data

3 2 1
0

A 2-bit entry in the
segment descriptor
assigns each segment
to a privilege level.

A 2-bit entry in the
segment descriptor
assigns each segment
to a privilege level.

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 31

Protection Rings and Gates

Code

Code Code

Code

Code

CodeCode

Data

Data
Daten

Daten

Data

Data

3 2 1
0

System servicesSystem services

Customer-specific
OS extensions
Customer-specific
OS extensions

ApplicationsApplications

Privilege level 0 is the
highest and reserved
for the OS kernel.

Privilege level 0 is the
highest and reserved
for the OS kernel.

Privilege level 3 is the
lowest of the four levels
and meant for
applications.

Privilege level 3 is the
lowest of the four levels
and meant for
applications.

KernelKernel

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 32

Protection Rings and Gates

Code

Code Code

Code

Code

CodeCode

Data

Data
Data

Data

Data

Data

3 2 1
0

Access to data of an
outer ring is allowed
Access to data of an
outer ring is allowed

Calling code in an
outer ring is
(usually) forbidden!

Calling code in an
outer ring is
(usually) forbidden!

Code in an
inner ring
can be called
only via
“gates”

Code in an
inner ring
can be called
only via
“gates”

Access to data of an
inner ring is denied
Access to data of an
inner ring is denied

Access to
segments
of the
same ring
is allowed

Access to
segments
of the
same ring
is allowed

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 33

Segment Descriptors
● Allow protecting code in Protected Mode

– Any violation triggers an exception
– On 64-bit systems, they allow executing 32-bit code

P - Present Bit
DPL - Descriptor Privilege Level
S - System Segment

P - Present Bit
DPL - Descriptor Privilege Level
S - System Segment

G - Granularity
D/B - 16/32 Bit Seg.
L - Long Mode aktiv

G - Granularity
D/B - 16/32 Bit Seg.
L - Long Mode aktiv

Segment Base 31 ... 24

P S

G

D
/B L

AV
L Limit 19 ... 16

Segment Base 23 ... 16

Segment Base 15 ... 0

Segment Limit 15 ... 0

DPL

a segment descriptor

TYPE – Code:
C - Conforming
R - Readable
A - Accessed

TYPE – Code:
C - Conforming
R - Readable
A - Accessed

TYPE

0

+2

+4

+6

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 34

Protection on x86-64
● Segmentation was barely adopted in practice

– Almost all IA-32 systems use a flat memory model
– Offset of a logical address = linear address

● Instead: Protection via virtual memory

Page
tableCR3Process 1:

CR3Process 2:

...

Page 2

Page 1

Page 0

Physical memory

Page 2

Page 2

CR3Process n:

● Every process only sees its virtual address space
– Page table is hidden from application software
– Additional restrictions possible on page granularity

Page
table

Page
table

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 35

R/
W

Page-Table Entries

Available N
X

Table / Page Base Address
AVL

63 62 52 51 12

P

U
/S...

1011 2 1 0

No
Execute
No
Execute User/SupervisorUser/Supervisor Read/WriteRead/Write PresentPresent

● Settings possible on all hierarchy levels
– Data must not be executed as code (NX=1)
– Protection from read accesses from ring 3 (U/S=0)
– Read-only pages (R/W=0)

● Allows implementing shared memory
– Or read-only access to operating-system structures

● Effectively, only ring 0 (kernel) and 1–3 (application) are
separated

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 36

Agenda
● History
● Basic Programming Model
● Memory Management and Addressing
● Protection
● “Tasks”
● Summary

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 37

IA-32: Multitasking
● Besides protecting from unauthorized “vertical” accesses

between segments on different ring levels, IA-32 also
supports a task concept (“horizontal isolation”)

● Not available in x86-64 Long Mode

Code

Code

Code
Code

Code
Code

Data

Data Data

Data

Data

Data

3 2 1

Global Segments
(descriptors in GDT)
Global Segments
(descriptors in GDT)

Task A

Task B

Task C

Segments from
task A’s LDT
Segments from
task A’s LDT

Code
0

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 38

● Task Register (TR) points to
the Task State Segment (TSS)

● on IA-32: Storage space for
task state
– Segments, register contents, …
– Task switches possible

completely in hardware!
● … not in x86-64 Long Mode

– instead: TSS for I/O permissions
and stack pointer

Task-State Segments

I/O Map Base Address

IST7
IST6
IST5
IST4
IST3
IST2
IST1

RSP2
RSP1
RSP0

I/O Permission Bitmap

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 39

Input/Output in Long Mode
● Not every task is allowed to do I/O!
● Access to devices in memory (memory-mapped I/O)

controllable via memory protection
● Access to I/O ports restricted by:

– I/O Privilege Level bits in RFLAGS I/O OK when on specified protection →
rings

– Other rings: I/O Permission Bitmap in TSS controls access

I/O Map Base Address

IST7

...

1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1
1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0
1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1
1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1
1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1
1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0
1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1
1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1
1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1

A 1 prevents
port access
A 1 prevents
port access

Port 0

Bitmap ends with
the TSS segment’s
end, ports with
higher numbers
must not be
accessed.

Bitmap ends with
the TSS segment’s
end, ports with
higher numbers
must not be
accessed.

TSS

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 40

x86-64: What Else Is There?
● 5-level paging (in some high-end CPUs since 2019)

– Up to 4 PiB memory (128 PiB address space) instead of currently 64/256 TiB

● CPU Virtualization
– Virtual 8086 Mode

● 16-bit applications or OSs run as tasks in a protected environment
– Intel-VT, AMD-V

● Hardware support for virtual-machine solutions like VMware, VirtualBox or Xen
● Allows running ring-0 Protected Mode code in a VM (hypervisor on “ring –1”)

● System Management Mode (SMM)
– Hands control to the system to the firmware/BIOS (on “ring –2”)
– … unbeknownst to the OS
– System safety (high temp. shutdown), USB Legacy Support, TPM, …

● (Near?) Future: X86-S architecture proposal
– Long-mode only, removal of a lot more legacy

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 41

Agenda
● History
● Basic Programming Model
● Memory Management and Addressing
● Protection
● “Tasks”
● Summary

2024-06-11 OSC: L06 The Programming Model of the x86-64 Architecture 42

Summary
● The x86-64 architecture is highly complex:

– Virtual memory with 4-level (or even 5-level) page tables
– Page-based memory protection
– I/O port protection per task
– Can run 16-bit code on 32-bit systems

or 32-bit code on 64-bit systems (legacy modes)

● Rarely used IA-32 features were removed in x86-64
– Segmentation (many systems use a flat address space)

– Task switch in hardware
● Nevertheless: consequent backwards compatibility

– “Legacy / Virtual 8086 Mode”, “PIC”, “A20 Gate”
– May finally go away with X86-S

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

