
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION

Coroutines and Threads
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2024-05-14 OSC: L07 Coroutines and Threads 2

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Interrupt
handling

Inter-process
communication

Control-flow
abstraction

Interrupt
synchronization

Process management

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

2024-05-14 OSC: L07 Coroutines and Threads 3

Interrupt
handling

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Inter-process
communication

Process management

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

Interrupt
synchronization

Control-flow
abstraction

Topic of today’s lectureTopic of today’s lecture

2024-05-14 OSC: L07 Coroutines and Threads 4

Agenda
● Motivation: Quasi Parallelism

– Experiments

● Basic Terminology
– Routine and Control Flow
– Coroutine, Control Flow and Thread
– Asymmetric and Symmetric Continuation Model

● Implementing Coroutines
– Continuations
– Elementary Operations

● Preview
– Coroutines as a Basis for Multithreading

● Summary

2024-05-14 OSC: L07 Coroutines and Threads 5

Agenda
● Motivation: Quasi Parallelism

– Experiments

● Basic Terminology
– Routine and Control Flow
– Coroutine, Control Flow and Thread
– Asymmetric and Symmetric Continuation Model

● Implementing Coroutines
– Continuations
– Elementary Operations

● Preview
– Coroutines as a Basis for Multithreading

● Summary

2024-05-14 OSC: L07 Coroutines and Threads 6

Motivation: Quasi Parallelism

void f() {
 printf("f:1\n");

 printf("f:2\n");

 printf("f:3\n");

}

void g() {
 printf("g:A\n");

 printf("g:B\n");

 printf("g:C\n");

}
int main() {

}

● Given: Functions f and g
● Goal: f and g shall run in overlapping/alternating fashion

?

2024-05-14 OSC: L07 Coroutines and Threads 7

Motivation: Quasi Parallelism – Experiment 1

void f() {
 printf("f:1\n");

 printf("f:2\n");

 printf("f:3\n");

}

void g() {
 printf("g:A\n");

 printf("g:B\n");

 printf("g:C\n");

}

int main() {
 f();
 g();
}

$ gcc experiment1.c
$./a.out
f:1
f:2
f:3
g:A
g:B
g:C

Of course, it doesn’t
work this way …
Of course, it doesn’t
work this way …

2024-05-14 OSC: L07 Coroutines and Threads 8

Motivation: Quasi Parallelism – Experiment 2

void f() {
 printf("f:1\n");
 g();

 printf("f:2\n");
 g();

 printf("f:3\n");
 g();
}

void g() {
 printf("g:A\n");

 printf("g:B\n");

 printf("g:C\n");

}

int main() {
 f();

}

$ gcc experiment2.c
$./a.out
f:1
g:A
g:B
g:C
f:2
g:A
…

This way neither ...This way neither ...

2024-05-14 OSC: L07 Coroutines and Threads 9

Motivation: Quasi Parallelism – Experiment 3

void f() {
 printf("f:1\n");
 g();

 printf("f:2\n");
 g();

 printf("f:3\n");
 g();
}

void g() {
 printf("g:A\n");
 f();

 printf("g:B\n");
 f();

 printf("g:C\n");
 f();
}

int main() {
 f();

}

$ gcc experiment3.c
$./a.out
f:1
g:A
f:1
g:A
…
Segmentation faultDefinitely not this way!Definitely not this way!

2024-05-14 OSC: L07 Coroutines and Threads 10

void f_start() {
 printf("f:1\n");
 f = &&l1; goto *g;

l1: printf("f:2\n");
 f = &&l2; goto *g;

l2: printf("f:3\n");
 goto *g;
}

void g_start() {
 printf("g:A\n");
 g = &&l1; goto *f;

l1: printf("g:B\n");
 g = &&l2; goto *f;

l2: printf("g:C\n");
 exit(0);
}

void (*volatile f)();
void (*volatile g)();

int main() {
 f = f_start;
 g = g_start;
 f();
}

Motivation: Quasi Parallelism – Experiment 4

How about
this way?

How about
this way?

$ gcc experiment4.c
$./a.out
f:1
g:A
f:2
g:B
f:3
g:C

Works!Works!

2024-05-14 OSC: L07 Coroutines and Threads 11

void f_start() {
 printf("f:1\n");
 f = &&l1; goto *g;

l1: printf("f:2\n");
 f = &&l2; goto *g;

l2: printf("f:3\n");
 goto *g;
}

void g_start() {
 printf("g:A\n");
 g = &&l1; goto *f;

l1: printf("g:B\n");
 g = &&l2; goto *f;

l2: printf("g:C\n");
 exit(0);
}

void (*volatile f)();
void (*volatile g)();

int main() {
 f = f_start;
 g = g_start;
 f();
}

Motivation: Quasi Parallelism – Experiment 4

How about
this way?

How about
this way?

$ gcc experiment4.c
$./a.out
f:1
g:A
f:2
g:B
f:3
g:C

Works!Works!

Please don’t t
ry th

is at h
ome!

Please don’t t
ry th

is at h
ome!

2024-05-14 OSC: L07 Coroutines and Threads 12

● Quasi parallelism between two function executions cannot be
achieved by function calls
– simple function calls (experiments 1 and 2)

 → always run to completion
– recursive function calls (experiment 3)

 → ditto, thus infinite recursion and stack overflow

Quasi Parallelism: First Conclusions (1)

2024-05-14 OSC: L07 Coroutines and Threads 13

● We need functions that can be left “during execution” and
re-entered again
– roughly like in experiment 4

● program counter (PC) is saved, and restored with goto
– … but without the accompanying problems

● Direct jumps from and to functions is undefined in C!
(goto via pointers is a GCC “feature”)

● State consists of more than the PC – what about registers, stack, …?

Quasi Parallelism: First Conclusions (2)

2024-05-14 OSC: L07 Coroutines and Threads 14

Agenda
● Motivation: Quasi Parallelism

– Experiments

● Basic Terminology
– Routine and Control Flow
– Coroutine, Control Flow and Thread
– Asymmetric and Symmetric Continuation Model

● Implementing Coroutines
– Continuations
– Elementary Operations

● Preview
– Coroutines as a Basis for Multithreading

● Summary

2024-05-14 OSC: L07 Coroutines and Threads 15

Basic Terminology: Routine, Control Flow
● Routine: a finite sequence of instructions

– e.g. function f
– Language mechanism/abstraction in almost all programming languages
– is executed by a (routine) control flow

● (Routine) Control flow: a (routine) execution
– Execution and and control flow are synonyms
– e.g. the execution <f> of function f

● starts after activation with the first instruction of f

Routines and executions have a schema-instance relationship.
For precise distinction, we show executions in angle brackets:

<f>, <f'>, <f''> denote executions of function f.

Routines and executions have a schema-instance relationship.
For precise distinction, we show executions in angle brackets:

<f>, <f'>, <f''> denote executions of function f.

2024-05-14 OSC: L07 Coroutines and Threads 16

● Routine control flows are created, managed and destroyed
with specific primitives:
– <f> call g (Execution <f> reaches instruction call g)

● creates new execution <g> of g
● suspends execution <f>
● activates execution <g> (first instruction is executed)

– <g> ret (Execution <g> reaches instruction ret)
● destroys execution <g>
● reactivates execution of the creating/calling control flow

Basic Terminology: Routine, Control Flow

2024-05-14 OSC: L07 Coroutines and Threads 17

Routines Asymmetric Continuation Model→
● Routine control flows form a continuation hierarchy

– Parent/child relationship between creator and created
● Activated control flows are continued following LIFO.

– The most recently activated control flow always terminates first.
– Parent is only resumed after child terminates

<f>

<g>

call g

call h

re
t

re
t

call h

re
t

Legend Control-flow creation:
 Control-flow destruction:

explicit (re-)activation:
 implicit (re-)activation:

<h>

2024-05-14 OSC: L07 Coroutines and Threads 18

Routines Asymmetric Continuation Model→
● This also holds for interrupts

– <f> irq like call, but implicit
– <irq> iret like ret

● Interrupts can be understood as implicitly created and
activated routine executions.

<f>

<g>

<h>

call g

call h

re
t

re
t

call h

re
t

Legend Control-flow creation:
 Control-flow destruction:

explicit (re-)activation:
 implicit (re-)activation:

ire
t

<irq>

2024-05-14 OSC: L07 Coroutines and Threads 19

Basic Terminology: Coroutine
● Coroutine: generalized routine

– additionally allows: explicit suspend/resume
– Supported by several programming languages

● e.g. Mono/C#, C++20, D, Go, Rust, Haskell, JavaScript, Python, …
– is executed by a coroutine control flow

● Coroutine control flow: a coroutine execution
– Control flow with own, independent state

● Stack, registers
● In principle an independent thread – more on that later

Coroutines and coroutine control flows also have a schema-instance
relationship.

In the literature this distinction is unusual. Coroutine control flows are
often also called “coroutines”.

Coroutines and coroutine control flows also have a schema-instance
relationship.

In the literature this distinction is unusual. Coroutine control flows are
often also called “coroutines”.

2024-05-14 OSC: L07 Coroutines and Threads 20

Basic Terminology: Coroutine
● Coroutine control flows are created, managed and destroyed

by additional primitives:
– create g

● creates new coroutine execution <g> of g
– <f> resume <g>

● suspends coroutine execution <f>
● (re-)activates coroutine execution <g>

– destroy <g>
● destroys coroutine execution <g>

Difference to routine control flows:

Activation and re-activation are temporally
decoupled from creation and destruction.

Difference to routine control flows:

Activation and re-activation are temporally
decoupled from creation and destruction.

2024-05-14 OSC: L07 Coroutines and Threads 21

● Coroutine control flows form a continuation sequence
– Coroutine state is conserved across suspensions/activations

● All coroutine control flows are equitable
– Cooperative multitasking
– Continuation order is arbitrary

Coroutines Symmetric Continuation Model→

<f>

<g>

create g

resum
e <h> re

su
m

e
<f

>

re
su

m
e

<f
>resum

e <g>

de
st

ro
y

<f
>

Legend Control-flow creation:
 Control-flow destruction:

Control-flow management:
 Control-flow transition:

<h>

create h

resum
e <g>

resum
e <h>

re
su

m
e

<g
>

2024-05-14 OSC: L07 Coroutines and Threads 22

Coroutines and Threads
● Coroutine control flows are often also called

– cooperative threads
– fibers

● In principle this is true, however the terms originate from
different worlds
– Coroutine support is historically (rather) a language concept
– Multithreading is historically (rather) an operating-system concept
– The boundaries are blurred …

● Language concept – (runtime) library mechanism – OS concept

● Here (in OSC) we understand coroutines as a technical means
– to implement multithreading in the OS
– in particular later also non-cooperative threads

2024-05-14 OSC: L07 Coroutines and Threads 23

Agenda
● Motivation: Quasi Parallelism

– Experiments

● Basic Terminology
– Routine and Control Flow
– Coroutine, Control Flow and Thread
– Asymmetric and Symmetric Continuation Model

● Implementing Coroutines
– Continuations
– Elementary Operations

● Preview
– Coroutines as a Basis for Multithreading

● Summary

2024-05-14 OSC: L07 Coroutines and Threads 24

Implementation: Continuations
● Continuation: Rest / remainder of an execution

– An object that represents a suspended control flow
● Program counter, registers, local variables, …
● in short: complete control-flow state

– Needed to reactivate the control flow

Continuations were originally conceived of in the context of
denotational semantics.

Languages like Haskell or Scheme support continuations as
central language concepts.

Continuations were originally conceived of in the context of
denotational semantics.

Languages like Haskell or Scheme support continuations as
central language concepts.

2024-05-14 OSC: L07 Coroutines and Threads 25

Stack
...

Routines Asymmetric Continuation Model→

● Routine continuations are instantiated on the stack
– in the form of stack frames, created and destroyed by

● compiler (and CPU) with call, ret
● wrapper function (and CPU) at interrupt, iret

– Stack is provided by the hardware (CPU stack)
● Instructions like call, ret, push, pop

implicitly use this stack
actual

parameter
PC <?>
FP <?>
local

variables
actual

parameters
PC <f>
FP <f>
local

variables
actual

parameters
PC <g>
FP <g>
local

variables

G
row

th direction

CPU

...
PC
FP
SP

PC = Program Counter
SP = Stack Pointer
FP = Frame Pointer

Each routine control
flow has a stack
frame.

It contains the
continuation of the
calling function.

Each routine control
flow has a stack
frame.

It contains the
continuation of the
calling function.

<f>

<g>

call g

call h
<h>

2024-05-14 OSC: L07 Coroutines and Threads 26

● A coroutine control flow needs an own stack
– for local variables: they are part of its state
– for subroutine calls: we don’t want to do without them
– During execution, this stack is the CPU stack.

Coroutines Symmetric Continuation Model→

Thus, coroutine control flows can create routine control flows on their
stack, and activate them!
Thus, coroutine control flows can create routine control flows on their
stack, and activate them!

2024-05-14 OSC: L07 Coroutines and Threads 27

● A coroutine control flow needs an own stack
– for local variables: they are part of its state
– for subroutine calls: we don’t want to do without them
– During execution, this stack is the CPU stack.

● Approach: Coroutine continuations are instantiated as
stack frames on their stack.
– A control-flow context is represented by the stack.
– The top-most stack element always contains the continuation.
– A control-flow switch corresponds to a stack switch and “return”.

Coroutines Symmetric Continuation Model→

In principle, this approach implements coroutine continuations
using routine continuations.
In principle, this approach implements coroutine continuations
using routine continuations.

2024-05-14 OSC: L07 Coroutines and Threads 28

Implementation: resume
● Task: Switch the coroutine control flow

// Stack-pointer type (the stack is an array of void*)
typedef void** SP;

extern "C" void resume(SP& from_sp, SP& to_sp) {
 /* current stack frame is the continuation of the
 to-be-suspended control flow (caller of resume) */

 < save CPU stack pointer in from_sp >
 < load CPU stack pointer from to_sp >

 /* current stack frame is the continuation of the
 to-be-(re)activated control flow */

} // return

2024-05-14 OSC: L07 Coroutines and Threads 29

Implementation: resume
● Task: Switch the coroutine control flow

// Stack-pointer type (the stack is an array of void*)
typedef void** SP;

extern "C" void resume(SP& from_sp, SP& to_sp) {
 /* current stack frame is the continuation of the
 to-be-suspended control flow (caller of resume) */

 < save CPU stack pointer in from_sp >
 < load CPU stack pointer from to_sp >

 /* current stack frame is the continuation of the
 to-be-(re)activated control flow */

} // return

Problem: non-volatile registers

The stack frame does not contain any non-volatile
registers, because the caller expects them not to be
modified.

However, we return to a different caller.

Problem: non-volatile registers

The stack frame does not contain any non-volatile
registers, because the caller expects them not to be
modified.

However, we return to a different caller.

2024-05-14 OSC: L07 Coroutines and Threads 30

Implementation: resume
● Problem: non-volatile registers

– Stack frame does not contain any non-volatile registers
– so they must be explicitly saved and restored

● Implementation variants
– Save non-volatile registers to a special data structure
– or save them as “local variables” on the stack:

extern "C" void resume(SP& from_sp, SP& to_sp) {
 /* current stack frame is the continuation of the
 to-be-suspended control flow (caller of resume) */
 < push non-volatile registers on the stack >
 < save CPU stack pointer in from_sp >
 < load CPU stack pointer from to_sp >
 < pop non-volatile registers from the stack >
 /* current stack frame is the continuation of the
 to-be-(re)activated control flow */

} // return

2024-05-14 OSC: L07 Coroutines and Threads 31

Implementation: resume
● resume is architecture specific

– Stack-frame structure
– Non-volatile registers
– Stack growth direction

● And we have to touch registers → Assembler

Example Motorola 68000

// extern "C" void resume(SP& sp_from, SP& sp_to)
resume:
 move.l 4(sp), a0 // a0 = &sp_from
 move.l 8(sp), a1 // a1 = &sp_to
 movem.l d2-d7/a2-a6, -(sp) // nv registers to stack
 move.l sp, (a0) // sp_from = sp
 move.l (a1), sp // sp = sp_to
 movem.l (sp)+, d2-d7/a2-a6 // load nv regs. from stack
 rts // “return”

2024-05-14 OSC: L07 Coroutines and Threads 32

● Coroutine control flow <f> handed over to <g>
– <f> is suspended, <g> is active

Stack_f

actual
parameters

NULL
NULL
local

variables
sp_to

sp_from
PC <f>

non-volatile
registers <f>

Stack_g

actual
parameters

NULL
NULL
local

variables

CPU

...
PC
FP
SP PC = Program Counter

SP = Stack Pointer
FP = Frame Pointer

<resume>‘s stack
frame describes <f>‘s
continuation.
Additionally, the non-
volatile registers were
saved.

<resume>‘s stack
frame describes <f>‘s
continuation.
Additionally, the non-
volatile registers were
saved.

<f>’s
stack frame

<resume>’s
stack frame

<g>’s
stack frame

<f> called resume as a
routine. This call created a
stack frame on <f>‘s stack.

<f> called resume as a
routine. This call created a
stack frame on <f>‘s stack.

Example: resume usage

<f>

<g>

call resum
e g

<resume>

re
t

2024-05-14 OSC: L07 Coroutines and Threads 33

Implementation: create
● Task: Create coroutine control flow <start>

– We need
● Stack memory (somewhere, global) static void *stack_start[256];
● a stack pointer SP sp_start = &stack_start[256];
● a start function void start(void* param) {...}
● parameters for the start function

– We create the coroutine control flow in suspended state
● Stack represents the context
● Execution should not start until resume is called

● Approach: create generates two stack frames
– “as if” the start function had already called resume before:

● the start function’s frame (created by a “virtual caller”)
● resume’s frame (contains start function’s continuation)

– First resume “returns” to the begin of the start function

2024-05-14 OSC: L07 Coroutines and Threads 34

Implementation: create

Stack

PC = NULL
param

PC: start
FP = <n.d.>

non-volatile
registers

Example Motorola 68000

void create(SP& sp_new, void (*start)(void*), void* param) {
 *(--sp_new) = param; // start-function parameter
 *(--sp_new) = 0; // (non-existent) caller’s return addr.

 *(--sp_new) = start; // start() address
 sp_new -= 11; // n-v. registers (values don’t matter)
}

sp_new

Because we “return” to a function’s first instruction, the frame
structures are very simple. At this continuation point, a function has

● not yet put any local variables (or a frame pointer) on the
stack

● not yet put parameters (for resume) on the stack, and
● no assumptions regarding values of non-volatile registers.

2024-05-14 OSC: L07 Coroutines and Threads 35

Implementation: destroy
● Task: destroy coroutine control flow
● Approach: deallocate control-flow context

– corresponds to freeing the context variable (stack pointer)
– Stack memory can be used otherwise afterwards.

At last, that’s not really complicated.At last, that’s not really complicated.

2024-05-14 OSC: L07 Coroutines and Threads 36

Agenda
● Motivation: Quasi Parallelism

– Experiments

● Basic Terminology
– Routine and Control Flow
– Coroutine, Control Flow and Thread
– Asymmetric and Symmetric Continuation Model

● Implementing Coroutines
– Continuations
– Elementary Operations

● Preview
– Coroutines as a Basis for Multithreading

● Summary

2024-05-14 OSC: L07 Coroutines and Threads 37

Next Up: Kernel-Level Threads
● Coroutines are (originally) a language concept

– Multitasking on language level
– We just “retrofitted” C with this
– Context switches need no system privileges

(do not necessarily involve the OS kernel)

● Prerequisite for multitasking is, however: Cooperation
– Applications must be implemented as coroutines
– Applications must know each other
– Applications must activate each other

For unrestricted multiprogramming, these
prerequisites are unrealistic!
For unrestricted multiprogramming, these
prerequisites are unrealistic!

2024-05-14 OSC: L07 Coroutines and Threads 38

Next Up: Kernel-Level Threads
● Alternative: Perceive “cooperation capability” as an

operating-system responsibility
● Approach: Run applications “unnoticed” as

independent threads
– OS takes care of creating coroutine control flows

● Each application is called as a routine from an OS coroutine
● consequently, indirectly every application is implemented as a coroutine

– OS takes care of suspending running coroutine control flows
● so that applications do not have to be cooperative
● necessitates a preemption mechanism

– OS takes care of selecting the next coroutine control flow
● so that applications do not have to know each other
● necessitates a scheduler

2024-05-14 OSC: L07 Coroutines and Threads 39

Next Up: Kernel-Level Threads
● Alternative: Perceive “cooperation capability” as an

operating-system responsibility
● Approach: Run applications “unnoticed” as

independent threads
– OS takes care of creating coroutine control flows

● Each application is called as a routine from an OS coroutine
● consequently, indirectly every application is implemented as a coroutine

– OS takes care of suspending running coroutine control flows
● so that applications do not have to be cooperative
● necessitates a preemption mechanism

– OS takes care of selecting the next coroutine control flow
● so that applications do not have to know each other
● necessitates a scheduler

More on that in the exercise + lab
and in the next lecture

More on that in the exercise + lab
and in the next lecture

2024-05-14 OSC: L07 Coroutines and Threads 40

Agenda
● Motivation: Quasi Parallelism

– Experiments

● Basic Terminology
– Routine and Control Flow
– Coroutine, Control Flow and Thread
– Asymmetric and Symmetric Continuation Model

● Implementing Coroutines
– Continuations
– Elementary Operations

● Preview
– Coroutines as a Basis for Multithreading

● Summary

2024-05-14 OSC: L07 Coroutines and Threads 41

Summary
● Our goal was to enable “quasi parallelism”

– Run functions “alternatingly”, in “little” steps
● Suspension and reactivation of function executions
● New term: Continuation

● Routines → asymmetric continuation model
– Execution in LIFO order (and thereby not “quasi parallel”)

– CPU and compiler provide primitives
● Coroutines → symmetric continuation model

– Execution in arbitrary order
● necessitates own context: registers, stack

– Primitives generally not provided by CPU/compiler
● Threads are OS-managed coroutines

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

